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Abstract. A major theme of this monograph is the creation of examples that
are appropriate intersections of a field with a homomorphic image of a power
series ring over a Noetherian domain. Classical examples of Noetherian integral
domains with interesting properties are constructed by Akizuki, Schmidt, and
Nagata. This work is continued by Brodmann-Rotthaus, Ferrand-Raynaud,
Heitmann, Lequain, McAdam, Nishimura, Ogoma, Ratliff, Rotthaus, Weston
and others.

In certain circumstances, the intersection examples may be realized as a
directed union, and the Noetherian property for the associated directed union
is equivalent to a flatness condition. This flatness criterion simplifies the anal-
ysis of several classical examples and yields other examples such as

• A catenary Noetherian local integral domain of any specified dimension
of at least two that has geometrically regular formal fibers and is not
universally catenary.

• A three-dimensional non-Noetherian unique factorization domain B such
that the unique maximal ideal of B has two generators; B has precisely
n prime ideals of height two, where n is an arbitrary positive integer;
and each prime ideal of B of height two is not finitely generated but all
the other prime ideals of B are finitely generated.

• A two-dimensional Noetherian local domain that is a birational extension
of a polynomial ring in three variables over a field yet fails to have Cohen-
Macaulay formal fibers. This example also demonstrates that Serre’s
condition S1 need not lift to the completion; the example is related to
an example of Ogoma.

Another theme is an analysis of extensions of integral domains R ↪→ S

having trivial generic fiber, that is, every nonzero prime ideal of S has a nonzero
intersection with R. Motivated by a question of Hochster and Yao, we present
results about

• The height of prime ideals maximal in the generic fiber of certain exten-
sions involving mixed polynomial-power series rings.

• The prime ideal spectrum of a power series ring in one variable over a
one-dimensional Noetherian domain.

• The dimension of S if R ↪→ S is a local map of complete local domains
having trivial generic fiber.

A third theme relates to the questions:
• What properties of a Noetherian domain extend to a completion?
• What properties of an ideal pass to its extension in a completion?
• What properties extend for a more general multi-adic completion?

We give an example of a three-dimensional regular local domain R having a
prime ideal P of height two with the property that the extension of P to the
completion of R is not integrally closed.

All of these themes are relevant to the study of prime spectra of Noether-
ian rings and of the induced spectral maps associated with various extensions
of Noetherian rings. We describe the prime spectra of various extensions in-
volving power series.
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power series to analyze and distinguish several properties of commutative rings
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clarify their proofs. We hope in this way to assist current and future researchers in
commutative algebra in utilizing the techniques described here.

Dedication

This monograph is dedicated to Mary Ann Heinzer, to Maria Rotthaus, to
Roger Wiegand, and to the past, present and future students of the authors.

William Heinzer, Christel Rotthaus, Sylvia Wiegand

xi





CHAPTER 1

Introduction Dec 6, 2020intro

When we started to collaborate on this work over twenty years ago, we were
inspired by expository talks Judith Sally gave on the following question:

SallyQ Question 1.1. What rings lie between a Noetherian integral domain and its
field of fractions?

Also Shreeram Abhyankar’s research inspired us to ask the following related
question:1

RamQ Question 1.2. Let I be an ideal of a Noetherian integral domain R, and let
R∗ denote the I-adic completion of R. What rings lie between R and R∗? For
example, if x and y are indeterminates over a field k, what rings lie between the
polynomial ring k[x, y] and the mixed polynomial-power series ring k[y][[x]]?

In this book we encounter a wide variety of integral domains fitting the de-
scriptions of Question

SallyQ
1.1 and Question

RamQ
1.2. In particular we have the following

goals:
(1) To construct new examples of Noetherian integral domains, continuing a

tradition that goes back to Akizuki and Schmidt in the 1930s and Nagata
in the 1950s.

(2) To construct new non-Noetherian integral domains that illustrate recent
advances in ideal theory.

(3) To study birational extensions of Noetherian integral domains as in Ques-
tion

SallyQ
1.1.

(4) To consider, as in Question
RamQ
1.2, the extension R ↪→ R∗, and to relate the

fibers of R∗ over R to birational extensions of R.
These objectives are interrelated: Noetherian Flatness Theorem

11.3.25
6.3 gives conditions

for the constructed domains to be Noetherian. The Noetherian domains constructed
in (1) are used to produce non-Noetherian domains in (2) by using Insider Con-
struction

16.1.1
10.7. Construction

4.4.2
17.2 involves birational extensions of a base ring R as

in (3). The extension and the fibers mentioned in (4) are useful for the construction
in (1).

Over the past eighty years, important examples of Noetherian integral domains
have been constructed that arise as an intersection of a field with a homomorphic
image of a power series ring. An ideal-adic completion of R with respect to a

1Abhyankar’s work demonstrates the vastness of power series rings; a power series ring in two
variables over a field k contains for each positive integer n an isomorphic copy of the power series
ring in n variables over k,

Abhy0
[2]. The authors have fond memories of many pleasant conversations

with Ram concerning power series.

1
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finitely generated ideal of R is a homomorphic image of a power series ring over R;
see Section

3.1
3.1. 2

The basic idea of the construction is to start with an integral domain R, usually
Noetherian, such as a polynomial ring over a field. We look for more unusual Noe-
therian and non-Noetherian extension rings inside a ring S that is a homomorphic
image of a Noetherian ideal-adic completion of R. For reference purposes we label
such an intersection as Intersection Construction

RamQ.0
1.3.

RamQ.0 Intersection Construction 1.3. Let R be an integral domain, let R∗ be a
Noetherian ideal-adic completion of R, and let I be an ideal of R∗. Assume that R
is a subring of S := R∗/I and that L is a field between the field of fractions of R
and the total quotient ring of S. Define the Intersection Domain A:

(
RamQ.0
1.3.0) A := L ∩ S. 3

Many of the examples of this book are produced with I = 0, as in Construction
4.4.1
5.3.

We have been captivated by these topics and have for a number of years been
examining ways to create new rings from well-known ones. Several chapters of
this monograph, such as Chapters

fex
4,

constrincl
5

noeflic
6,

insidepssec
14,

constrhomim
17, and

intsec
24, contain a reorganized

development of previous work using constructions of the form in Intersection Con-
struction

RamQ.0
1.3.

As presented here, Intersection Construction
RamQ.0
1.3 is universal in the following

sense: Assume that A is a Noetherian local domain that has a coefficient field k,
and that the field of fractions L of A is finitely generated as a field extension of k.
Then A is an intersection A = L ∩ S, as in Intersection Construction

RamQ.0
1.3, where

S = R̂/I and I is a suitable ideal of the m-adic completion R̂ of a Noetherian local
domain (R,m), where k is also a coefficient field for R, L is the field of fractions of
R and R is essentially finitely generated over k; see Section

4.6
4.1 of Chapter

fex
4.

Classical examples of Noetherian integral domains with interesting properties
are constructed by Akizuki, Schmidt, and Nagata. This work is continued by
Brodmann-Rotthaus, Ferrand-Raynaud, Heitmann, Lequain, McAdam, Nishimura,
Ogoma, Ratliff, Rotthaus, Weston and others.4

Ceg Classical Examples 1.4. Many of the classical examples concern integral
closure. Akizuki’s 1935 example is a one-dimensional Noetherian local domain R
of characteristic zero such that the integral closure of R is not a finitely generated
R-module

A
[14]. Schmidt’s 1936 example is a one-dimensional normal Noetherian

local domain R of positive characteristic such that the integral closure of R in a
finite purely inseparable extension field is not a finitely generated R-module

Sc
[166,

pp. 445-447]. In relation to integral closure, Nagata’s classic examples include
(1) a two-dimensional Noetherian local domain with a non-Noetherian birational
integral extension and (2) a three-dimensional Noetherian local domain such that
the integral closure is not Noetherian

N2
[138, Examples 4 and 5, pp. 205-207].

2Terminology used in this introduction, such as “ideal-adic completion”, “coefficient field”,
“essentially finitely generated” and “integral closure”, is defined in Chapters

3tools
2 and

ptools2
3.

3The domain A is also referred to as the constructed ring.
4See

A
[14],

Sc
[166], and

N1
[136]; and

BR1
[27],

BR2
[28],

FR
[50],

H1
[96],

H2
[97],

H3
[98],

Leq
[110],

McAdam2
[125],

Ni
[141],

O1
[147],O2

[148],
Ra2
[153],

R1
[156],

R2
[157], and

W
[184].
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Example
4.3.1
4.15 is another example constructed by Nagata. This is the first

occurence of a two-dimensional regular local domain containing a field of charac-
teristic zero that fails to be a Nagata domain, and hence is not excellent. For the
definition and information on Nagata rings and excellent rings; see Definitions

Nag
2.20

and
3.43
3.47 in Chapters

3tools
2 and

ptools2
3, and see Chapter

excel
8. We describe in Example

4.3.3
4.17 a

construction due to Rotthaus of a Nagata domain that is not excellent.

In the foundational work of Akizuki, Nagata and Rotthaus (and indeed in
most of the papers cited above) the description of the constructed ring A as the
intersection domain of Construction

RamQ.0
1.3 is not explicitly stated. Instead A is defined

as a direct limit of subrings; or equivalently as a directed union or nested union.5
In Chapters

fex
4,

constrincl
5, and

constrhomim
17, we expand Intersection Construction

RamQ.0
1.3 to include an

additional integral domain, also associated to the ideal-adic completion of R with
respect to a principal ideal. Our expanded “Intersection Construction” consists of
two integral domains that fit with these examples:

BCdef Intersection Construction With Approximation 1.5. This construction
consists of two integral domains described as follows:

(IC1) The “intersection” integral domain A of Intersection Construction
RamQ.0
1.3:

A = L ∩ S, is the intersection of a field L with a homomorphic image S
of a principal ideal-adic completion of R, and

(IC2) An “approximation” domain B, that is a directed union inside A that
approximates A and is more easily understood; sometimes B is a nested
union of localized polynomial rings over R.

The details of the construction of B as in (IC2) are given in Chapters
constrincl
5 and

constrhomim
17.

Construction Properties Theorems
11.2.51
5.14 and

11.2.4
17.11 describe essential properties of

the construction and are used throughout this book.
In certain circumstances the approximation domain B of (IC2) is equal to

the intersection domain A of (IC1). In this case, the intersection domain A is a
directed union. This yields more information about A. The description of A as an
intersection is often unfathomable! In case A = B, the critical elements of B that
determine L are called limit-intersecting over R; see Chapter

constrincl
5 (Definition

4.2li
5.10) and

Chapters
flatcon
9,

intsec
24 and

intIIsec
25 where we discuss the limit-intersecting condition further.

To see a specific example of the construction, consider the ring R := Q[x, y],
the polynomial ring in the variables x and y over the field Q of rational numbers.
Let S be the formal power series ring Q[[x, y]] and let L be the field Q(x, y, ex, ey).6
Then Equation

RamQ.0
1.3 yields that

(
BCdef
1.5.a) α =

ex − ey

x− y
∈ A = Q(x, y, ex, ey) ∩Q[[x, y]].

It turns out that α /∈ B, the approximation domain. In this example, the in-
tersection domain A is Noetherian, whereas the approximation domain B is not
Noetherian. More details about this example are given in Example

4.1.4
4.11 and in

Theorem
4.2.11t
12.3 and Example

4.7.13
12.7.

5Our use of these terms is explained in Remark
nesunrem
4.8.2.

6This example with power series in two variables does not come from one principal ideal-adic
completion of R as in (IC1) above, but it may be realized by taking first the x-adic completion
R∗ and then taking the y-adic completion of R∗, an “iterative” process.
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The construction method for the approximation domain B as in (IC2) was
originally introduced by Akizuki. Akizuki’s method is based on the idea of adjoining
so-called “endpieces” of power series to a local base ring R in order to obtain a
finite transcendental extension of R contained in the completion of R. This basic
principle of adjoining endpieces was then extended by Nagata and later by Rotthaus
to produce more counterexamples in commutative algebra.

In 1981, Rotthaus extended the endpiece method by adjoining “multi-adic”
endpieces. Then Ogoma introduced a variation of the multi-adic construction by
adjoining “frontpieces” (instead of endpieces). A first hint that there might be
some general principle involved came with the Brodmann-Rotthaus theorem, which
showed that a wide variety of rings could be constructed via the multi-adic method.
In this book we apply this method to construct a wide class of Noetherian and non-
Noetherian rings.

A primary task of our study is to determine, for a given Noetherian domain R,
whether the ring A = L ∩ S of Intersection Construction

RamQ.0
1.3 is Noetherian. An

important observation related to this task is that the Noetherian property for the
associated direct limit ring B is equivalent to a flatness condition; see Noetherian
Flatness Theorems

11.3.25
6.3 and

11.3.2
17.13. Whereas the original proof of the Noetherian

property for Example
4.3.1
4.15 of Nagata took a page and a half

N2
[138, Example 7,

pages 209-211], the original proof of the Noetherian property for Example
4.3.3
4.17 of

Rotthaus took seven pages
R1
[156, pages 112-118]. The results presented in Chapter

noeflic
6

establish the Noetherian property rather quickly for these and other examples.
The construction of B is related to an interesting construction introduced by

Ray Heitmann
H1
[96, page 126]. Let x be a nonzero nonunit in a Noetherian integral

domain R, and let R∗ denote the x-adic completion of R. Heitmann describes
a procedure for associating, to an element τ in R∗ that is transcendental over R,
an extension ring T of R[τ ] having the property that the x-adic completion of T
is R∗. 7 Heitmann uses this technique to construct interesting examples of non-
catenary Noetherian rings. In their 1997 article

noesloc
[74], the present authors adapt the

construction of Heitmann to prove a version of Noetherian Flatness Theorem
11.3.25
6.3

that applies for one transcendental element τ over a semilocal Noetherian domain
R: If the element τ satisfies a certain flatness condition, then τ is called primar-
ily limit-intersecting and the constructed intersection domain A is equal to the
approximation domain B and is Noetherian

noesloc
[74, Theorem 2.8].

This “primarily limit-intersecting” concept from
noesloc
[74] extends to more than one

transcendental element τ ; see Noetherian Flatness Theorem
11.3.25
6.3. This extends Heit-

mann’s construction to finitely many elements of the x-adic completion R∗ of R that
are algebraically independent over R; see

noesloc
[74, Theorem 2.12] or Theorem

11.3.25
6.3.1.a.

In Chapter
constrincl
5, we present Inclusion Construction

4.4.1
5.3, a simplified version of

Intersection Construction
RamQ.0
1.3 with Setting

setinclconstr
5.1. In Setting

setinclconstr
5.1, the base ring R is

an integral domain that is not necessarily Noetherian, the element x is a nonzero
nonunit of R, the extension ring S is the x-adic completion R∗ of R and is assumed
to be Noetherian, and the field L is generated by a finite set of elements of R∗

7Heitmann remarks in
H1
[96] that this type of extension also occurs in

N2
[138, page 203]. The

ring T is not finitely generated over R[τ ] and no proper R[τ ]-subring of T has R∗ as its x-
adic completion. Necessary and sufficient conditions are given in order that T be Noetherian in
Theorem 4.1 of

H1
[96].
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that are algebraically independent over R. In Chapter
noeflic
6, Noetherian Flatness

Theorem
11.3.25
6.3 is proved for this non-Noetherian setting.

With Setting
setinclconstr
5.1, the integral domain A = L ∩ R∗ is sometimes Noetherian.

If the approximation domain B is Noetherian, then B is equal to the intersection
domain A. The converse fails however; it is possible for B to be equal to A and
not be Noetherian; see Example

16.3.10
10.15. If B is not Noetherian, we can sometimes

determine the prime ideals of B that are not finitely generated; see Example
16.5.1
14.1.

If a ring has exactly one prime ideal that is not finitely generated, that prime ideal
contains all nonfinitely generated ideals of the ring.

In Section
introIns
6.2 of Chapter

noeflic
6 and in Chapter

motiv
12, we adjust the construction

from Chapters
fex
4 and

constrincl
5. An “insider” technique is introduced in Section

introIns
6.2 and

generalized in Chapter
insidecon
10 for building new examples inside more straightforward

examples constructed as above. Using Insider Construction
16.1.1
10.7, the verification

of the Noetherian property for the constructed rings is streamlined. Even if one
of the constructed rings is not Noetherian, the proof is simplified. We analyze
classical examples of Nagata and others from this viewpoint in Section

16.1gn
6.3 and

16.1ng
6.4.

Chapter
motiv
12 contains an investigation of more general rings that involve power series

in two variables x and y over a field k, such as the specific example given above in
Equation

BCdef
1.5.a.

In Chapters
insidepssec
14 to

insideps2
16, we use Insider Construction

16.1.1
10.7 to construct low-

dimensional non-Noetherian integral domains that are strangely close to being Noe-
therian: One example is a three-dimensional local unique factorization domain B
inside k[[x, y]]; the ring B has maximal ideal (x, y)B and exactly one prime ideal
that is not finitely generated; see Example

16.5.3de
14.9.

There has been considerable interest in non-Noetherian analogues of Noether-
ian notions such as the concept of a “regular” ring; see the book by Glaz

Glaz
[58].

Rotthaus and Sega in
RS
[162] show that the approximation domains B constructed

in Chapters
insidepssec
14 and

insideps2
16, even though non-Noetherian, are coherent regular local

rings by showing that every finitely generated submodule of a free module over B
has a finite free resolution; see

RS
[162] and Remark

coherence
16.15.8

One of our additional goals is to consider the question: “What properties
of a ring extend to a completion?” Chapter

intclsec
11 contains an example of a three-

dimensional regular local domain (A, n) with a height-two prime ideal P such that
the extension PÂ to the n-adic completion of A is not integrally closed.

We consider excellence in regard to the question: “What properties of the base
ring R are preserved by the construction?” Since excellence is an important property
satisfied by most of our rings, we present in Chapter

excel
8 a brief exposition of excellent

rings. In some cases we determine conditions in order that the constructed ring is
excellent; see Chapter

insidecon
10 (Prototype Theorems

11.4.1a
10.2 and

11.4.11ic
10.6 and Remarks

incprothi
17.25),

Chapter
insidecon
10 and Chapter

multsec
20. Assume the ring R is a unique factorization domain

(UFD) and R∗ is the x-adic completion of R with respect to a prime element x of
R. We observe that the approximation domain B is then a UFD; see Theorem

Bufd
5.24

of Chapter
constrincl
5.

8Rotthaus and Sega show more generally that the approximation domains constructed with
Insider Construction

16.1.1
10.7 are coherent regular if R = k[x, y1 . . . , yr](x,y1...,yr) is a localized poly-

nomial ring over a field k, m = 1, r, n ∈ N and τ1, . . . , τn are algebraically independent elements
of xk[[x]].
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Since the Noetherian property for the approximation domain is equivalent to
the flatness of a certain homomorphism, we devote considerable time and space to
exploring flat extensions. We present results involving flatness in Chapters

noeflic
6,

flatpoly
7,

flatcon
9,insidecon

10,
idwisec
22,

idwisec2
23,

intsec
24 and

intIIsec
25.

In Chapter
constrhomim
17 we develop Homomorphic Image Construction

4.4.2
17.2 and relate

it to Inclusion Construction
4.4.1
5.3. Homomorphic Image Construction

4.4.2
17.2 is used in

Chapter
catsec
18 to obtain for each integer n ≥ 2 a catenary Noetherian local integral

domain having geometrically normal formal fibers that is not universally catenary.
In Chapter

catsec
18, we also prove that the Henselization of a Noetherian local ring

having geometrically normal formal fibers is universally catenary.
In Chapter

ogoma
19 we discuss properties of a famous example of Ogoma of a 3-

dimensional normal Nagata local domain whose generic formal fiber is not equidi-
mensional. We draw connections with Cohen-Macaulay formal fibers and present
in Theorem

ogomath
19.15 and its proof the construction of an example with the properties

of Ogoma’s Example.
The application of Intersection Construction

RamQ.0
1.3 in Chapters

idwisec
22 and

idwisec2
23 yields

“idealwise” examples that are of a different nature from the examples in earlier
chapters. Whereas the base ring (R,m) is an excellent normal local domain with
m-adic completion (R̂, m̂), the field L is more general than in Chapter

constrincl
5. We take L

to be a purely transcendental extension of the field of fractions K of R such that L is
contained in the field of fractions of R̂; say L = K(G), where G is a set of elements
of m̂ that are algebraically independent over K. Define D := L ∩ R̂. The set G is
said to be idealwise independent if K(G) ∩ R̂ equals the localized polynomial ring
R[G](m,G). The results of Chapters

idwisec
22 and

idwisec2
23 show that the intersection domain can

sometimes be small or large, depending on whether expressions in the power series
allow additional prime divisors as denominators. The consideration of idealwise
independence leads us to examine other related flatness conditions. The analysis
and properties related to idealwise independence are summarized in Summaries

chsum
22.6

and
ch2sum
23.1.
In Chapters

intsec
24 and

intIIsec
25, we consider properties of the constructed rings A and B

in the case where R is an excellent normal local domain. We present in Chapter
intsec
24

a specific example where A = B is non-Noetherian.
Let R be a Noetherian ring with Jacobson radical J . In Chapter

multsec
20 we consider

the multi-ideal-adic completion R∗ of R with respect to a filtration F = {Qn}n≥0,
where Qn ⊆ J n and Qnk ⊆ Qkn for each n, k ∈ N. We prove that R∗ is Noetherian.
If R is an excellent local ring, we prove that R∗ is excellent. If R is a Henselian
local ring, we prove that R∗ is Henselian.

In Chapter
ppssec
28, we study prime ideals and their relations in mixed polynomial-

power series extensions of low-dimensional rings. For example, we determine the
prime ideal structure of the power series ring R[[x]] over a one-dimensional Noe-
therian domain R and the prime ideal structure of k[[x]][y], where x and y are
indeterminates over a field k. We analyze the generic fibers of mixed polynomial-
power series ring extensions in Chapter

weiersec
26. Motivated by a question of Hochster

and Yao, we consider in Chapter
tgfsec
29 extensions of integral domains S ↪→ T having

trivial generic fiber; that is, every nonzero prime ideal of T intersects S in a nonzero
prime ideal.

In Chapter
exam
30, we list the construction techniques and examples given in this

book.
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The topics of this book include the following:
(1) An introduction and glossary for the terms and tools used in the book,

Chapters
3tools
2 and

ptools2
3.

(2) The construction of the intersection domain A and the approximation
domain B, Chapters

fex
4,

constrincl
5,

noeflic
6,

insidecon
10,

constrhomim
17.

(3) Flatness properties of maps of rings, Chapters
ptools2
3,

noeflic
6,

flatpoly
7,

flatcon
9,

insidecon
10,

idwisec
22-

intIIsec
25.

(4) Preservation of properties of rings and ideals under passage to completion,
Chapters

intclsec
11,

catsec
18,

multsec
20.

(5) The catenary and universally catenary property of Noetherian rings, Chap-
ters

ptools2
3,

constrhomim
17,

catsec
18,

ogoma
19.

(6) Excellent rings and geometrically regular and geometrically normal formal
fibers, Chapters

ptools2
3,

flatpoly
7,

excel
8,

insidecon
10,

constrhomim
17,

catsec
18.

(7) Examples of non-Noetherian local rings having Noetherian completions,
Chapters

fex
4,

constrincl
5,

insidecon
10,

motiv
12,

insidepssec
14-

idwisec
22,

exam
30.

(8) Examples of Noetherian rings, Chapters
fex
4,

constrincl
5,

insidecon
10,

intclsec
11,

motiv
12,

appdvrsec
13,

insideps2
16,

constrhomim
17,

exam
30.

(9) Prime ideal structure, Chapters
insidepssec
14,

insideps1.5
15,

insideps2
16

weiersec
26-

tgfsec
29.

(10) Approximating a discrete rank-one valuation domain using higher-dimen-
sional regular local rings, Chapter

appdvrsec
13.

(11) Trivial generic fiber extensions, Chapters
weiersec
26-

tgfsec
29.

(12) Transfer of excellence, Chapters
insidecon
10,

multsec
20.

(13) Birational extensions of Noetherian domains, Chapters
noeflic
6,

intclsec
11,

insidepssec
14,

insideps1.5
15,

insideps2
16,catsec

18,
ogoma
19,

intsec
24,

intIIsec
25.

(14) Completions and multi-ideal-adic completions, Chapters
ptools2
3,

multsec
20.

(15) Exercises to engage the reader in these topics and to lead to further ex-
tensions of the material presented here.

We thank Bruce Olberding for carefully reading an earlier draft of this manu-
script and for his many helpful suggestions.

The authors are grateful for the hospitality, cooperation and support of Michi-
gan State, Nebraska, Purdue, CIRM in Luminy and MSRI in Berkeley, where we
worked on this research. SW was partially supported by a UNL Emeriti & Retiree
Association Wisherd Award.





CHAPTER 2

Tools May 26 20203tools

In this chapter we review conventions and terminology, state several basic the-
orems and review the concept of flatness of modules and homomorphisms.

2.1. Conventions and terminology
3.02

We generally follow the notation of Matsumura
M
[123]. Thus by a ring we mean

a commutative ring with identity, and a ring homomorphism R → S maps the
identity element of R to the identity element of S. For commutative rings, we write
R ⊆ S to mean that R is a subring of S, and that R contains the identity element of
S. We use the words “map”, “morphism”, and “homomorphism” interchangeably.

We use Z to denote the ring of integers, N the positive integers, N0 the non-
negative integers, Q the rational numbers, R the real numbers and C the complex
numbers.

The set of prime ideals of a ring R is called the prime spectrum of R and is
denoted SpecR. The set SpecR is naturally a partially ordered set with respect to
inclusion. For an ideal I of a ring R, let

V(I) = {P ∈ SpecR | I ⊆ P }.

The Zariski topology on SpecR is obtained by defining the closed subsets to be
the sets of the form V(I) as I varies over all the ideals of R. The open subsets
are the complements SpecR \ V(I). SpecR is said to be Noetherian if the closed
subsets of SpecR in the Zariski topology satisfy the descending chain condition, or,
equivalently, the open subsets satisfy the ascending chain condition. A Noetherian
ring has Noetherian spectrum; see

M
[123, Exercise 4.9],

AM
[16, Exercise 8, p.79].

Regular elements, regular sequence. An element r of a ring R is said to
be a zerodivisor if there exists a nonzero element a ∈ R such that ar = 0, and r is
a regular element if r is not a zerodivisor.

A sequence of elements x1, . . . , xd in R is called a regular sequence if it satisfies:
(i) (x1, . . . , xd)R 6= R, and (ii) x1 is a regular element of R, and, for i with 2 ≤ i ≤ d,
the image of xi in R/(x1, . . . , xi−1)R is a regular element; see

M
[123, pages 123].

Localizations. Let S be a multiplicatively closed subset of a ring R such that
1 ∈ S. The localization of R at S as defined in

M
[123, pages 20-21] is a ring denoted

S−1R along with a ring homomorphism f : R→ S−1R such that
(1) f(S) ⊆ { units of S−1R},
(2) If g : R→ T is a ring homomorphism such that g(S) ⊆ { units of T}, then

there is a unique ring homomorphism h : S−1R→ T such that g = hf .
If S consists of regular elements of R, then S−1R = { rs | r ∈ R, s ∈ S}, where
f(r) = r

1 , for every r ∈ R, and the map f is injective.

9
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The total ring of fractions of R, denoted Q(R), is the localization of R at the
set of all the regular elements of R. There is a natural embedding R ↪→ S−1(R),
where r 7→ r

1 for every r ∈ R.
For a prime ideal P of R, the localization (R \ P )−1R is denoted RP and is

called the localization of R at P .
An integral domain, also called a domain or an entire ring, is a nonzero ring in

which every nonzero element is a regular element. If R is a subring of an integral
domain S and S is a subring of Q(R), then S is birational over R, or a birational
extension of R.

Krull dimension, height. The Krull dimension, or briefly dimension, of
a ring R, denoted dimR, is n if there exists a chain P0 ( P1 ( · · · ( Pn of
prime ideals of R and there is no such chain of length greater than n. We say that
dimR =∞ if there exists a chain of prime ideals of R of length greater than n for
each n ∈ N. For a prime ideal P of a ring R, we say dimP = dim(R/P ); the height
of P , denoted htP , is dimRP . The height of a proper ideal I, denoted ht I, is
defined to be

ht I = min{htP | P ∈ SpecR and I ⊆ P }.
Let I be a proper ideal of a Noetherian ring R with ht I = r. If there exist
elements a1, . . . , ar ∈ I such that I = (a1, . . . , ar)R, then I is said to be a complete
intersection.

Unique factorization domains. An integral domain R is a unique factor-
ization domain (UFD), sometimes called a factorial ring, if every nonzero nonunit
of R is a finite product of prime elements; a nonzero element p ∈ R is prime if pR
is a prime ideal.

In a UFD every height-one prime ideal is principal; this is Exercise
3tools
2.1.

Local rings. If a ring R (not necessarily Noetherian) has a unique maximal
ideal m, we say R is local and write (R,m) to denote that R is local with maximal
ideal m. A ring with only finitely many maximal ideals is called semilocal.

A localized polynomial ring over a local ring (R,m) is the localization of a
polynomial ring S := R[{xi | i ∈ I}] at the maximal ideal (m, {xi | i ∈ I})S Here
I is an index set, and the {xi | i ∈ I} are indeterminates over R.

If (R,m) and (S, n) are local rings, a ring homomorphism f : R → S is a local
homomorphism if f(m) ⊆ n.

If (R,m) is a subring of a local ring (S, n), then S dominates R if m = n ∩ R,
or equivalently, if the inclusion map R ↪→ S is a local homomorphism. The local
ring (S, n) birationally dominates (R,m) if S is an integral domain that dominates
R and S is contained in the field of fractions of R.

Nilradical, reduced. For an ideal I of a ring R, the radical of I, denoted
√
I,

is the ideal
√
I = {a ∈ R | an ∈ I for some n ∈ N}. The ideal I is a radical ideal if√

I = I. The nilradical of a ring R is
√
(0). The nilradical of R is the intersection

of all the prime ideals of R. The ring R is reduced if (0) is a radical ideal. A radical
ideal I of R is also called a reduced ideal since R/I is a reduced ring.

Jacobson radical. The Jacobson radical J (R) of a ring R is the intersection
of all maximal ideals of R. An element z of R is in J (R) if and only if 1 + zr is a
unit of R for all r ∈ R.

If I is a proper ideal of R, then 1 + I := { 1 + a | a ∈ I } is a multiplicatively
closed subset of R that does not contain 0. Let (1 + I)−1R denote the localization
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R(1+I) of R at the multiplicatively closed set 1+I,
M
[123, Section 4]. If P is a prime

ideal of R and P ∩ (1+ I) = ∅, then (P + I)∩ (1+ I) = ∅. Therefore I is contained
in every maximal ideal of (1 + I)−1R, so I ⊆ J ((1 + I)−1R). In particular for the
principal ideal I = zR, where z is a nonunit of R, we have z ∈ J ((1 + zR)−1R).

Associated primes, prime divisors. A prime ideal p of a ring R is associated
to an R-module M if p is the annihilator ideal in R of an element x ∈ M ; that
is, p = {a ∈ R | ax = 0}. For I an ideal of R, the associated prime ideals for I
are the prime ideals p of R containing I such that p/I is an associated prime ideal
of R/I. An associated prime ideal of I is embedded if it properly contains another
associated prime ideal of I.

For an ideal I of a ring R, the associated primes of R/I are also called the
prime divisors of I.

Finite, finite type, finite presentation. Let R be a ring, let M be an
R-module and let S be an R-algebra.

(1) M is said to be a finiteR-module ifM is finitely generated as anR-module.
(2) S is said to be finite over R if S is a finitely generated R-module.
(3) S is of finite type over R if S is finitely generated as an R-algebra.

Equivalently, S is an R-algebra homomorphic image of a polynomial ring
in finitely many variables over R.

(4) S is finitely presented as an R-algebra if, for some polynomial ring
R[x1, . . . , xn] in variables x1, . . . , xn and R-algebra homomorphism ϕ :
R[x1, . . . , xn] → S that is surjective, kerϕ is a finitely generated ideal of
R[x1, . . . , xn].

(5) S is essentially finite over R if S is a localization of a finite R-module.
(6) S is essentially of finite type over R if S is a localization of a finitely

generated R-algebra. We also say that S is essentially finitely generated
in this case.

(7) S is essentially finitely presented over R if S is a localization of a finitely
presented R-algebra.

Symbolic powers. If P is a prime ideal of a ring R and e is a positive
integer, the eth symbolic power of P , denoted P (e), is defined as

P (e) := {a ∈ R | ab ∈ P e for some b ∈ R \ P }.

Valuation domains and valuations. An integral domain R is a valuation
domain if for each element a ∈ Q(R) \ R, we have a−1 ∈ R. A valuation domain
R is called a discrete rank-one valuation ring or a discrete valuation ring (DVR) if
R is Noetherian and not a field; equivalently, R is a local principal ideal domain
(PID) and not a field.

3.02.1 Remarks 2.1. Let R be a valuation domain with field of fractions K.
(1) If F is a subfield of K, then R ∩ F is again a valuation domain and has

field of fractions F
N2
[138, (11.5)]. If R is a DVR and the field F is not

contained in R, then R ∩ F is again a DVR
N2
[138, (33.7)].

(2) The nonzero R-submodules of K are totally ordered with respect to inclu-
sion. Let G = {xR | x ∈ K and x 6= 0}. Define xR ≤ yR ⇐⇒ xR ⊇ yR,
and xR ◦ yR = xyR. Then G is a totally ordered abelian group; that
is, xR ≥ yR, zR ≥ tR =⇒ xzR ≥ ytR, for every x, y, z, t ∈ K. Then
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G ∪ {∞} is a totally ordered set where g <∞, for every g ∈ G, and G is
called the value group of R.

(3) The valuation domain R has an associated valuation v, where v is a func-
tion v : K → G ∪ {∞} satisfying properties (i)- (iii) for every a, b ∈ K:
(i) If a+ b 6= 0, then v(a+ b) ≥ min{v(a), v(b)}.
(ii) v(ab) = v(a) ◦ v(b).
(iii) v(a) =∞ ⇐⇒ a = 0.

See
M
[123, p. 75] or

Gilb
[55, pp. 171-182] for more information about the value group

and valuation associated to a valuation domain.
algind Definition 2.2. Algebraic independence. Let R be a subring of a commu-

tative ring S.
(1) Elements a1, . . . , am ∈ S are algebraically independent over R if, for in-

determinates x1, . . . , xm over R, the only polynomial f(x1, . . . , xm) ∈
R[x1, . . . , xm] with f(a1, . . . , am) = 0 is the zero polynomial.

(2) A subset Γ of S is algebraically independent over R if every finite subset
of Γ consists of algebraically independent elements over R.

Integral ring extensions, integral closure, normal domains. Let R be
a subring of commutative ring S.

(1) An element a ∈ S is integral over R if a is a root of some monic polynomial
in the polynomial ring R[x].

(2) The ring S is integral over R, or an integral extension of R, if every element
a ∈ S is integral over R.

(3) The integral closure of R in S is the set of all elements of S that are
integral over R.

(4) The ring R is integrally closed in S if every element of S that is integral
over R is in R.

(5) The ring R is integrally closed if R is integrally closed in its total ring of
fractions Q(R).

(6) The integral closure or derived normal ring of an integral domain R is the
integral closure of R in its field of fractions Q(R).

(7) As in
M
[123, page 64], a ring R is a normal ring if for each P ∈ SpecR the

localization RP is an integrally closed domain. Since every localization
of an integrally closed domain is again an integrally closed domain

M
[123,

Example 3, page 65], an integrally closed domain is a normal ring.
normalnoeth Remark 2.3. (1) If R is a Noetherian normal ring and p1, . . . , pr are the min-

imal primes of R, then R is isomorphic to the direct product R/p1 × · · · × R/pr
and each R/pi is an integrally closed domain; see

M
[123, page 64]. Since a nontrivial

direct product is not local, a normal Noetherian local ring is a normal domain.
(2) A Noetherian integral domain R is integrally closed if and only if R satisfies the
following two conditions; see

M
[123, Corollary, page 82], or

N2
[138, (12.9), page 41], orKap

[104, Theorem 54, page 35]
(a) RP is a DVR for every P ∈ SpecR with htP = 1.
(b) All associated primes of a nonzero principal ideal of R have height 1.

We record in Theorem
intclfinsep
2.4 an important result about the integral closure of a

normal Noetherian domain in a finite separable algebraic field extension; see
M
[123,

Lemma 1, page 262],
N2
[138, (10.16)],

ZSI
[193, Corollary 1, page 265], or

Abhy2
[5, page 522].
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Theorem 2.4. Let R be a normal Noetherian integral domain with field ofintclfinsep
fractions K. If L/K is a finite separable algebraic field extension, then the integral
closure of R in L is a finite R-module. Thus, if R has characteristic zero, then the
integral closure of R in a finite algebraic field extension is a finite R-module.

Remark 2.5. Let R be a normal integral domain with field of fractions KnormalnotNoetherian
and let L/K be a finite separable algebraic field extension. The integral closure of
R in L is always contained in a finitely generated R-module. Two different proofs
of this are given in

ZSI
[193, Theorem 7, page 264]; both proofs involve a vector space

basis for L/K of elements integral over R. The first proof uses the discriminant of
this basis, while the second proof uses the dual basis determined by the trace map
of L/K.

orderfunction Definition 2.6. The order function associated to an ideal. Let I be
a nonzero ideal of an integral domain R such that

⋂∞
n=0 I

n = (0). Adopt the
convention that I0 = R, and for each nonzero element r ∈ R define

ordR,I(r) := n if r ∈ In \ In+1.

In the case where (R,m) is a local ring, we abbreviate ordR,m by ordR.

3.02.15 Remark 2.7. With R, I and ordR,I as above, consider the following two prop-
erties for nonzero elements a, b in R:

(1) If a+ b 6= 0, then ordR,I(a+ b) ≥ min{ordR,I(a), ordR,I(b)}.
(2) ordR,I(ab) = ordR,I(a) + ordR,I(b).

The function ordR,I always satisfies property 1.
Assume ordR,I satisfies property 2 for all nonzero a, b in R. Then the function

ordR,I extends uniquely to a function on Q(R) \ (0) by defining

ordR,I

(a
b

)
:= ordR,I(a) − ordR,I(b)

for nonzero elements a, b ∈ R, and the set
V := {q ∈ Q(R) \ (0) | ordR,I(q) ≥ 0 } ∪ {0}

is a DVR. Moreover, if mV denotes the maximal ideal of V , then R ∩mV = I.
Thus, if ordR,I satisfies property 2 for all nonzero a, b in R, then I is a prime

ideal of R, the function ordR,I is the valuation on V described in Remark
3.02.1
2.1.2,

and the value group is the integers viewed as an additive group.

Let A be a commutative ring and let R := A[[x]] = {f =
∑∞
i=0 fix

i | fi ∈ A},
the formal power series ring over A in the variable x. With I := xR and f a
nonzero element in R, we write ord f for ordR,I(f). Thus ord f is the least integer
i ≥ 0 such that fi 6= 0. The element fi is called the leading form of f .

Regular local rings. A local ring (R,m) is a regular local ring, often ab-
breviated RLR, if R is Noetherian and m can be generated by dimR elements. If
dimR = d and m = (a1, . . . , ad)R, then a1, . . . , ad is called a regular system of
parameters. If (R,m) is a regular local ring, then R is an integral domain

M
[123,

Theorem 14.3, p.106]; thus we may say R is a regular local domain.
The order function ordR of a RLR satisfies the properties of Remark

3.02.15
2.7, and

the associated valuation domain
V := {q ∈ Q(R) \ {0} | ordR(q) ≥ 0} ∪ {0}
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is a DVR that birationally dominates R. If x ∈ m \ m2, then V = R[m/x]xR[m/x],
where m/x = {y/x | y ∈ m}.

Serrecon Definition 2.8. Serre’s conditions. Let A be a Noetherian ring, and let
i, j ∈ N0. Then Serre introduced the following terminology:

(Ri) AP is an RLR, for every P ∈ SpecA with htP ≤ i.
(Sj) depthAP ≥ min(j, htP ), for every P ∈ SpecA.1

The condition (S0) always holds; (S1) is equivalent to every associated prime
ideal of A is minimal.

Serrent Theorem 2.9. Serre’s Normality Theorem.
M
[123, Theorem 23.8] A Noetherian

ring A is normal if and only if A satisfies the Serre conditions (R1) and (S2).

regnormal Remarks 2.10. (1) A regular local ring is a normal Noetherian local domain;
this follows from Theorem

Serrent
2.9. It also follows from item 2 of Remark

normalnoeth
2.3.

(2) A regular local ring is a UFD. This result, first proved in 1959 by Auslander
and Buchsbaum

AB
[18], represents a significant triumph for homological methods in

commutative algebra; see
M
[123, Theorem 20.3].

Krull domains. We record the definition of a Krull domain:
Krull Definition 2.11. An integral domain R is a Krull domain if there exists a

defining family F = {Vλ}λ∈Λ of DVRs of its field of fractions Q(R) such that
• R =

⋂
λ∈Λ Vλ, and

• A nonzero element of Q(R) is a unit in all but finitely many of the Vλ.
Krullrmks Remarks 2.12. We list several properties of Krull domains. See

M
[123, pp.

86-88] or
Bour
[24, pp. 475-493] for proofs of these properties.

(1) A unique factorization domain (UFD) is a Krull domain, and a Noetherian
integral domain is a Krull domain if and only if it is integrally closed. An
integral domain R is a Krull domain if and only if it satisfies the following
three properties:
• Rp is a DVR for each prime ideal p of R of height one.
• R =

⋂
{ Rp | p is a height-one prime }.

• Every nonzero element of R is contained in only finitely many height-
one primes of R.

(2) If R is a Krull domain, then F0 = {Rp | p is a height-one prime ideal }
is the unique minimal family of DVRs satisfying the properties in the
definition of a Krull domain

M
[123, Theorem 12.3]. Every defining family

F contains F0. The family F0 is called the family of essential valuation
rings of R. For each nonzero nonunit a of R the principal ideal aR has no
embedded associated prime ideals and has a unique irredundant primary
decomposition aR = q1 ∩ · · · ∩ qt. If pi =

√
(qi), then Rpi ∈ F and qi is a

symbolic power of pi; that is, qi = p
(ei)
i , where ei ∈ N; see

M
[123, Corollary,

page 88].
Krull domains have an approximation property with respect to the family of

DVRs and valuations2 obtained by localizing at height-one primes.

1For the definition of depth, see Definition
depthM
3.35

2See Remarks
3.02.1
2.1.3)
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Theorem 2.13. Approximation Theorem.
M
[123, Theorem 12.6] For A a Krullapprox

domain with field of fractions K, let p1, . . . , pr be height-one primes of A, and let
vi denote the valuation with value group Z associated to the DVR Api , for each i
with 1 ≤ i ≤ r. For arbitrary integers e1, . . . , er, there exists x ∈ K such that

vi(x) = ei for 1 ≤ i ≤ r and v(x) ≥ 0,

for every valuation v associated to a height-one prime ideal of A that is not in the
set {p1, . . . , pr}.

PDE Definition 2.14. Let R be a Krull domain and let R ↪→ S be an inclusion map
of R into a Krull domain S. The extension R ↪→ S satisfies the PDE condition
(“pas d’éclatement”, or in English “no blowing up”) provided that for every height-
one prime ideal q in S, the height of q∩R is at most one; see Fossum

F
[49, page 30],

or Bourbaki
B
[23, Chapitre 7, Proposition 14, page 18].

Divisorial ideals and the Divisor Class Group of Krull domains. Fol-
lowing Samuel

Sam
[163, Ch. 1, Sections 2 and 3] and Bourbaki

Bour
[24, Ch. VII, Sections

1.1-1.3 and 1.6], we say a submodule F of the field of fractions K of an integral
domain R is a fractional ideal of R provided that there exists a nonzero element
d ∈ R such that dF ⊆ R. A fractional ideal F is principal if F = Ra, for some
a ∈ K. A fractional ideal F is divisorial if F is nonzero and F is an intersection
of principal fractional ideals. An integral domain R is completely integrally closed
provided the following condition holds: if a ∈ K is such that the ring R[a] is a
fractional ideal of R, then a ∈ R.

Divrmks Remarks 2.15. Let R be an integral domain with field of fractions K.
(1) If F is a nonzero fractional ideal of R, then there exists a unique smallest

divisorial ideal containing F , denoted F and given by F = (R : (R : F ))Sam
[163, Lemma 1.2].

(2) The set D(R) of divisorial ideals of R forms a partially ordered commu-
tative monoid under the multiplication defined by F ◦ J = (FJ) and the
ordering given by inclusion

Sam
[163, p. 3].

(3) Let F(R) denote the group of nonzero principal fractional ideals of R.
Then F(R) is a subgroup of the monoid D(R).

(4) The monoidD(R) is a partially ordered group if and only if R is completely
integrally closed

Sam
[163, Theorem 2.1].

(5) If R is a Krull domain, then R is completely integrally closed
Sam
[163, The-

orem 3.1].
(6) By items 4 and 5, if R is a Krull domain, then D(R) is a partially ordered

group.

divcgdef Definition 2.16. Assume that R is a completely integrally closed domain
or, equivalently, that D(R) is a group. The Divisor Class Group of R is defined to
be C(R) := D(R)

F(R) , the quotient of D(R) by F(R).

dcgKrullpoly Proposition 2.17.
Sam
[163, Prop. 4.3, Theorem 6.4] If R is a Krull domain

and x is an indeterminate over R, then the polynomial ring R[x] is a Krull domain,
and the divisor class group of R[x] is isomorphic to the divisor class group of R.

Krulldvc Discussion 2.18.
Sam
[163, Section 3] and

Bour
[24, Theorems 2 & 3, pp. 480 &

485] For a Krull domain R, the partially ordered group D(R) is isomorphic to a
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direct sum of copies of the integers and this direct sum is indexed by the height-one
prime ideals of R. A height-one prime p of R is a divisorial ideal and Rp is a DVR.
The p-primary ideals are precisely the symbolic powers of p and are precisely the
divisorial ideals having radical p. Here C(R) is generated by the images in this
quotient group of those divisorial ideals that are height-one prime ideals of R.

Krullradprinc Fact 2.19. Discussion
Krulldvc
2.18 implies that the Divisor Class Group C(R) of a

Krull domain R is torsion if and only if every height-one prime ideal of R is the
radical of a principal ideal.

Nagata rings. In the 1950s Nagata introduced and investigated a class of
Noetherian rings that behave similarly to rings that arise in algebraic geometryN53
[131],

N55
[133]. In Nagata’s book, Local Rings

N2
[138], the rings in this class are called

pseudo-geometric. Following Matsumura, we call these rings Nagata rings:
Nag Definition 2.20. A commutative ring R is called a Nagata ring if R is Noe-

therian and, for every P ∈ SpecR and every finite extension field L of Q(R/P ),
the integral closure of R/P in L is finitely generated as a module over R/P .

It is clear from the definition that a homomorphic image of a Nagata ring is
again a Nagata ring. We refer to the following non-trivial theorem due to Nagata
as the Nagata Polynomial Theorem.

Theorem 2.21. Nagata Polynomial Theorem.
N2
[138, Theorem 36.5, page 132]

If A is a Nagata ring and x1, . . . , xn are indeterminates over A, then the polynomialNagpolythm
ring A[x1, . . . , xn] is a Nagata ring. It follows that every algebra essentially of finite
type over a Nagata ring is again a Nagata ring.

By Theorem
Nagpolythm
2.21, every algebra of finite type over a field, over the ring of

integers, or over a discrete valuation ring of characteristic 0, is a Nagata ring.
For more information about Nagata rings, see Chapter

excel
8.

2.2. Basic theorems3.2

Theorem
3.2.01
2.22 is a famous result proved by Krull that is now called the Krull

Intersection Theorem.
3.2.01 Theorem 2.22 (Krull

M
[123, Theorem 8.10]). Let I be an ideal of a Noetherian

ring R.
(1) If I is contained in the Jacobson radical J (R) of R, then

⋂∞
n=1 I

n = 0,
and, for each finite R-module M , we have

⋂∞
n=1 I

nM = 0.
(2) If I is a proper ideal of a Noetherian integral domain, then

⋂∞
n=1 I

n = 0.

Theorem
krullpit
2.23 is another famous result of Krull that is now called the Krull

Altitude Theorem. It involves the concept of a minimal prime divisor of an ideal
I of a ring R, where P ∈ SpecR is a minimal prime divisor of I if I ⊆ P and if
P ′ ∈ SpecR and I ⊆ P ′ ⊆ P , then P ′ = P .

krullpit Theorem 2.23 (Krull
M
[123, Theorem 13.5]). Let R be a Noetherian ring and

let I = (a1, . . . , ar)R be an ideal generated by r elements. If P is a minimal prime
divisor of I, then htP ≤ r. Hence the height of a proper ideal of R is finite.

Theorem
krullakizuki
2.24 is yet another famous result that is now called the Krull-Akizuki

Theorem.
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krullakizuki Theorem 2.24 (Krull-Akizuki
M
[123, Theorem 11.7]). Let A be a one-dimensional

Noetherian integral domain with field of fractions K, let L be a finite algebraic field
extension of K, and let B be a subring of L with A ⊆ B. Then

(1) The ring B is Noetherian of dimension at most one.
(2) If J is a nonzero ideal of B, then B/J is an A-module of finite length.

To prove that a ring is Noetherian, it suffices by the following well-known result
of Cohen to prove that every prime ideal of the ring is finitely generated.

3.2.1 Theorem 2.25 (Cohen
Co1
[37]). If each prime ideal of the ring R is finitely gen-

erated, then R is Noetherian.

Theorem
cohenextensions
2.26 is another important result proved by Cohen.

cohenextensions Theorem 2.26 (Cohen
Co2
[38]). Let R be a Noetherian integral domain and let

S be an extension domain of R. For P ∈ SpecS and p = P ∩R, we have

htP + tr.deg.k(p)k(P ) ≤ ht p + tr.deg.RS,

where k(p) is the field of fractions of R/p and k(P ) is the field of fractions of S/P .

Theorem
krullufd
2.27 is a useful result due to Nagata about Krull domains and UFDs.

krullufd Theorem 2.27.
Sam
[163, Theorem 6.3, p. 21] Let R be a Krull domain. If S

is a multiplicatively closed subset of R generated by prime elements and S−1R is a
UFD, then R is a UFD.

We use the following:

Intdomint Fact 2.28. If D is an integral domain and c is a nonzero element of D such
that cD is a prime ideal, then D = D[1/c] ∩DcD.

Proof. Let β ∈ D[1/c] ∩ DcD. Then β = b
cn = b1

s for some b, b1 ∈ D,
s ∈ D \ cD and integer n ≥ 0. If n > 0, we have sb = cnb1 =⇒ b ∈ cD. Thus we
may reduce to the case where n = 0; it follows that D = D[1/c] ∩DcD. □

BufdnK Remarks 2.29. (1) If R is a Noetherian integral domain and S is a multiplica-
tively closed subset of R generated by prime elements, then S−1R a UFD implies
that R is a UFD

Sam
[163, Theorem 6.3] or

M
[123, Theorem 20.2].

(2) If x is a nonzero prime element in an integral domain R such that RxR is
a DVR and R[1/x] is a Krull domain, then R is a Krull domain by Fact

Intdomint
2.28; and,

by Theorem
krullufd
2.27, R is a UFD if R[1/x] is a UFD.

(3) Let R be a valuation domain with value group Z⊕ Z ordered lexicograph-
ically; that is, for every pair (a, b), (c, d) of elements of Z ⊕ Z, (a, b) > (c, d) ⇐⇒
a > c, or a = c and b > d. Then the maximal ideal m of R is principal, say m = xR.
It follows that R[1/x] is a DVR; however R is not a Krull domain.

The Eakin-Nagata Theorem is useful for proving descent of the Noetherian
property.

EN Theorem 2.30 (Eakin-Nagata
M
[123, Theorem 3.7(i)]). If B is a Noetherian ring

and A is a subring of B such that B is a finitely generated A-module, then A is
Noetherian.

An interesting result proved by Nishimura is
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3.2.2 Theorem 2.31 (Nishimura
Ni
[141, Theorem, page 397],

M
[123, Theorem 12.7]).

Let R be a Krull domain. If R/P is Noetherian for every height-one prime ideal P
of R, then R is Noetherian.

3.2.21 Remark 2.32. It is observed in
HRS
[72, Lemma 1.5] that the conclusion of The-

orem
3.2.2
2.31 still holds if it is assumed that R/P is Noetherian for all but at most

finitely many of the height-one primes P of R.

Theorem
3.2.3
2.33 is useful for describing the maximal ideals of a power series ring

R[[x]]. It is related to the fact that an element f = a0 + a1x+ a2x
2 + · · · ∈ R[[x]],

where each ai ∈ R, is a unit of R[[x]] if and only if a0 is a unit of R.

3.2.3 Theorem 2.33 (
N2
[138, Theorem 15.1]). Let R[[x]] be the formal power series

ring in a variable x over a commutative ring R. There is a one-to-one correspon-
dence between the maximal ideals m of R and the maximal ideals m∗ of R[[x]], where
m∗ corresponds to m if and only if m∗ is generated by m and x.

As an immediate corollary of Theorem
3.2.3
2.33, we have

3.2.4 Corollary 2.34. The element x is in the Jacobson radical J (R[[x]]) of the
power series ring R[[x]]. In the formal power series ring S := R[[x1, . . . , xn]], the
ideal (x1, . . . , xn)S is contained in the Jacobson radical J (S) of S.

Theorem
3.2.5
2.35 is an important result first proved by Chevalley.

3.2.5 Theorem 2.35 (Chevalley
C
[35]). If (R,m) is a Noetherian local domain, then

there exists a DVR that birationally dominates R.
More generally, let P be a prime ideal of a Noetherian integral domain R.

There exists a DVR V that birationally contains R and has center P on R, that is,
the maximal ideal of V intersects R in P .

2.3. Flatness
3.3

The concept of flatness was introduced by Serre in the 1950s in an appendix
to his paper

S
[168]. Mumford writes in

Mu
[126, page 424]: “The concept of flatness

is a riddle that comes out of algebra, but which technically is the answer to many
prayers.”

flat Definitions 2.36. A module M over a ring R is flat over R if tensoring with
M preserves exactness of every exact sequence of R-modules. The R-module M is
said to be faithfully flat over R if, for every sequence S of R-modules,

S : 0 −−−−→ M1 −−−−→ M2,

the sequence S is exact if and only if its tensor product with M , S ⊗RM , is exact.

A ring homomorphism φ : R → S is said to be a flat homomorphism if S is
flat as an R-module.

Flatness is preserved by several standard ring constructions as we record in
Remarks

remflat
2.37. There is an interesting elementwise criterion for flatness that is

stated as item 2 of Remarks
remflat
2.37.

remflat Remarks 2.37. The following facts are useful for understanding flatness. We
use these facts to obtain the results in Chapters

noeflic
6 and

insidepssec
14.
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floc (1) Since localization at prime ideals commutes with tensor products, the
module M is flat as an R-module if and only if MQ is flat as an RQ-
module, for every prime ideal Q of R.

flelt (2) An R-module M is flat over R if and only if for every m1, . . . ,mn ∈ M
and a1, . . . , an ∈ R such that

∑
aimi = 0, there exist a positive integer

k, a subset {bij}ni=1,
k
j=1⊆ R, and elements m′1, . . . ,m′k ∈ M such that

mi =
∑k
j=1 bijm

′
j for each i and

∑n
i=1 aibij = 0 for each j; see

M
[123,

Theorem 7.6] or
M1
[121, Theorem 1]. Thus every free module is flat, and a

nested union of flat modules is flat.
fgfl (3) A finitely generated module over a local ring is flat if and only if it is freeM1

[121, Proposition 3.G].
locfl (4) If the ring S is a localization of R, then S is flat as an R-module

M1
[121,

(3.D), page 19].
flff (5) Let S be a flat R-algebra. Then S is faithfully flat over R if and only

if one has JS 6= S for every proper ideal J of R; see
M1
[121, Theorem 3,

page 28] or
M
[123, Theorem 7.2].

flreg (6) If the ring S is a flat R-algebra, then every regular element of R is regular
on S

M1
[121, (3.F)].

ffid (7) Let S be a faithfully flat R-algebra and let I be an ideal of R. Then
IS ∩R = I

M
[123, Theorem 7.5].

ffNN (8) Let R be a subring of a ring S. If S is Noetherian and faithfully flat over
R, then R is Noetherian; see Exercise

rmkremflatprf
9 at the end of this chapter.

ffint (9) Let R be an integral domain with field of fractions K and let S be a
faithfully flat R-algebra. By item

flreg
6, every nonzero element of R is regular

on S and so K naturally embeds in the total quotient ring Q(S) of S.
By item

ffid
7, all ideals in R extend and contract to themselves with respect

to S, and thus R = K ∩ S. In particular, if S ⊆ K, then R = S
M1
[121,

page 31].
flgd (10) If ϕ : R→ S is a flat homomorphism of rings, then ϕ satisfies the Going-

down property (or Going-down theorem)
M1
[121, (5.D), page 33] or

M
[123,

Theorem 9.5]: Let p ⊆ q be prime ideals of R and let Q ∈ SpecS be
such that ϕ−1(Q) = q. Then there exists P ∈ SpecS with P ⊆ Q and
ϕ−1(P ) = p. It follows that the height of P in S is greater than or equal
to the height of ϕ−1(P ) in R, for each P ∈ SpecS.

flidint (11) Let R→ S be a flat homomorphism of rings and let I and J be ideals of
R. Then (I ∩ J)S = IS ∩ JS. If J is finitely generated, then (I :R J)S =
IS :S JS; see

M
[123, Theorem 7.4] or

M1
[121, (3.H) page 23].

flses (12) Consider the following short exact sequence of R-modules:

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0 .

The modules A and C are flat over R if and only if B is
M
[123, Theorem 7.9].

flfl (13) If S is a flat R-algebra and M is a flat S-module, then M is a flat R-moduleM
[123, page 46].

tran4 (14) If S is an R-algebra and M is faithfully flat over both R and S, then S is
faithfully flat over R

M
[123, page 46].

flff3 (15) Let S be an R-algebra and M an S-module. If M is faithfully flat over
S and M is flat over R, then S is a flat R-algebra. If M is faithfully flat
over both R and S, then S is a faithfully flat R-algebra

M
[123, page 46].
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The following standard result about flatness follows from what Matsumura calls
“change of coefficient ring”; see

M
[123, p. 46]. It is convenient to refer to both the

module and homomorphism versions.

tensorflat Fact 2.38. Let C be a commutative ring, let D, E and F be C-algebras.
(1) If ψ : D → E is a flat, respectively faithfully flat, C-algebra homomor-

phism, then ψ⊗C 1F : D⊗C F → E ⊗C F is a flat, respectively faithfully
flat, C-algebra homomorphism.

(2) If E is a flat, respectively faithfully flat, D-module via the C-algebra
homomorphism ψ, then E ⊗C F is flat, respectively faithfully flat, as a
D ⊗C F -module via the C-algebra homomorphism ψ ⊗C 1F .

Proof. By the definition of flat, respectively faithfully flat, homomorphism in
Definitions

flat
2.36, the two statements are equivalent. Since E is a flat, respectively

faithfully flat, D-module, E ⊗D (D ⊗C F ) is a flat, respectively faithfully flat,
(D ⊗C F )-module by

M
[123, p. 46]. Since E ⊗D (D ⊗C F ) = E ⊗C F , Fact

tensorflat
2.38

holds. □

We use Remark
remflat2
2.39.

tfPID
3 in Chapter

motiv
12.

remflat2 Remarks 2.39. Let R be an integral domain.
fltf (1) Every flat R-module M is torsionfree, i.e., if r ∈ R, x ∈ M and rx = 0,

then r = 0 or x = 0; see
M1
[121, (3.F), page 21]

fgPID (2) Every finitely generated torsionfree module over a PID is free; see for
example

DF
[43, Theorem 5, page 462].

tfPID (3) Every torsionfree module over a PID is flat. This follows from item 2 and
Remark

remflat
2.37.

flelt
2.

iFfl (4) Every injective homomorphism of R into a field is flat. This follows from
Remarks

remflat
2.37.

flfl
13 and

remflat
2.37.

locfl
4.

nfldef Definition 2.40. Let ϕ : R→ S be a ring homomorphism. The non-flat locus
of ϕ is F , where

F := {Q ∈ Spec(S) | the map ϕQ : R→ SQ is not flat }.

A subset F of S or an ideal F of S defines or determines the non-flat locus of ϕ, if

(
nfldef
2.40.0) F = V(F ) := {P ∈ SpecS | F ⊆ P }.

nflrems Remarks 2.41. Let ϕ : R→ S be a ring homomorphism.
(1) If P ⊆ Q in SpecS, then P ∈ F =⇒ Q ∈ F .
(2) If F is closed in the Zariski topology on SpecS, then F :=

⋂
P∈F P defines

the non-flat locus of ϕ.

If S is a finitely generated R-algebra defined by a homomorphism ϕ : R → S,
then there is an ideal of S that determines the non-flat locus of ϕ by Theorem

Mnflthm
2.42.

Mnflthm Theorem 2.42.
M
[123, Theorem 24.3] Let R be a Noetherian ring and let

ϕ : R→ S define S as a finitely generated R-algebra. For a finite S-module M , set
U := {P ∈ SpecS | MP is flat over R}; then U is open in SpecS. In particular,
the set F of Definition

nfldef
2.40 is closed, and so F :=

⋂
P∈F P defines the non-flat

locus of ϕ.
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nflext Proposition 2.43. Let R be a ring and let R α
↪→ S

β
↪→ T be an extension of

R-algebras such that β is flat. If the non-flat locus of α is closed in SpecS and
defined by a subset F of S, then the non-flat locus of ϕ := β ◦α is closed in SpecT
and is also defined by F .

Proof. Let p ∈ SpecT . Then:
F ⊆ p ⇐⇒ F ⊆ p ∩ S ⇐⇒ αp∩S : R ↪→ Sp∩S is not flat.

By Remarks
remflat
2.37.

flfl
13 and

remflat
2.37.

flff
5, the map αp∩S is not flat if and only if the composite

map ϕp : R
αp∩S

↪→ Sp∩S
βp

↪→ Tp is not flat. □

Exercises
ht1prnc (1) Prove that every height-one prime ideal of a UFD is principal.
locDVR (2) Let V be a local domain with nonzero principal maximal ideal yV . Prove that

V is a DVR if
⋂∞
n=1 y

nV = (0).
Comment: It is not being assumed that V is Noetherian, so it needs to be
established that V has dimension one.

rmk3.02.01prf (3) Prove as stated in Remark
3.02.1
2.1 that if R is a valuation domain with field of

fractions K and F is a subfield of K, then R ∩ F is again a valuation domain
and has field of fractions F ; also prove that if R is a DVR and the field F is
not contained in R, then R ∩ F is again a DVR.

UFDKrl (4) Prove that a unique factorization domain is a Krull domain.
GCD (5) Let a and b be nonzero elements of an integral domain R.

An element d ∈ R is said to be a greatest common divisor of a and b,
denoted gcd(a, b) = d, provided: (i) d | a and d | b, and (ii) if c ∈ R and c | a
and c | b, then c | d.3

An element ` ∈ R is said to be a least common multiple of a and b, denoted
lcm(a, b) = `, provided: (i) a | ` and b | `, and (ii) if m ∈ R and a | m and
b | m, then ` | m.

An integral domain R is called a GCD-domain if every pair of nonzero
elements of R has a gcd.
(a) Prove that ` = lcm(a, b) ⇐⇒ R` = Ra ∩Rb.
(b) If ` = lcm(a, b) and 0 6= t ∈ R, prove that `t = lcm(at, bt).
(c) If ` = lcm(a, b), prove that gcd(a, b) exists and ab

ℓ = gcd(a, b).
(d) Give an example of nonzero elements a and b in an integral domain R for

which gcd(a, b) exists but lcm(a, b) does not exist.
(e) Give an example of nonzero elements a, b and c in an integral domain R

for which gcd(a, b) exists but gcd(ac, bc) does not exist.
(f) If 0 6= t ∈ R and d = gcd(at, bt), prove that d

t ∈ R and d
t = gcd(a, b).

(g) If R is a GCD-domain, prove that every pair of elements of R has a least
common multiple.

Kinfinitelymany (6) Let R be a Noetherian ring. Let P1 ⊂ P2 be prime ideals of R. If there exists
a prime ideal Q of R with Q distinct from P1 and P2 such that P1 ⊂ Q ⊂ P2,
prove that there exist infinitely many such prime ideals Q.

3We use the symbol “|” to denote divides.
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Suggestion: Apply Krull’s Altitude Theorem
krullpit
2.23, and use the fact that an

ideal contained in a finite union of primes is contained in one of them; see for
example

AM
[16, Proposition 1.11, page 8].

rmk3.02.15prf (7) Prove as asserted in Remark
3.02.15
2.7 that, if ordR,I(ab) = ordR,I(a)+ordR,I(b), for

all nonzero a, b in R, and if we define ordR,I(
a
b ) := ordR,I(a) − ordR,I(b) for

nonzero elements a, b ∈ R, then:
(a) The function ordR,I extends uniquely to a function on Q(R)\ (0) with this

definition.
(b) V := {q ∈ Q(R) \ (0) | ordR,I(q) ≥ 0 } ∪ {0} is a DVR, and
(c) R is an integral domain and I is a prime ideal.

psez (8) Let R[[x]] be the formal power series ring in a variable x over a commutative
ring R.
(i) Prove that a0 + a1x + a2x

2 + · · · ∈ R[[x]], where the ai ∈ R, is a unit of
R[[x]] if and only if a0 is a unit of R.

(ii) Prove that x is contained in every maximal ideal of R[[x]].
(iii) Prove Theorem

3.2.3
2.33 that the maximal ideals m of R are in one-to-one

correspondence with the maximal ideals m∗ of R[[x]], where m∗ corresponds
to m if and only if m∗ is generated by m and x.

rmkremflatprf (9) Prove items
locfl
4-

ffNN
8 of Remarks

remflat
2.37.

Suggestion: For the proof of item
ffNN
8, use item

ffid
7.

injprimecntrct (10) Let f : A ↪→ B be an injective ring homomorphism and let P be a minimal
prime of A.
(i) Prove that there exists a prime ideal Q of B that contracts in A to P .
(ii) Deduce that there exists a minimal prime Q of B that contracts in A to P .
Suggestion: Consider the multiplicatively closed set A \ P as a subset of B;
use Zorn’s Lemma.

contriffextcontr (11) Let f : A→ B be a ring homomorphism and let P be a prime ideal of A. Prove
that there exists a prime ideal Q in B that contracts in A to P if and only if
the extended ideal f(P )B contracts to P in A, i.e., P = f(P )B ∩A. (Here we
are using the symbol ∩ as in Matsumura

M
[123, item (3), page xiii].)

Suggestion: Consider the multiplicatively closed set A \P of A and its image
f(A \ P ) in B.

KrllimpeN (12) Let P be a height-one prime of a Krull domain A and let v denote the valuation
with value group Z associated to the DVR AP . If A/P is Noetherian, prove
that A/P (e) is Noetherian for every positive integer e.
Suggestion: Using Theorem

approx
2.13, show there exists x ∈ Q(A) with v(x) = 1

and 1/x ∈ AQ, for every height-one prime Q of A with Q 6= P . Let B = A[x].
(i) Show that P = xB ∩A and B = A+ xB.
(ii) Show that A/P ∼= B/xB ∼= xiB/xi+1B for every positive integer i.
(iii) Deduce that B/xeB is a Noetherian B-module and thus a Noetherian ring.
(iv) Prove that xeB∩A ⊆ xeAP ∩A = P (e) and B/xeB is a finite A/(xeB∩A)-

module generated by the images of 1, x, . . . , xe−1.
(v) Apply Theorem

EN
2.30 to conclude that A/(xeB ∩ A) and hence A/P (e) is

Noetherian.
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krlimNaa (13) Let A be a Krull domain having the property that A/P is Noetherian for all
but at most finitely many of the P ∈ SpecA with htP = 1. Prove that A is
Noetherian.
Suggestion: By Nishimura’s result Theorem

3.2.2
2.31, and Cohen’s result Theo-

rem
3.2.1
2.25, it suffices to prove each prime ideal of A of height greater than one is

finitely generated. Let P1, . . . , Pn be the height-one prime ideals of A for which
A/Pi may fail to be Noetherian. For each nonunit a ∈ A \ (P1∪· · ·∪Pn), observe
that aA = Q

(e1)
1 ∩ · · · ∩Q(es)

s , where Q1, . . . , Qs are height-one prime ideals of
A not in the set {P1, . . . , Pn}. Consider the embedding A/aA ↪→

∏
(A/Q

(ei)
i ).

By Exercise
KrllimpeN
12, each A/Q

(ei)
i is Noetherian. Apply Theorem

EN
2.30 to conclude

that A/aA is Noetherian. Deduce that every prime ideal of A of height greater
than one is finitely generated.

BObirdom (14) Let R be a two-dimensional Noetherian integral domain. Prove that every Krull
domain that birationally dominates R is Noetherian.
Comment: It is known that the integral closure of a two-dimensional Noe-
therian integral domain is Noetherian

N2
[138, (33.12)]. A proof of Exercise

BObirdom
14 is

given in
He
[66, Theorem 9]. An easier proof may be obtained using Nishimura’s

result Theorem
3.2.2
2.31.





CHAPTER 3

More tools May 27, 2020ptools2

In this chapter we discuss ideal-adic completions. We describe several results
concerning complete local rings. We review the definitions of catenary and excellent
rings and record several results about these rings.

3.1. Introduction to ideal-adic completions
3.1

3.1.1 Definitions 3.1. Let R be a commutative ring with identity. A filtration on
R is a descending sequence {In}∞n=0 of ideals of R. Since In+1 ⊂ In, the natural
maps R/In+1 → R/In form an inverse system. Associated to the filtration {In},
there is a well-defined completion R∗ that may be defined to be the inverse limit 1

(
3.1.1
3.1.1) R∗ = lim←−

n

R/In.

There is a canonical homomorphism ψ : R→ R∗
Nor
[145, Chapter 9], and the map ψ

induces a map R→ R∗/InR
∗ such that

(
3.1.1
3.1.2) R∗/InR

∗ ∼= R/In;

see
Nor
[145, page 412] or

M
[123, page 55] for more details.

Regarding the filtration {In}∞n=0 as a system of neighborhoods of 0, and defining
for each x ∈ R the family {x+In} to be a system of neighborhoods of x, makes R a
topological group under addition. This type of topology is called a linear topology
on R. For more details and an extension to R-modules, see

M
[123, Section 8].

If
⋂∞
n=0 In = (0), then this linear topology is Hausdorff

M
[123, page 55] and gives

rise to a metric on R: For x 6= y ∈ R, the distance from x to y is d(x, y) = 2−n,
where n is the largest n such that x− y ∈ In. In particular, the map ψ is injective,
and R may be regarded as a subring of R∗.

In the terminology of Northcott, a filtration {In}∞n=0 is said to be multiplicative
if I0 = R and InIm ⊆ In+m, for all m ≥ 0, n ≥ 0

Nor
[145, page 408]. A well-known

example of a multiplicative filtration on R is the I-adic filtration {In}∞n=0, where I
is a fixed ideal of R. In this case we say R∗ := lim←−

n

R/In is the I-adic completion

of R. If the canonical map R→ R∗ is an isomorphism, we say that R is I-adically
complete. An ideal L of R is closed in the I-adic topology on R if

⋂∞
n=1(L+I

n) = L.

If R is a local ring with maximal ideal m, then R̂ denotes the m-adic completion
of R. In this case, we say that R̂ is the completion of R. If m is generated by
elements a1, . . . , an, then R̂ is realizable by taking the a1-adic completion R∗1 of

1We refer to Appendix A of
M
[123] for the definition of direct and inverse limits. Also see the

discussion of inverse limits in
AM
[16, page 103].

25
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R, then the a2-adic completion R∗2 of R∗1, . . ., and then the an-adic completion of
R∗n−1.

More generally, we use the notation R̂ for the situation where R is a semilocal
ring with Jacobson radical J . In this case, R̂ denotes the J -adic completion of R.

R*hat Fact 3.2. Let {In}∞n=0 be a filtration of ideals of a ring R, and let R∗ denote
the completion R∗ = lim←−

n

R/In of R with respect to the filtration {In}∞n=0. Then:

(1) Let L be an ideal of R with In ⊆ L for some n. Then R/L ∼= R∗/LR∗

and L = LR∗ ∩R, that is, L is contracted from R∗.
(2) Let J be an ideal of R∗ with InR

∗ ⊆ J for some n. Then R∗/J ∼=
R/(J ∩R), and J = (J ∩R)R∗, that is J is extended from R.

(3) Assume that R is semilocal, and let J denote the Jacobson radical of R.
If In ⊆ J n, for every n ∈ N, then R̂∗ = R̂.

Proof. For items 1 and 2, R/In = R∗/InR
∗, by Equation

3.1.1
3.1.2. This implies

that the ideals of R containing In are in one-to-one correspondence with the ideals
of R∗ containing InR∗.

For item 3, the maximal ideals of R contain each In, since In ⊆ J n, and so,
by items 1 and 2, they correspond to the maximal ideals of R∗. Thus the Jacobson
radical J(R∗) satisfies J · R∗ = J (R∗). The condition In ⊆ J n also implies that
R/J n = R∗/J nR∗ = R∗/J (R∗)n. Therefore

R̂ = lim←−
n

R/J n = lim←−
n

R∗/J (R∗)n = R̂∗.

This completes the proof. □

We record the following results about ideal-adic completions.

3.38.0 Remarks 3.3. Let I be an ideal of a commutative ring R.
RI*J (1) If R is I-adically complete, then I is contained in the Jacobson radical

J(R); see
M
[123, Theorem 8.2] or

M1
[121, 24.B, pages 73-74].

N*fl (2) If R is a Noetherian ring, then the I-adic completion R∗ of R is flat over
R

M
[123, Theorem 8.8], and R∗ is Noetherian by

M
[123, Theorem 8.12].

N*ff (3) If R is Noetherian, then the I-adic completion R∗ of R is faithfully flat
over R ⇐⇒ for each proper ideal J of R we have JR∗ 6= R∗.

N*Jff (4) If R is a Noetherian ring and I ⊆ J(R), then the I-adic completion R∗ is
faithfully flat over R, and dimR = dimR∗

M1
[121, Theorem 56, page 172]

and
M1
[121, pages 173-175]. Moreover, if R is an integral domain with field

of fractions K, then R = K ∩R∗ by Remark
remflat
2.37.

ffint
9.

I*ps (5) If I = (a1, . . . , an)R is an ideal of a Noetherian ring R, then the I-adic
completion R∗ of R is isomorphic to a quotient of the formal power series
ring R[[x1, . . . , xn]]; namely,

R∗ =
R[[x1, . . . , xn]]

(x1 − a1, . . . , xn − an)R[[x1, . . . , xn]]
M
[123, Theorem 8.12].

R*P** (6) If R∗ is the I-adic completion of R and P is a prime ideal of R that
contains I, then (RP )

∗ = (R∗PR∗)∗. That is, the IRP -adic completion
of RP is the same as the IR∗PR∗ -adic completion of R∗PR∗ . To see this,
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observe that R/In = R∗/InR∗ for every n. Since I ⊆ P , the ideal PR∗
is prime and P/In = PR∗/InR∗. Therefore

RP
InRP

=

(
R

In

)(
P
In

) =

(
R∗

InR∗

)(
PR∗
InR∗

) =
R∗PR∗

InR∗PR∗
,

for every n ∈ N. Since these isomorphisms extend in a compatible way
from the nth stage to the (n+ 1)st stage, we have

lim
←

RP
InRP

= lim
←

R∗PR∗

InR∗PR∗
,

and the respective completions are the same.

exforR*P** Example 3.4. To illustrate Remark
3.38.0
3.3.

R*P**
6, let R = k[x, y, z] be a polynomial

ring in the variables x, y, z over a field k. Let I = xR and let P = (x, y)R. Then:
(1) The I-adic completion of R is R∗ = k[y, z][[x]], the formal power series

ring in x over the polynomial ring k[y, z].
(2) RP = k(z)[x, y](x,y), the localized polynomial ring in x and y over the field

k(z), and R∗PR∗ = (R∗ \PR∗)−1R∗ is a two-dimensional regular local ring
with maximal ideal (x, y)R∗PR∗ that dominates RP .

(3) The IRP -adic completion of RP is (RP )∗ = k(z)[y](y)[[x]], the power series
ring in x over the DVR k(z)[y](y). By Remark

3.38.0
3.3.

R*P**
6, (RP )

∗ is also the
completion of R∗PR∗ in the IR∗PR∗ -adic topology.

(4) Both R∗ and (RP )
∗ are formal power series rings in x. The power series

ring R∗ has coefficient ring S = k[y, z], and (RP )
∗ has coefficient ring SyS ,

a localization of S. By
Shel
[174], the field of fractions of (RP )∗ has infinite

transcendence degree over the field of fractions of R∗.

3.1.2 Remarks 3.5. Let x be a nonzero nonunit of an integral domain R, and assume
that

⋂∞
n=1 x

nR = (0). Let R∗ := lim←−
n

(R/xnR) be the x-adic completion of R,

the completion with respect to the xR-adic topology.
(1) For each n ∈ N, let θn+1 : R

xn+1R →
R
xnR be the canonical R-module

homomorphism. A sequence {ζn}n∈N, with ζn ∈ R/xnR, is said to be
coherent if θn+1(ζn+1) = ζn for each n ∈ N; see

AM
[16, page 103]. The

elements of R∗ are in one-to-one correspondence with coherent sequences.
The element x is regular in R∗. To see this, observe that the coherent

sequence corresponding to the element x is

x 7→ {0 + (x),x+ (x2), x+ (x3), · · · , x+ (xn+1), · · · }

∈ R

xR
× R

x2R
× · · · R

xn+1R
× · · · ,

Suppose that x · ζ = 0, where ζ is the coherent sequence shown:

ζ 7→ {a0 + (x),a0 + a1 + (x2), · · · , a0 + a1 + · · · an + (xn+1), · · · }

∈ R

xR
× R

x2R
× · · · R

xn+1R
× · · · ,

where each ai ∈ R. By coherence, a1 ∈ (x), a2 ∈ (x2), . . . an ∈ (xn),
etc. Then, since R is an integral domain, 0 = x · ζ implies, in the second
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coordinate of x · ζ,

xa0 + xa1 ∈ (x2) =⇒ a0 ∈ (x) =⇒ a0 + (x) = 0 + (x),

that is, ζ1 = 0 + (x). Similarly in the third coordinate of x · ζ,

xa0 + xa1 + xa2 ∈ (x3) =⇒ a0 + a1 ∈ (x2) =⇒ ζ2 = 0 + (x2).

Repetition of this argument yields that ζ = 0. Therefore x is regular
in R∗.

(2) With the notation of item 1, for a coherent sequence {ζn}n∈N, let

fn = a0 + a1x+ · · ·+ an−1x
n−1 ∈ R

be such that the image of fn in R/xn is ζn. Then {fn}n∈N is a Cauchy
sequence in R with respect to the x-adic topology as defined in

M
[123,

page 57]. The limit of the Cauchy sequence {fn}n∈N is an element f of
R∗ associated to the coherent sequence {ζn}n∈N, and can be expressed as
the power series f =

∑
n∈N an−1x

n−1 of R∗.
Conversely every Cauchy sequence {fn}n∈N with fn =

∑n−1
i=0 aix

i ∈ R
and each ai ∈ R determines a coherent sequence {ζn}n∈N with elements
ζn ∈ R/xnR, and the limit of the Cauchy sequence in R∗ can be identified
with the power series f =

∑∞
i=0 aix

i.
Thus each element of R∗ has an expression as a power series in x with

coefficients in R, but without the uniqueness of expression as power series
that occurs in a formal power series ring over R.

(3) Let y be an indeterminate over R. There exists a surjective R-algebra
homomorphism ψ : R[[y]]→ R∗ defined by

ψ(

∞∑
i=0

aiy
i) =

∞∑
i=0

aix
i = f.

The map ψ is well defined because every Cauchy sequence in R with
respect to the x-adic topology has a unique limit in R∗. Then ψ(y−x) = 0,
and ψ induces a surjective R-algebra homomorphism ψ : R[[y]]

(y−x)R[[y]] → R∗.
Since

⋂∞
n=1 x

nR = (0), the canonical map β : R → R∗ is injective.
We have the following commutative diagram:

R −−−−→
α

R[[y]]

β

y φ

y
R∗ ←−−−−

ψ

R[[y]]
(y−x)R[[y]] ,

where α : R ↪→ R[[y]] is the canonical inclusion map, and ϕ is the canonical
surjection. Then ψ = ψ ◦ ϕ. Since ψ(y − x) = 0 and (0) is closed in the
x-adic topology on R∗, kerψ is the closure I of the ideal (y − x)R[[y]] in
the J-adic topology on R[[y]], where J := (y, x)R[[y]]. Thus the x-adic
completion R∗ has the form

(
3.1.2
3.5.0) R∗ =

R[[y]]

I
,

as in
N2
[138, (17.5)].
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(4) If R is Noetherian and y is an indeterminate, then the ideal (y − x)R[[y]]
is closed in the J-adic topology on R[[y]]. For a direct proof of this
statement, let denote image in R[[y]]/(y − x)R[[y]]. It suffices to show
that

⋂∞
n=1 (y, x)

nR[[y]] = (0). We have (y, x)nR[[y]] = ynR[[y]], for every
n ∈ N. By Corollary

3.2.4
2.34, the element y is in the Jacobson radical of

R[[y]]. Hence y is in the Jacobson radical of R[[y]], a Noetherian ring.
Thus

∞⋂
n=1

(y, x)nR[[y]] =

∞⋂
n=1

ynR[[y]] = (0).

The second equality follows from Theorem
3.2.01
2.22.1. Therefore (y−x)R[[y]]

is closed in the J-adic topology.
(5) If R∗ is Noetherian and y is an indeterminate, then the ideal (y−x)R[[y]]

is closed in the J-adic topology on R[[y]], even if R is not Noetherian. To
see this, observe the following claim:

3.1.2c Claim 3.6. (a) If w ∈ R∗ and xw ∈ R, then w ∈ R.
(b) (y − x)R[[y]] = ((y − x)R∗[[y]]) ∩R[[y]].
(c) R[[y]]

(y−x)R[[y]] naturally embeds into R∗[[y]]
(y−x)R∗[[y]] .

Proof. (of claim
3.1.2c
3.6) Fact

R*hat
3.2.1 implies xR∗ ∩ R = xR. By item 1,

x is regular on R. Hence part a holds.
For part b, suppose that z ∈ (y−x)R∗[[y]]∩R[[y]]. Then z = (y−x)w,

where w ∈ R∗[[y]], w =
∑∞
i=0 wiy

i, z =
∑∞
i=0 ziy

i, wi ∈ R∗, and zi ∈ R.
The expression z = (y − x)w implies equations in the coefficients of

each power of y. The constant term, coefficient of y0, in z = (y − x)w
implies z0 = −xw0. By part a, w0 ∈ R.

Suppose by induction that we have shown that w0, . . . , wn−1 ∈ R, for
some n ∈ N. The yn term of z = (y − x)w yields that zn = wn−1 − xwn.
Thus xwn ∈ R, and so wn ∈ R by part a. Thus w ∈ R[[y]] and so part b
holds.

For part c, observe that the natural embedding R ↪→ R∗ extends to
R[[y]] ↪→ R∗[[y]] and the composite map ψ

R[[y]] ↪→ R∗[[y]]→ R∗[[y]]

(y − x)R∗[[y]]
has kernel ψ = ((y − x)R∗[[y]]) ∩ R[[y]] = (y − x)R[[y]]. This proves part
c and the claim. □

To show that (y − x)R[[y]] is closed, it suffices to show, as was done
in item 4, that

⋂∞
n=1 (y, x)

nR[[y]] = (0). This holds by Claim
3.1.2c
3.6.c,

where R is replaced by R∗. As shown in item 4, R∗ Noetherian implies
(y, x)nR∗[[y]] = (0). Now

R[[y]] =
R[[y]]

(y − x)R[[y]]
↪→ R∗[[y]]

(y − x)R∗[[y]]
= R∗[[y]] =⇒

∞⋂
n=1

(y, x)nR[[y]] ⊆
∞⋂
n=1

(y, x)nR∗[[y]] = (0).

Thus (y − x)R[[y]] is closed in the J-adic topology on R[[y]].
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3.2. Uncountable transcendence degree for a completiontrdegcompl

In this section, we consider cases where the transcendence degree of comple-
tions and power series rings are uncountable over a base integral domain. These
results are labeled “facts”, because they appear to be well known. Brief proofs are
included here to make the results more accessible.

We begin with a useful fact about uncountable Noetherian rings.
D-Punc Fact 3.7. If R is an uncountable Noetherian ring, then there exists a prime

ideal P of R such that R/P is uncountable. Hence there exists a minimal prime P0

of R such that R/P0 is uncountable.
Proof. The ring R contains a finite chain of ideals

0 = I0 ⊂ I1 ⊂ · · · ⊂ Iℓ = R

such that each quotient Ii+1/Ii ∼= R/Pi, for some prime ideal Pi of R,
M
[123, Theo-

rem 6.4]. If each of the quotients were countable then R would be countable. Thus
R/P is uncountable for some prime ideal P of R, and hence R/P0 is uncountable,
for each minimal prime P0 contained in P . □

uncalgind Fact 3.8. If R is a countable Noetherian integral domain and x is a nonzero
nonunit of R, then the x-adic completion R∗ of R contains an uncountable subset
that is algebraically independent over R. That is, R∗ has uncountable transcen-
dence degree over R.

Proof. We first observe that the x-adic completion
R∗ := lim←−

n

R/xnR

of R is uncountable. For each n ∈ N, let θn+1 : R
xn+1R →

R
xnR be the canonical

homomorphism. Elements of R∗ may be identified with coherent sequences {ζn}n∈N
in the sense that θn+1(ζn+1) = ζn for each n ∈ N; see

AM
[16, page 103]. Since for

each n and each ζn, there are at least two choices for the element ζn+1 such that
θn+1(ζn+1) = ζn, the cardinality of R∗ is at least 2ℵ0 and hence is uncountable.

By Fact
D-Punc
3.7 there exists a minimal prime P0 of R∗ such that R∗/P0 is uncount-

able. Since R is a Noetherian integral domain, R∗ is flat over R by Remark
3.38.0
3.3.2.

Thus, by Remark
remflat
2.37.9, P0∩R = 0. Since a countably generated extension domain

of R is countable and the algebraic closure of the field of fractions of a countable
integral domain is countable, there exists an uncountable subset Λ of R∗/P0 such
that Λ is algebraically independent over R. Let Λ∗ ⊂ R∗ be such that the elements
of Λ∗ map in a one-to-one way onto the elements in Λ under the residue class map
R∗ → R∗/P0. Then R[Λ∗] ⊂ R∗, and R[Λ∗] is a polynomial ring over R in an
uncountable set of indeterminates.2 □

In relation to transcendence degree and filtrations, Joe Lipman brought Re-
mark

limodIa
3.9 and Fact

psunctd
3.10 to our attention; he also indicated the proofs sketched

below.
limodIa Remark 3.9. Let k be a field and let R be a ring containing k. Let {Ia}a∈A be

a family of ideals of R with index set A such that the family is closed under finite
intersection and the intersection of all of the Ia is (0). If m ∈ N and v1, . . . , vm ∈ R

2It may happen that there exist nonzero elements in the polynomial ring R[Λ∗] that are
zero-divisors in R∗.
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are linearly independent vectors over k, then for some a their images in R/Ia are
linearly independent. Otherwise, if V is the vector space generated by the vi, then
{V ∩ Ia}a∈A would be an infinite family of nonzero vector subspaces of the finite-
dimensional vector space V that is closed under finite intersection and such that
the intersection of all of them is (0), a contradiction.

psunctd Fact 3.10. Let y be an indeterminate over a field k. Then the power series
ring k[[y]] has uncountable transcendence degree over k.

Proof. We show the k-vector space dimension of k[[y]] is uncountable. For
this, let k0 be the prime subfield of k. We consider the family {In := ynk0[[y]]}n∈N
of ideals of k0[[y]] and the corresponding family {I ′n := ynk[[y]]}n∈N of ideals of
k[[y]]. For every n ∈ N, the k-homomorphism ϕ : k ⊗k0 k0[[y]] → k[[y]] induces a
map ϕ : k ⊗k0 (k0[[y]]/y

nk0[[y]]) → k[[y]]/ynk[[y]] that is an isomorphism of two
n-dimensional vector spaces over k.

Since k0[[y]] is uncountable and k0 is countable, the k0-vector space dimen-
sion of k0[[y]] is uncountable, and so there is an uncountable subset B of k0[[y]]
that is linearly independent over k0. Let v1, . . . vm be a finite subset of B. Then
by Remark

limodIa
3.9 the images of v1, . . . , vm in k0[[y]]/(y

nk0[[y]]) are linearly indepen-
dent over k0, for some n. Since ϕ is a k-isomorphism, the images of v1, . . . , vm in
k[[y]]/(ynk[[y]]) are linearly independent over k. Thus v1, . . . , vm must be linearly
independent over k. Therefore B is linearly independent over k. □

3.3. Power series pitfalls
pspit

Roger Wiegand called to our attention possible pitfalls when working with
power series involving both negative and positive powers.

Here is Roger’s example of a power series pitfall:

roger-ex Example 3.11. Define elements of Z[[x, x−1]] as follows:
(1) f(x) =

∑∞
i=0 x

i.
(2) g(x) = −

∑∞
i=0 x

−i−1.
(3) h(x) = 1− x.

We have
h(x)f(x) = 1 and h(x)g(x) = 1.

It appears that h(x) has two distinct inverses. Hmm . . . .
The explanation is that the Z[x, x−1]-module Z[[x, x−1]] is not a ring. In order

to multiply some pairs in Z[[x, x−1]] you would need to add infinitely many integers
to compute some of the coefficients. Roger’s comment: “That’s illegal!”

The multiplications above are valid though, since Z[[x, x−1]] is a Z[x, x−1]-
module and h(x) ∈ Z[x, x−1]. Note that Z[[x, x−1]] is not a torsion-free module
since h(x) annihilates

f(x)− g(x) = · · ·+ x−2 + x−1 + 1 + x+ x2 + · · · .

In connection with Example
roger-ex
3.11, Roger raised the following interesting ques-

tion:

roger-qu Question 3.12. If M = Z[[x, x−1]] is regarded as a module over the ring
Z[x, x−1], what is the torsion submodule of M? That is, which elements m ∈ M
are annihilated by a nonzero element of Z[x, x−1]?
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Comments 3.13. Roger comments about Question
roger-qu
3.12: If r ∈ R := Z[x, x−1]

and m ∈ M := Z[[x, x−1]] is such that m =
∑
n∈Z anx

n with an = 0 for all but
finitely many negative integers n, then both r and m live in D := Z[[x]][ 1x ], an
integral domain. Similarly, if an = 0 for all but finitely many positive integers n,
then both r and m live in the integral domain E = Z[[x−1]][x]. Hence the nonzero
elements of D ∪ E are torsionfree over R.

But suppose m has an 6= 0 for infinitely many positive n AND for infinitely
many negative n. Obviously, not all elements of this form can be zerodivisors, since
the set of all such elements, together with 0, is not a submodule of M .

3.4. Basic results about completions
3.38

Theorem
3.38Chev
3.14 was originally proved by Chevalley in 1943

Chev
[34].

3.38Chev Theorem 3.14. Let R be a semilocal ring with maximal ideals m1, . . . ,mr and
Jacobson radical J = ∩ri=1mi. Then the J -adic completion R̂ of R decomposes as
a direct product

R̂ = R̂m1
× · · · × R̂mr

,

where R̂mi
is the completion of the local ring Rmi

.

In Proposition
closure1
3.15 we give conditions for an ideal to be closed with respect to

an I-adic topology.

closure1 Proposition 3.15. Let I be an ideal in a ring R and let R∗ denote the I-adic
completion of R.

(1) Let L be an ideal of R such that LR∗ is closed in the I-adic topology on
R∗. Then L is closed in the I-adic topology on R if and only if
LR∗ ∩R = L. 3

(2) If R is Noetherian and I is contained in the Jacobson radical of R, then
every ideal L of R is closed in the I-adic topology on R.

(3) If R∗ is Noetherian, then every ideal A of R∗ is closed in the I-adic
topology on R∗.

Proof. For item 1, we have LR∗ =
⋂∞
n=1(L + In)R∗, since the ideal LR∗ is

closed in R∗. By Equation
3.1.1
3.1.2, R/In ∼= R∗/InR∗, for each n ∈ N. It follows that

(
closure1
3.15.0) R/(L+ In) ∼= R∗/(L+ In)R∗, and L+ In = (L+ In)R∗ ∩R,

for each n ∈ N. By Equation
closure1
3.15.0, L is closed in R if and only if LR∗ ∩ R = L.

This proves item 1. Item 2 now follows from statements
N*ff
3 and

N*Jff
4 of Remark

3.38.0
3.3.

Item 3 follows from item 2, since IR∗ is contained in the Jacobson radical of
R∗ by Remark

3.38.0
3.3.1. □

In Theorem 8 of Cohen’s famous paper
Co
[36] on the structure and ideal theory of

complete local rings a result similar to Nakayama’s lemma is obtained without the
usual finiteness condition of Nakayama’s lemma

M
[123, Theorem 2.2]. As formulated

in
M
[123, Theorem 8.4], the result is:

3Here, as in
M
[123, page xiii], we interpret LR∗ ∩ R to be the preimage ψ−1(LR∗), where

ψ : R → R∗ is the canonical map of R to its I-adic completion R∗.
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3.38.1 Theorem 3.16. (A version of Cohen’s Theorem 8) Let I be an ideal of a ring
R and let M be an R-module. Assume that R is complete in the I-adic topology and⋂∞
n=1 I

nM = (0). If M/IM is generated over R/I by elements w1, . . . , ws and wi
is a preimage in M of wi for 1 ≤ i ≤ s, then M is generated over R by w1, . . . , ws.

Let K be a field and let R = K[[x1, . . . , xn]] be a formal power series ring in
n variables over K. It is well-known that there exists a K-algebra embedding of R
into the formal power series ring K[[y, z]] in two variables over K

ZSII
[194, page 219].

We observe in Corollary
3.38.2
3.17 restrictions on such an embedding.

3.38.2 Corollary 3.17. Let (R,m) be a complete Noetherian local ring. Assume that
the map ϕ : (R,m)→ (S, n) is a local homomorphism, and that

⋂∞
n=1 m

nS = (0).
(1) If mS is n-primary and S/n is finite over R/m, then S is a finitely gen-

erated R-module.
(2) If mS = n and R/m = S/n, then ϕ is surjective.
(3) Assume that R = K[[x1, . . . , xn]] is a formal power series ring in n > 2

variables over the field K and S = K[[y, z]] is a formal power series ring
in two variables over K. If ϕ is injective, then ϕ(m)S is not n-primary.

We record in Remarks
3.38.4
3.19 several consequences of Cohen’s structure theorems

for complete local rings. We use the following definitions.

3.38.3 Definitions 3.18. Let (R,m) be a local ring.
(1) (R,m) is said to be equicharacteristic if R has the same characteristic as

its residue field R/m.
(2) A subfield k of R is a coefficient field of R if the canonical map of R →

R/m restricts to an isomorphism of k onto R/m.

3.38.4 Remarks 3.19.
(1) Every equicharacteristic complete Noetherian local ring has a coefficient

field; see
Co
[36],

M
[123, Theorem 28.3],

N2
[138, (31.1)].

(2) If k is a coefficient field of a complete Noetherian local ring (R,m) and
x1, . . . , xn are generators of m, then every element of R can be expanded as
a power series in x1, . . . , xn with coefficients in k; see

N2
[138, (31.1)]. Thus

R is a homomorphic image of a formal power series ring in n variables
over k.

(3) (i) Every complete Noetherian local ring is a homomorphic image of a
complete regular local ring.
(ii) Every complete regular local ring is a homomorphic image of a formal

power series ring over either a field or a complete discrete valuation ringCo
[36],

N2
[138, (31.12)].

(4) Let (R,m) be a complete Noetherian local domain. Then:
(a) R is a finite integral extension of a complete regular local domainN2

[138, (31.6)].
(b) The integral closure of R in a finite algebraic field extension is a finite

R-module
N2
[138, (32.1)].

Historically the following terminology has been used for local rings to indicate
properties of the completion.

3anstuff Definitions 3.20. A Noetherian local ring R is said to be
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(1) analytically unramified if the completion R̂ is reduced, i.e., has no nonzero
nilpotent elements;

(2) analytically irreducible if the completion R̂ is an integral domain;
(3) analytically normal if the completion R̂ is an integrally closed (i.e., normal)

domain.

If a Noetherian local ring R is analytically irreducible or analytically normal,
then R is analytically unramified. If R is analytically normal, then R is analytically
irreducible. If R̂ is not reduced, we say that R is analytically ramified; if R̂ is not
an integral domain, we say that R is analytically reducible.

A classical theorem of Rees describes necessary and sufficient conditions in
order that a Noetherian local ring be analytically unramified. We refer to this
result as the Rees Finite Integral Closure Theorem.

3.38.6 Theorem 3.21. (Rees Finite Integral Closure Theorem)
Re
[155] Let (R,m) be a

reduced Noetherian local ring with total ring of fractions Q(R). Then the following
are equivalent.

(1) The ring R is analytically unramified.
(2) For every choice of finitely many elements λ1, . . . , λn in Q(R), the integral

closure of R[λ1, . . . , λn] in Q(R) is a finite R[λ1, . . . , λn]-module.

The following is an immediate corollary of Theorem
3.38.6
3.21.

3.38.7 Corollary 3.22. (Rees)
Re
[155] Let (R,m) be an analytically unramified Noe-

therian local ring and let λ1, . . . , λn be elements of Q(R). For every prime ideal P
of A = R[λ1, . . . , λn], the local ring AP is also analytically unramified.

compvsintcl Remarks 3.23. Let R be a Noetherian local ring.
(1) If R is analytically unramified, then the integral closure of R in Q(R) is

a finite R-module by Rees Finite Integral Closure Theorem
3.38.6
3.21 or

N2
[138,

(32.2)].
(2) If (R,m) is one-dimensional and an integral domain, then the following

two statements hold
N2
[138, Ex. 1 on page 122] and Katz

Katz
[105].

(i) The integral closure R of R is a finite R-module if and only if R is
analytically unramified.

(ii) The minimal primes of R̂ are in one-to-one correspondence with the
maximal ideals of R.

3.5. Chains of prime ideals, fibers of maps
3.12

We begin by discussing chains of prime ideals.

3.20 Definitions 3.24. Let P and Q be prime ideals of a ring A.
sat3 (1) If P ( Q, we say that the inclusion P ( Q is saturated if there is no prime

ideal of A strictly between P and Q.
csat3 (2) A possibly infinite chain of prime ideals · · · ( Pi ( Pi+1 ( · · · is called

saturated if every inclusion Pi ( Pi+1 is saturated.
cat3 (3) A ring A is catenary provided for every pair of prime ideals P ( Q of A,

every chain of prime ideals from P to Q can be extended to a saturated
chain and every two saturated chains from P to Q have the same number
of inclusions.
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ucat3 (4) A ring A is universally catenary provided every finitely generated A-
algebra is catenary.

eqd3 (5) A ring A is said to be equidimensional if dimA = dimA/P for every
minimal prime P of A.

qunmix (6) A Noetherian local ring (A, n) is said to be quasi-unmixed if its completion
Â is equidimensional.

Theorem
ratliff
3.25 is a well-known result of Jack Ratliff that we call Ratliff’s Equidi-

mension Theorem.
ratliff Theorem 3.25. (Ratliff’s Equidimension Theorem)

M
[123, Theorem 31.6] A

Noetherian local domain A is universally catenary if and only if its completion Â
is equidimensional.

Ratliff’s sharper result, also called Ratliff’s Equidimension Theorem, relates the
universally catenary property to properties of the completion, even if the Noetherian
local ring is not a domain.

15.2.1 Theorem 3.26. (Ratliff’s Equidimension Theorem)
Ra
[152, Theorem 2.6] A

Noetherian local ring (R,m) is universally catenary if and only if the completion of
R/p is equidimensional for every minimal prime ideal p of R.

ucathom Remark 3.27. Every Noetherian local ring that is a homomorphic image of a
regular local ring, or even a homomorphic image of a Cohen-Macaulay local ring,
is universally catenary

M
[123, Theorem 17.9, page 137].

We record in Proposition
forchap19
3.28 an implication of the Krull Altitude Theo-

rem
krullpit
2.23.

forchap19 Proposition 3.28. Let R be a Noetherian domain and let P ∈ SpecR with
dimR/P = n ≥ 1. Let d be an integer with 1 ≤ d ≤ n, and let

A := {Q ∈ SpecR | P ⊆ Q and dimR/Q = d }.
Then P =

⋂
Q∈AQ.

Proof. If d = n, then P ∈ A and the statement is true. To prove the assertion
for d with 1 ≤ d < n, it suffices to prove it in the case where dimR/P = d+ 1; for
if the statement holds in the case where n = d+ 1, then by an iterative procedure
on intersections of prime ideals, the statement also holds for n = d+ 2, · · · .

Thus we assume n = d+ 1, that is, dimR/P = d+ 1 ≥ 2. Let
(
forchap19
3.28.0) P = P0 ( P1 ( P2 ( · · · ( Pd+1 = m

be a maximal chain of prime ideals among all chains from P to a maximal ideal
m = Pd+1 in R. Since the chain in Equation

forchap19
3.28.0 is a maximal length chain so is

the chain Q ( P2 ( · · · ( Pd+1 = m. Thus dimR/Q = d, and so each such Q ∈ Q.
Therefore A is infinite.

Now P ⊆
⋂
Q∈AQ. If there exists an element r ∈ R such that r ∈ (

⋂
Q∈AQ)\P ,

then Q is minimal over the ideal P + rR, for each Q ∈ A. Since an ideal in a
Noetherian ring has only finitely many minimal primes, we have P =

⋂
Q∈AQ. □

3.21d Discussion 3.29. Let f : A → B be a ring homomorphism. The map f can
always be factored as the composite of the surjective map A→ f(A) followed by the
inclusion map f(A) ↪→ B. This is often helpful for understanding the relationship
of A and B. If J is an ideal of B, then f−1(J) is an ideal of A called the contraction
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of J to A with respect to f . As in
M
[123, page xiii], we often write J ∩A for f−1(J).

If Q is a prime ideal of B, then P := f−1(Q) = Q ∩ A is a prime ideal of A. Thus
associated with the ring homomorphism f : A→ B, there is a well-defined spectral
map f∗ : SpecB → SpecA of topological spaces, where for Q ∈ SpecB we define
f∗(Q) = f−1(Q) = Q ∩A = P ∈ SpecA. The Spec map is a contravariant functor
from the catetory of commutative rings with unit to the category of topological
spaces and continuous maps.4

Let A be a ring and let P ∈ Spec(A). The residue field of A at P , denoted
k(P ), is the field of fractions Q(A/P ) of A/P . By permutability of localization and
residue class formation we have k(P ) = AP /PAP .

Given a ring homomorphism f : A → B and an ideal I of A, the ideal f(I)B
is called the extension of I to B with respect to f . For P ∈ SpecA, the extension
ideal f(P )B is, in general, not a prime ideal of B. The fiber over P in SpecB is the
set of all Q ∈ SpecB such that f∗(Q) = P . Exercise 7 of Chapter

3tools
2 asserts that

the fiber over P is nonempty if and only if P is the contraction of the extended
ideal f(P )B. The fiber ring of the map f over P is the ring C defined as:

(
3.21d
3.29.0) C := B ⊗A k(P ) = S−1(B/f(P )B) = (S−1B)/(S−1f(P )B),

where S is the multiplicatively closed set A \ P ; see
M
[123, last paragraph, p. 47].

In general, the fiber over P in SpecB is the spectrum of the ring C. That is, the
fiber of f over P in SpecB is the set of prime ideals of C with the Zariski topology.
Notice that a prime ideal Q of B contracts to P in A if and only if f(P ) ⊆ Q and
Q ∩ S = ∅. This describes exactly the prime ideals of C as in Equation

3.21d
3.29.0.

For Q∗ ∈ SpecC, and Q = Q∗ ∩B, we have P = Q ∩A and

(
3.21d
3.29.1) Q∗ = QC, and CQ∗ = BQ/PBQ = BQ ⊗A k(P );

see
M
[123, top, p. 48].

3.6. Henselian rings

The notion of Henselian ring is due to Azumaya
Az
[20]; see

N2
[138, p. 221].

Hensel Definition 3.30.
N2
[138, p. 103] A local ring (R,m) is Henselian provided

the following holds: for every monic polynomial f(x) ∈ R[x] satisfying

f(x) ≡ g0(x)h0(x) (mod m[x]),

where g0 and h0 are monic polynomials in R[x] such that

g0R[x] + h0R[x] +m[x] = R[x],

there exist monic polynomials g(x) and h(x) in R[x] such that f(x) = g(x)h(x) and
such that both

g(x) − g0(x) and h(x) − h0(x) ∈ m[x].

Thus Henselian rings are precisely those local rings that satisfy the property asserted
for complete local rings in Hensel’s Lemma

Hlem
3.31.

4In his remarkable paper
Hoch
[100], Hochster answers the difficult question: Which topological

spaces actually occur as the spectrum of a commutative ring?
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Hlem Lemma 3.31. Hensel’s Lemma
M
[123, Theorem 8.3] Let (R,m) be a complete

local ring, let x be an indeterminate over R, let f(x) ∈ R[x] be a monic polynomial
and let f be the polynomial obtained by reducing the coefficients mod m. If f(x)
factors modulo m[x] into two comaximal factors, then this factorization can be lifted
back to R[x].

The concept of the Henselization of a local ring is due to Nagata
Nhenzel
[130],

N3
[132],Nhenzel3

[137].5 In Remarks
Hensrmks
3.32, we list properties of the Henselization of a local ring R

and of Henselian rings in general; see
N2
[138] for the proofs.

Hensrmks Remarks 3.32. Let (R,m) be a local ring.
Hzation (1) There exists an extension ring ofR, denoted (Rh,mh), having the following

properties:
• Rh is Henselian and local,
• Rh dominates R, Rh has the same residue field as R, and mRh = mh,N2

[138, (43.3), p. 180, Theorem 43.5, p. 181].
Nagata proves that the ring Rh is unique up to an R-isomomorphism

N2
[138,

pages 181-182]. The ring Rh is called the Henselization of R.
Hff (2) The Henselization Rh of R is faithfully flat over R

N2
[138, Theorem 43.8].6

It follows that R/mn is canonically isomorphic to Rh/(mh)n, for each
n ∈ N. Thus the m-adic completion R̂ of R is also the mh-adic completion
of Rh; the m-adic topology and completion are defined in Definitions

3.1.1
3.1.

NHNcmpl (3) If (R,m) is Noetherian, then (Rh,mh) is a Noetherian local ring such
that with respect to the topologies on R and Rh defined by m and mh,
respectively, R is a dense subspace of Rh

N2
[138, Theorem 43.10]. Thus we

have R ↪→ Rh ↪→ R̂. Every complete Noetherian local ring is HenselianN2
[138, Theorem 30.3].

Hid (4) If R is Henselian, then Rh = R
N2
[138, (43.11)]. If R is normal and H is

a Henselian ring that dominates R, then there exists a unique injective
local R-homomorphism ϕ : Rh ↪→ H

N2
[138, Theorem 43.5].

Hid2 (5) If (R,m) is an integral domain, then R is Henselian if and only if for every
integral domain S that is an integral extension of R, S is a local domainN2
[138, Theorem 43.12].

(6) If R is Henselian and R′ is a local ring that is integral over R, then R′ is
Henselian

N2
[138, Corollary 43.16].

(7) If (R′,m′) is a local ring that is integral over (R,m), then R′⊗RRh = (R′)hN2
[138, Theorem 43.17].

(8) If (R′,m′) is a local ring that dominates (R,m) and if R′ is a localization
of a finitely generated integral extension of R, then (R′)h is a finitely
generated module over Rh

N2
[138, Theorem 43.18].

Hid3 (9) Assume (R,m) is an integral domain, and let Rh denote the Henselization
of R. Then (1) a prime ideal p∗ of Rh is an associated prime ideal of zero
if and only if p∗∩R = 0, (2) the zero ideal of Rh is a radical ideal, and (3)
there is a one-to-one correspondence between the maximal ideals of the
integral closure of R and the associated prime ideals of zero of Rh

N2
[138,

5The notation in
N2
[138], in particular the meaning of “local ring” and “finite type”, differ from

the terminology of
M
[123] that we are using in this book. We have adjusted these results to our

terminology.
6The concept of faithful flatness is defined in Definitions

flat
2.36.
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Theorem 43.20]. In particular, if (R,m) is a normal local domain, then
Rh is an integral domain.

We give more information about Henselian rings and the Henselization of a
local ring in Chapter

excel
8.

3.7. Regularity and excellenceregexc

forextreg Theorem 3.33.
M
[123, Theorem 23.7 and Corollary, p. 184] Let (A,m) and

(B, n) be Noetherian local rings and ϕ : A→ B a flat local homomorphism. Then
(1) If B is regular, normal, or reduced, then so is A.
(2) If A and B/mB are regular, then B is regular.
(3) If both A and the fiber rings of ϕ are normal, respectively, reduced, then

B is normal, respectively, reduced.

forextregc Corollary 3.34. Let (R,m) be a Noetherian local ring and let R̂ denote its
m-adic completion. Then R is an RLR if and only if R̂ is an RLR.

Proof. By Remark
3.38.0
3.3.

N*Jff
4, the extension R ↪→ R̂ is faithfully flat. Thus Theo-

rem
forextreg
3.33 applies. □

We consider more properties of completions in Discussion
3.21r
3.36. The notion of

depth is relevant for that discussion7 and is defined in Definition
depthM
3.35.

depthM Definition 3.35. Let I be an ideal in a Noetherian ring R and let M be a
finitely generated R-module such that IM 6=M . Elements x1, . . . , xd in I are said
to form a regular sequence on M , or an M -sequence, if x1 is not a zerodivisor on M
and for i with 2 ≤ i ≤ d, the element xi is not a zerodivisor on M/(x1, . . . , xi−1)M .
It is known that maximal M -sequences of elements of I exist and all maximal M -
sequences of elements of I have the same length n; see

M
[123, Theorem 16.7] orKap

[104, Theorem 121]. This integer n is called the grade of I on M and denoted
grade(I,M). If R is a Noetherian local ring with maximal ideal m, and M is a
nonzero finitely generated R-module, then the grade of m on M is also called the
depth of M . In particular the depth of R is grade(m, R).

3.21r Discussion 3.36. Related to Corollary
forextregc
3.34, we are interested in the relation-

ship between a Noetherian local ring (R,m) and its m-adic completion R̂. Certain
properties of the ring R may fail to hold in R̂. For example,

(1) The rings A/fA and D of Remarks
4.3.2
4.16.2 and

4.3.2
4.16.1 are Noetherian local

domains, whereas the completion of the one-dimensional domainA/fA is
not reduced and the completion of the two-dimensional normal ring D is
not an integral domain.

(2) Let T be a complete Noetherian local ring of depth at least two such
that no nonzero element of the prime subring of T is a zero divisor on
T . Ray Heitmann has shown the remarkable result that every such ring
T is the completion of a Noetherian local UFD

H2
[97, Theorem 8]. Let

T = k[[x, y, z]]/(z2), where x, y, z are indeterminates over a field k. By
Heitmann’s result there exists a two-dimensional Noetherian local UFD

7The meaning of the term “depth” in Definition
depthM
3.35 is different from the way the term is

used in Zariski-Samuel
ZSI
[193] or in Nagata

N2
[138].
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(R,m) such that the completion of R is T . Thus there exists a two-
dimensional normal Noetherian local domain for which the completion is
not reduced.

AbKrErrorZS Remark 3.37. Shreeram Abhyankar and Ben Kravitz in
AK
[11, Example 3.5]

use Heitmann’s construction mentioned in Discussion
3.21r
3.36.2 along with Rees Finite

Integral Closure Theorem
3.38.6
3.21 to give a counterexample to an erroneous theorem on

page 125 of the book Commutative Algebra II by Oscar Zariski and Pierre SamuelZSII
[194]. Abhyankar and Kravitz also note that a related lemma on the previous page
of

ZSII
[194] is incorrect.

With R and R̂ as in Discussion
3.21r
3.36, if Q ∈ Spec R̂ and P = Q ∩ R, then

the natural map ϕ : R → R̂ induces a flat local homomorphism ϕQ : RP → R̂Q.
Theorem

forextreg
3.33 applies in this situation with A = RP and B = R̂Q. This motivates

interest in the ring R̂Q/PR̂Q.
3.388 Definitions 3.38. Let f : A → B be a ring homomorphism of Noetherian

rings, let P ∈ SpecA, and let k(P ) = AP /PAP .
(1) The fiber over P with respect to the map f is said to be regular if the ring

B ⊗A k(P ) is a Noetherian regular ring, i.e., B ⊗A k(P ) is a Noetherian
ring with the property that its localization at every prime ideal is a regular
local ring.

(2) The fiber over P with respect to the map f is said to be normal if the ring
B ⊗A k(P ) is a normal Noetherian ring, i.e., B ⊗A k(P ) is a Noetherian
ring with the property that its localization at every prime ideal is a normal
Noetherian local domain.

(3) The fiber over P with respect to the map f is said to be reduced if the
ring B ⊗A k(P ) is a Noetherian reduced ring.

(4) The map f has regular, respectively, normal, reduced, fibers if the fiber
over P is regular, respectively, normal, reduced, for every P ∈ SpecA.

3.389 Definitions 3.39. Let f : A → B be a ring homomorphism of Noetherian
rings, and let P ∈ SpecA.

(1) The fiber over P with respect to the map f is said to be geometrically
regular if for every finite extension field F of k(P ) the ring B ⊗A F is a
Noetherian regular ring. The map f : A→ B is said to have geometrically
regular fibers if for each P ∈ SpecA the fiber over P is geometrically
regular.

(2) The fiber over P with respect to the map f is said to be geometrically
normal if for every finite extension field F of k(P ) the ring B ⊗A F is a
Noetherian normal ring. The map f : A→ B is said to have geometrically
normal fibers if for each P ∈ SpecA the fiber over P is geometrically
normal.

(3) The fiber over P with respect to the map f is said to be geometrically
reduced if for every finite extension field F of k(P ) the ring B ⊗A F is a
Noetherian reduced ring. The map f : A→ B is said to have geometrically
reduced fibers if for each P ∈ SpecA the fiber over P is geometrically
reduced.

3.38r Remark 3.40. Let f : A→ B be a ring homomorphism with A and B Noether-
ian rings and let P ∈ SpecA. To check that the fiber of f over P is geometrically
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regular as in Definition
3.389
3.39, it suffices to show that B⊗AF is a Noetherian regular

ring for every finite purely inseparable field extension F of k(P ),
G
[63, No 20, Chap.

0, Théorème 22.5.8, p. 204]. Thus, if the characteristic of the field k(P ) = AP /PAP
is zero, then, for every ring homomorphism f : A→ B with B Noetherian, the fiber
over P is geometrically regular if and only if it is regular. A similar statement is
true with “regular” replaced by “normal” or “reduced”. That is, in characteristic
zero, if the homomorphism f is normal, resp. reduced, then f is geometrically
normal, resp. geometrically reduced

G
[63, No 24, Ch. IV, Prop. 6.7.4 and Prop.

6.7.7].

3.41 Definitions 3.41. Let f : A → B be a ring homomorphism, where A and B
are Noetherian rings.

(1) The homomorphism f is said to be regular if it is flat with geometrically
regular fibers. See Definition

flat
2.36 for the definition of flat.

(2) The homomorphism f is said to be normal if it is flat with geometrically
normal fibers.

reghomnormal Remark 3.42. Let f : A → B be a ring homomorphism of Noetherian rings
and P ∈ SpecA. By Remark

regnormal
2.10, every regular local ring is a normal Noetherian

local domain. Thus, if the fiber over P with respect to f is geometrically regular,
then the fiber over P is geometrically normal; if f has geometrically regular fibers,
then f has geometrically normal fibers; and if f is a regular homomorphism, then
f is a normal homomorphism.

3.415 Example 3.43. Let x be an indeterminate over a field k of characteristic zero,
and let

A := k[x(x− 1), x2(x− 1)](x(x−1),x2(x−1)) ⊂ k[x](x) =: B.

Then (A,mA) and (B,mB) are one-dimensional local domains with the same field
of fractions k(x) and with mAB = mB . Hence the inclusion map f : A ↪→ B has
geometrically regular fibers. Since A 6= B, the map f is not flat by Remark

remflat
2.37.8.

Hence f is not a regular morphism.

We present in Chapter
flatpoly
7 examples of maps of Noetherian rings that are regular,

and other examples of maps that are flat but fail to be regular.
The formal fibers of a Noetherian local ring as in Definition

3.39
3.44 play an im-

portant role in the concepts of excellent Noetherian rings, defined in Definition
3.43
3.47

and Nagata rings, defined in Definition
Nag
2.20.

3.39 Definition 3.44. Let (R,m) be a Noetherian local ring and let R̂ be the m-
adic completion of R. The formal fibers of R are the fibers of the canonical inclusion
map R ↪→ R̂.

3.42 Definition 3.45. A Noetherian ring A is called aG-ring if, for each prime ideal
P of A, the map of AP to its PAP -adic completion is regular, or, equivalently, the
formal fibers of AP are geometrically regular for each prime ideal P of A.

Remark 3.46. In Definition
3.42
3.45 it suffices that, for every maximal ideal m of

A, the map from Am to its mAm-adic completion is regular, by
M
[123, Theorem 32.4]

3.43 Definition 3.47. A Noetherian ring A is excellent if
(i) A is universally catenary,
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(ii) A is a G-ring, and
(iii) for every finitely generated A-algebra B, the set Reg(B) of prime ideals

P of B for which BP is a regular local ring is an open subset of SpecB.

3.435 Remarks 3.48. The class of excellent rings includes the ring of integers as well
as all fields and all complete Noetherian local rings

M
[123, page 260]. All Dedekind

domains of characteristic zero are excellent
M1
[121, (34.B)]. Every excellent ring is a

Nagata ring by
M1
[121, Theorem 78, page 257].

The usefulness of the concept of excellent rings is enhanced by the fact that the
class of excellent rings is stable under the ring-theoretic operations of localization
and passage to a finitely generated algebra

G
[63, Chap. IV],

M1
[121, (33.G) and (34.A)].

In particular, excellence is preserved under homomorphic images.
Let R be a semilocal excellent ring. Then a power series ring in finitely many

variables over R is also excellent
R3
[158, (3.1), p.179]. If x ∈ R, then the x-adic

completion of R is excellent
R3
[158, (3.2)]; see Remark

3.1.2
3.5.2.

3.436 Remarks 3.49. As shown in Proposition
16.5.18
10.4, there exist DVRs in positive

characteristic that are not excellent. In Corollary
11.5.3
18.16, we prove that the two-

dimensional Noetherian local ring B of characteristic zero constructed in Exam-
ple

11.4.5
18.15 has the property that the map f : B → B̂ has geometrically regular

fibers. This ring B of Example
11.4.5
18.15 is also an example of a catenary ring that is

not universally catenary. Thus the property of having geometrically regular formal
fibers does not imply that a Noetherian local ring is excellent.

excapol Remark 3.50. In order to discuss early examples using the techniques of this
book, we have included in Chapters

3tools
2 and

ptools2
3 brief definitions of deep, technically

demanding concepts, such as geometric regularity and excellence. These concepts
are discussed in more detail in Chapters

flatpoly
7 and

excel
8.

Exercises
(1) (

EH
[44]) Let R be a commutative ring and let P be a prime ideal of the power

series ring R[[x]]. Let P (0) denote the ideal in R of constant terms of elements
of P .
(i) If x 6∈ P and P (0) is generated by n elements of R, prove that P is generated

by n elements of R[[x]].
(ii) If x ∈ P and P (0) is generated by n elements of R, prove that P is generated

by n+ 1 elements of R[[x]].
(iii) IfR is a PID, prove that every prime ideal ofR[[x]] of height one is principal.

(2) Let R be a DVR with maximal ideal yR and let S = R[[x]] be the formal power
series ring over R in the variable x. Let f ∈ S. Recall that f is a unit in S if
and only if the constant term of f is a unit in R by Exercise 4 of Chapter

3tools
2.

(a) Show that S is a 2-dimensional RLR with maximal ideal (x, y)S.
(b) If g is a factor of f and S/fS is a finite R-module, then S/gS is a finite

R-module.
(c) If n is a positive integer and f := xn + y, then S/fS is a DVR. Moreover,

S/fS is a finite R-module if and only if R = R̂, i.e., R is complete.
(d) If f is irreducible and fS 6= xS, then S/fS is a finite R-module implies

that R is complete.
(e) If R is complete, then S/fS is a finite R-module for each nonzero f in S.
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Suggestion: For item (d) use that if R is not complete, then by Nakayama’s
lemma, the completion of R is not a finite R-module. For item (e) use Theo-
rem

3.38.1
3.16.

(3) (Related to Tiberiu Dumitrescu’s article
D
[42]) Let R be an integral domain

and let f ∈ R[[x]] be a nonzero nonunit of the formal power series ring R[[x]].
Prove that the principal ideal fR[[x]] is closed in the x-adic topology, that is,
fR[[x]] =

⋂
m≥0(f, x

m)R[[x]].

Suggestion: Reduce to the case where c = f(0) is nonzero. Then f is a
unit in the formal power series ring R[ 1c ][[x]]. If g ∈

⋂
m≥0(f, x

m)R[[x]], then
g = fh for some h ∈ R[ 1c ][[x]], say h =

∑
n≥0 hnx

n, with hn ∈ R[ 1c ]. Let
m ≥ 1. As g ∈ (f, xm)R[[x]], g = fq + xmr, for some q, r ∈ R[[x]]. Thus
g = fh = fq+xmr, hence f(h− q) = xmr. As f(0) 6= 0, h− q = xms, for some
s ∈ R[ 1c ][[x]]. Hence h0, h1, . . . , hm−1 ∈ R.

(4) Let R be a commutative ring and let f =
∑
n≥0 fnx

n ∈ R[[x]] be a power series
having the property that its leading form fr is a regular element of R, that is,
ord f = r, so f0 = f1 = · · · = fr−1 = 0, and fr is a regular element of R. As
in the previous exercise, prove that the principal ideal fR[[x]] is closed in the
x-adic topology.

(5) Let f : A ↪→ B be as in Example
3.415
3.43.

(i) Prove as asserted in the text that f has geometrically regular fibers but is
not flat.

(ii) Prove that the inclusion map of C := k[x(x− 1)](x(x−1)) ↪→ k[x](x) = B is
flat and has geometrically regular fibers. Deduce that the map C ↪→ B is
a regular map.

compRSinj (6) Let φ : (R,m) ↪→ (S, n) be an injective local map of the Noetherian local ring
(R,m) into the Noetherian local ring (S, n). Let

R̂ = lim←−
n

R/mn and Ŝ = lim←−
n

S/nn,

where R̂ is the m-adic completion of R, and Ŝ is the n-adic completion of S.
(i) Prove that there exists a map φ̂ : R̂→ Ŝ that extends the map φ : R ↪→ S.
(ii) Prove that φ̂ is injective if and only if for each positive integer n there

exists a positive integer sn such that nsn ∩R ⊆ mn.
(iii) Prove that φ̂ is injective if and only if for each positive integer n the ideal

mn is closed in the topology on R defined by the ideals {nn ∩ R}n∈N, i.e.,
the topology on R that defines R as a subspace of S.

Suggestion: For each n ∈ N, we have mn ⊆ nn ∩ R. Hence there exists a
map φn : R/mn → R/(nn ∩ R) ↪→ S/nn, for each n ∈ N . The family of maps
{φn}n∈N determines a map φ̂ : R̂→ Ŝ. Since R/mn is Artinian, the descending
chain of ideals {mn + (ns ∩R)}s∈N stabilizes, and mn is closed in the subspace
topology if and only if there exists a positive integer sn such that nsn ∩R ⊆ mn.
This holds for each n ∈ N if and only if the m-adic topology on R is the subspace
topology from S.

compRST (7) Let (R,m), (S, n) and (T, q) be Noetherian local rings. Assume there exist
injective local maps f : R ↪→ S and g : S ↪→ T , and let h := gf : R ↪→ T be
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the composite map. For f̂ : R̂ → Ŝ and ĝ : Ŝ → T̂ and ĥ : R̂ → T̂ as in the
previous exercise, prove that ĥ = ĝf̂ .

compRSsurj (8) Let (R,m) and (S, n) be Noetherian local rings such that S dominates R and
the m-adic completion R̂ of R dominates S.
(i) Prove that R is a subspace of S.
(ii) Prove that R̂ is an algebraic retract of Ŝ, i.e., R̂ ↪→ Ŝ and there exists a

surjective map π : Ŝ → R̂ such that π restricts to the identity map on the
subring R̂ of Ŝ.

(9) Let k be a field and let R be the localized polynomial ring k[x]xk[x], and thus
R̂ = k[[x]]. Let n ≥ 2 be a positive integer. If char k = p > 0, assume that n is
not a multiple of p.
(i) Prove that there exists y ∈ k[[x]] such that yn = 1 + x.
(ii) For y as in (i), let S := R[yx] ↪→ k[[x]]. Prove that S is a local ring integral

over R with maximal ideal (x, yx)S. By the previous exercise, R̂ = k[[x]]

is an algebraic retract of Ŝ.
(iii) Prove that the integral closure S of S is not local. Indeed, if the field

k contains a primitive n-th root of unity, then S has n distinct maximal
ideals. Deduce that R̂ 6= Ŝ, so R̂ is a nontrivial algebraic retract of Ŝ.

Suggestion: Use Remark
3.38.4
3.19.3 and Remark

compvsintcl
3.23.2ii.

B^Noeth (10) (Cohen) Let (B, n) be a local ring that is not necessarily Noetherian. If the
maximal ideal n is finitely generated and

⋂∞
n=1 n

n = (0), prove that the com-
pletion B̂ of B is Noetherian

Co
[36] or

N2
[138, (31.7)]

Suggestion: Use Theorem
3.38.1
3.16.

Comment: In
Co
[36, page 56] Cohen defines (B, n) to be a generalized local ring

if n is finitely generated and
⋂∞
n=1 n

n = (0). He proves that the completion of a
generalized local ring is Noetherian, and that a complete generalized local ring
is Noetherian

Co
[36, Theorems 2 and 3]. Cohen mentions that he does not know

whether there exists a generalized local ring that is not Noetherian. Nagata inN6
[129] gives such an example of a non-Noetherian generalized local ring (B, n).
In Nagata’s example B̂ = k[[x, y]] is a formal power series ring in two variables
over a field. Heinzer and Moshe Roitman in

HRoit
[69] survey properties of generalized

local rings including this example of Nagata.





CHAPTER 4

First examples of the constructionfex

In this chapter, we describe elementary and historical examples of Noetherian
rings. In Section

4.6
4.1, we justify that Intersection Construction

RamQ.0
1.3 is universal in

the sense described in Chapter
intro
1. In Sections

4.1
4.2,

4.3
4.3 and

proto
4.4, several examples are

described using a form of Intersection Construction
BCdef
1.5.

4.1. Universality
4.6

In this section we describe in what sense Intersection Construction
RamQ.0
1.3 can be

regarded as universal for the construction of many Noetherian local domains.
Consider the following general question.

4.6.1 Question 4.1. Let k be a field and let L/k be a finitely generated field exten-
sion. What are the Noetherian local domains (A, n) such that

(1) L is the field of fractions A, and
(2) k is a coefficient field for A?

Recall from Section
3.02
2.1, that k is a coefficient field of (A, n) if the composite map

k ↪→ A→ A/n defines an isomorphism of k onto A/n.

In relation to Question
4.6.1
4.1, Theorem

4.6.15
4.2 yields the following general facts.

4.6.15 Theorem 4.2. Let (A, n) be a Noetherian local domain having a coefficient
field k. Then there exists a Noetherian local subring (R,m) of A such that:

(1) The local ring R is essentially finitely generated over k.
(2) If Q(A) = L is finitely generated over k, then R has field of fractions L.
(3) The field k is a coefficient field for R.
(4) The local ring A dominates R and mA = n.
(5) The inclusion map ϕ : R ↪→ A extends to a surjective homomorphism

ϕ̂ : R̂→ Â of the m-adic completion R̂ of R onto the n-adic completion Â
of A.

(6) For the ideal I := ker(ϕ̂) of the completion R̂ of R from item 5, we have:
(a) R̂/I ∼= Â, so R̂/I dominates A, and
(b) P ∩ A = (0) for every P ∈ Ass(R̂/I), and so the field of fractions
Q(A) of A embeds in the total ring of quotients Q(R̂/I) of R̂/I, and

(c) A = Q(A) ∩ (R̂/I).
Proof. Since A is Noetherian, there exist elements t1, . . . , tn ∈ n such that

(t1, . . . , tn)A = n. For item 2, we may assume that L = k(t1, . . . , tn), since every
element ofQ(A) has the form a/b, where a, b ∈ n. To see the existence of the integral
domain (R,m) and to establish item 1, we set T := k[t1, . . . , tn] and p := n ∩ T .
Define R := Tp and m := n∩R. Then k ⊆ R ⊆ A, mA = n, R is essentially finitely
generated over k and k is a coefficient field for R. Thus we have established items

45
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1- 4. Even without the assumption that Q(A) is finitely generated over k, there is
a relationship between R and A that is realized by passing to completions. Let ϕ
be the inclusion map R ↪→ A. The map ϕ extends to a map ϕ̂ : R̂ → Â, and by
Corollary

3.38.2
3.17.2, the map ϕ̂ is surjective; thus item 5 holds. Let I := ker ϕ̂. Then

R̂/I ∼= Â, for the first part of item 6. The remaining assertions in item 6 follow from
the fact that A is a Noetherian local domain and Â ∼= R̂/I. Applying Remarks

3.38.0
3.3,

we have R̂/I is faithfully flat over A, and by Remark
remflat
2.37.

flreg
6 the nonzero elements

of A are regular on R̂/I.
The following commutative diagram, where the vertical maps are injections,

displays the relationships among these rings:

(
4.6.15
4.2.7)

R̂
φ̂−−−−→ Â ∼= R̂/I −−−−→ Q(R̂/I)x x x

k
⊆−−−−→ R

φ−−−−→ A := Q(A) ∩ (R̂/I) −−−−→ Q(A)
This completes the proof of Theorem

4.6.15
4.2. □

Theorem
4.6.15
4.2 implies Corollary

4.6.2
4.3, yielding further information regarding Ques-

tion
4.6.1
4.1.

4.6.2 Corollary 4.3. Every Noetherian local domain (A, n) having a coefficient field
k, and having the property that the field of fractions L of A is finitely generated
over k is realizable as an intersection L ∩ (R̂/I), where R is a Noetherian local
domain essentially finitely generated over k with Q(R) = L, and I is an ideal in
the completion R̂ of R such that P ∩R = (0) for each associated prime P of R̂/I.
Moreover, Â = R̂/I, where Â is the completion of A.

Related to Corollary
4.6.2
4.3, it is natural to ask which of the Noetherian local

domains A as in Corollary
4.6.2
4.3 are essentially finitely generated over k. Remark

4.6.2r
4.4

gives a partial answer to this question.

4.6.2r Remark 4.4. Let (R,m) be a d-dimensional Noetherian local domain that is
essentially finitely generated over a field k. Heinzer, Huneke and Sally prove: Every
d-dimensional Noetherian local domain S that birationally dominates R and is
either normal or quasi-unmixed in the sense of Definition

3.20
3.24 is essentially finitely

generated over R
HHS
[67, Corollary 2]. Thus every such ring S is essentially finitely

generated over k.

Question
4.6.25
4.5, is motivated by Sally’s Question

SallyQ
1.1, and concerns the existence

of a partial converse to Theorem
4.6.15
4.2:

4.6.25 Question 4.5. Let R be a Noetherian integral domain. What Noetherian
overrings of R exist inside the field of fractions of R?

In connection with Question
4.6.25
4.5, the Krull-Akizuki theorem (see Theorem

krullakizuki
2.24)

implies that every birational overring of a one-dimensional Noetherian integral do-
main is Noetherian and of dimension at most one. On the other hand, every Noe-
therian domain of dimension greater than one admits birational overrings that are
not Noetherian. Indeed, if R is an integral domain with dimR > 1, then by

N2
[138,

(11.9)] there exists a valuation ring V that is birational over R with dimV > 1.
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Since a Noetherian valuation ring has dimension at most one, if dimR > 1, then
there exist birational overrings of R that are not Noetherian.

4.6.3 Remark 4.6. Corollary
4.6.2
4.3 is a first start towards a classification of the Noe-

therian local domains A having a given coefficient field k, and having the property
that the field of fractions of A is finitely generated over k. A drawback with Corol-
lary

4.6.2
4.3 is that it is not true for every triple R,L, I as in Corollary

4.6.2
4.3 that L∩(R̂/I)

is Noetherian (see Examples
16.3.10
10.15 below). In order to have a more satisfying clas-

sification an important goal is to identify necessary and sufficient conditions that
L ∩ (R̂/I) is Noetherian for R,L, I as in Corollary

4.6.2
4.3.

4.2. Elementary examples
4.1

We first consider examples where R is a polynomial ring over a field k. In the
case of one variable the situation is well understood:

4.1.1 Example 4.7. Let x be a variable over a field k, let R := k[x], and let L be a
subfield of the field of fractions of k[[x]] such that k(x) ⊆ L. Then the intersection
domain A := L∩ k[[x]] is a rank-one discrete valuation domain (DVR) with field of
fractions L (see Remark

3.02.1
2.1), maximal ideal xA and x-adic completion A∗ = k[[x]].

For example, if we work with the field Q of rational numbers and our favorite
transcendental function ex, and we put L = Q(x, ex), then A is a DVR having
residue field Q and field of fractions L of transcendence degree 2 over Q.

nesunrem Remarks 4.8. (1) The integral domain A of Example
4.1.1
4.7 with k = Q is per-

haps the simplest example of a Noetherian local domain on an algebraic function
field L/Q of two variables that is not essentially finitely generated over its ground
field Q, i.e., A is not the localization of a finitely generated Q-algebra. As such, it
is hard to describe all the elements of A.

(2) We show in Section
proto
4.4 that A can be described explicitly for some choices of

the field L. The technique used in Section
proto
4.4 to compute the ring A of Example

4.1.1
4.7

is to express A as an infinite directed union of localized polynomial rings in two
variables over Q. For our purposes here the directed union is given by a countably
infinite family of subrings {Bn}n∈N of some larger ring such that Bn ⊆ Bn+1 for
each n, and the directed union is defined to be B :=

⋃∞
n=1Bn. Sometimes we refer

to such a countable union as a direct limit or a nested union of subrings.
The case where the base ring R involves two variables is more interesting than

Example
4.1.1
4.7. The following theorem of Valabrega

V
[182] is useful in considering this

case.
4.1.2 Theorem 4.9. (Valabrega) Let C be a DVR, let x be an indeterminate over

C, and let L be a subfield of Q(C[[x]]) such that C[x] ⊂ L. Then the integral
domain D = L∩C[[x]] is a two-dimensional regular local domain having completion
D̂ = Ĉ[[x]], where Ĉ is the completion of C.

Exercise 4 of this chapter outlines a proof for Theorem
4.1.2
4.9. Applying Val-

abrega’s Theorem
4.1.2
4.9, we see that the intersection domain is a two-dimensional

regular local domain with the “right” completion in the following two examples:
4.1.3 Example 4.10. Let x and y be indeterminates over Q and let C be the DVR

Q(x, ex) ∩ Q[[x]]. Then A1 := Q(x, ex, y) ∩ C[[y]] = C[y](x,y) is a two-dimensional
regular local domain with maximal ideal (x, y)A1 and completion Q[[x, y]].
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4.1.4 Example 4.11. This example is related to the iterative examples of Chap-
ter

motiv
12. Let x and y be indeterminates over Q and let E be the DVR Q(x, ex)∩Q[[x]]

as in Example
4.1.1
4.7. Then A2 := Q(x, y, ex, ey) ∩E[[y]] is a two-dimensional regular

local domain with maximal ideal (x, y)A2 and completion Q[[x, y]]. See Theo-
rem

4.2.11t
12.3.

4.1.5 Remarks 4.12. (1) There is a significant difference between the integral do-
mains A1 of Example

4.1.3
4.10 and A2 of Example

4.1.4
4.11. As is shown in Proposition

proprop
4.27,

the two-dimensional regular local domain A1 of Example
4.1.3
4.10 is, in a natural way,

a nested union of three-dimensional regular local domains. It is possible therefore
to describe A1 rather explicitly. On the other hand, the two-dimensional regular
local domain A2 of Example

4.1.4
4.11 contains, for example, the element ex−ey

x−y . There
is an integral domain B naturally associated with A2 that is a nested union of four-
dimensional RLRs, and the ring B is three-dimensional and is not Noetherian; see
Example

4.7.13
12.7. Notice that the two-dimensional regular local ring A1 is a subring

of an algebraic function field in three variables over Q, while A2 is a subring of
an algebraic function field in four variables over Q. Since the field Q(x, ex, y) is
contained in the field Q(x, ex, y, ey), the local ring A1 is dominated by the local
ring A2.

(2) It is shown in Theorem
6.3.9
22.20 and Corollary

6.3.10
22.23 of Chapter

idwisec
22 that if

we go outside the range of Valabrega’s theorem, that is, if we take more general
subfields L of the field of fractions of Q[[x, y]] such that Q(x, y) ⊆ L, then the
intersection domain A = L∩Q[[x, y]] can be, depending on L, a localized polynomial
ring in n ≥ 3 variables over Q or even a localized polynomial ring in infinitely
many variables over Q. In particular, A = L ∩ Q[[x, y]] need not be Noetherian.
Theorem

4.2.11t
12.3 describes possibilities for the intersection domain A in this setting.

4.3. Historical examples
4.3

There are classical examples, related to singularities of algebraic curves, of one-
dimensional Noetherian local domains (R,m) such that the m-adic completion R̂ is
not an integral domain, that is, R is analytically reducible. We demonstrate this
in Example

4.3.0
4.13.

4.3.0 Example 4.13. Let X and Y be variables over Q and consider the localized
polynomial ring

S : = Q[X,Y ](X,Y ) and the quotient ring R : =
S

(X2 − Y 2 − Y 3)S
.

Since the polynomial X2 − Y 2 − Y 3 is irreducible in the polynomial ring Q[X,Y ],
the ring R is a one-dimensional Noetherian local domain. Let x and y denote the
images in R of X and Y , respectively. The principal ideal yR is primary for the
maximal ideal m = (x, y)R, and so the m-adic completion R̂ is also the y-adic
completion of R. Thus

R̂ =
Q[X][[Y ]]

(X2 − Y 2(1 + Y ))
.

Since 1 + Y has a square root (1 + Y )1/2 ∈ Q[[Y ]], we see that X2 − Y 2(1 + Y )
factors in Q[X][[Y ]] as

X2 − Y 2(1 + Y ) = (X − Y (1 + Y )1/2) · (X + Y (1 + Y )1/2).
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Thus R̂ is not an integral domain. Since the polynomial Z2 − (1 + y) ∈ R[Z] has
x/y as a root and x/y 6∈ R, the integral domain R is not normal; see Section

3.02
2.1.

The birational integral extension R := R[xy ] has two maximal ideals,

m1 :=

(
m,

x

y
− 1

)
R =

(
x− y
y

)
R and m2 :=

(
m,

x

y
+ 1

)
R =

(
x+ y

y

)
R.

To see, for example, that m1 = (x−yy )R, it suffices to show that m ⊂ (x−yy )R.
It is obvious that x − y ∈ (x−yy )R. We also clearly have x2−y2

y2 ∈ (x−yy )R, and
x2 − y2 = y3. Hence y3

y2 = y ∈ (x−yy )R, and so m1 is principal and generated
by x−y

y . Similarly, the maximal ideal m2 is principal and is generated by x+y
y .

Thus R = R[xy ] is a PID, and hence is integrally closed. To better understand the
structure of R and R, it is instructive to extend the homomorphism

ϕ : S −→ S

(X2 − Y 2 − Y 3)S
= R.

Let X1 := X/Y and S′ := S[X1]. Then S′ is a regular integral domain and the
map ϕ can be extended to a map ψ : S′ → R[xy ] such that ψ(X1) =

x
y . The kernel

of ψ is a prime ideal of S′ that contains X2 − Y 2 − Y 3. Since X = Y X1, and Y 2

is not in ker ψ, we see that ker ψ = (X2
1 − 1− Y )S′. Thus

ψ : S′ −→ S′

(X2
1 − 1− Y )S′

= R[
x

y
] = R.

Notice that X2
1 − 1− Y is contained in exactly two maximal ideals of S′, namely
n1 : = (X1 − 1, Y )S′ and n2 : = (X1 + 1, Y )S′.

The rings S1 := S′n1
and S2 := S′n2

are two-dimensional RLRs that are local qua-
dratic transforms 1 of S, and the map ψ localizes to define maps

ψn1
: S1 →

S1

(X2
1 − 1− Y )S1

= Rm1
and ψn2

: S2 →
S2

(X2
1 − 1− Y )S2

= Rm2
.

Thus the integral closure R of R is a homomorphic image of a regular domain of
dimension two with precisely two maximal ideals.

4.3.01 Remark 4.14. Examples given by Akizuki
A
[14] and Schmidt

Sc
[166], provide

one-dimensional Noetherian local domains R such that the integral closure R is
not finitely generated as an R-module; equivalently, the completion R̂ of R has
nonzero nilpotents; see

N2
[138, (32.2) and Ex. 1, page 122] and the paper of KatzKatz

[105, Corollary 5].

If R is a normal one-dimensional Noetherian local domain, then R is a rank-one
discrete valuation domain (DVR) and it is well-known that the completion of R is
again a DVR. Thus R is analytically irreducible. Zariski showed that the normal
Noetherian local domains that occur in algebraic geometry are analytically normal;
see

ZSII
[194, pages 313-320] and Section

3.12
3.5. In particular, the normal local domains

occurring in algebraic geometry are analytically irreducible.
This motivated the question of whether there exists a normal Noetherian local

domain for which the completion is not a domain. Nagata produced such examples

1Chapter
appdvrsec
13 contains more information about local quadratic transforms; see Definitions

12.1.0
13.1.
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in
N1
[136]. He also pinpointed sufficient conditions for a normal Noetherian local

domain to be analytically irreducible
N2
[138, (37.8)].

In Example
4.3.1
4.15, we present a construction of Nagata

N1
[136],

N2
[138, Example

7, pages 209-211] of a two-dimensional regular local domain A with completion
Â = k[[x, y]], where k is a field with char k 6= 2. Nagata proves that A is Noether-
ian, but is not excellent. Nagata also constructs a related two-dimensional normal
Noetherian local domain D that is analytically reducible.2 Although Nagata con-
structs A as a nested union of subrings, we give in Example

4.3.1
4.15 a description of

A as an intersection.

Example 4.15. (Nagata)
N2
[138, Example 7, pages 209-211] Let x and y be4.3.1

algebraically independent over a field k, where char k 6= 2, and let R be the localized
polynomial ring R = k[x, y](x,y). Then the completion of R is R̂ = k[[x, y]]. Let
τ ∈ xk[[x]] be an element that is transcendental over k(x, y), e.g., if k = Q we may
take τ = ex − 1. Let ρ := y + τ and f := ρ2 = (y + τ)2. Now define

A : = k(x, y, f) ∩ k[[x, y]] and D : =
A[z]

(z2 − f)A[z]
,

where z is an indeterminate. It is clear that the intersection ring A is a Krull domain
having a unique maximal ideal. Nagata proves that f is a prime element of A and
that A is a two-dimensional regular local domain with completion Â = k[[x, y]]; see
Proposition

16.1n
6.19. Nagata also shows that D is a normal Noetherian local domain.

We discuss and establish other properties of the integral domains A and D in
Remarks

4.3.2
4.16. We show the ring A is Noetherian in Section

16.1gn
6.3.

4.3.2 Remarks 4.16. (1) The integral domain D in Example
4.3.1
4.15 is analytically

reducible. This is because the element f factors as a square in the completion Â of
A. Thus

D̂ =
k[[x, y, z]]

(z − (y + τ))(z + (y + τ))
,

which is not an integral domain. As recorded in
HHS
[67, page 670], David Shannon ob-

served that there exists a two-dimensional regular local domain S that birationally
dominates D such that S is not essentially finitely generated over D. Moreover, S
has the property that its completion is k[[x, y]].

This behavior of D differs from the situation described in Remark
4.6.2r
4.4. D is

an example of a two-dimensional normal Noetherian local domain for which the
version of Zariski’s Main Theorem on birational transformations as stated in

N2
[138,

Theorem 37.4, page 137] does not apply because D is analytically reducible. There
exists a regular local birational extension S of D that is not essentially finitely
generated over D.

(2) The two-dimensional regular local domain A of Example
4.3.1
4.15 is not a

Nagata ring and therefore is not excellent.3 To see that A is not a Nagata ring,
notice that A has a principal prime ideal generated by f that factors as a square
in Â = k[[x, y]]; namely f is the square of the prime element ρ of Â. Therefore the
one-dimensional local domain A/fA has the property that its completion Â/fÂ

2These concepts are defined in Sections
3.12
3.5 and

3.1
3.1.

3For the definition of a Nagata ring, see Definition
Nag
2.20 of Chapter

3tools
2; for the definition

of excellence, see Definition
3.43
3.47 of Chapter

ptools2
3. More details about these concepts are given in

Sections
exchist
8.1 and

nagsec
8.2 of Chapter

excel
8.
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has a nonzero nilpotent element. This implies that the integral closure of the
one-dimensional Noetherian domain A/fA is not finitely generated over A/fA by
Remark

compvsintcl
3.23.2.i. Hence A is not a Nagata ring. Moreover, the map A ↪→ Â =

k[[x, y]] is not a regular morphism; see Section
3.12
3.5.

The existence of examples such as the normal Noetherian local domain D of
Example

4.3.1
4.15 naturally motivated the question: Is a Nagata domain necessarily

excellent? Rotthaus shows in
R1
[156] that the answer is “no” as described below.

In Example
4.3.3
4.17, we present the construction of Rotthaus. In

R1
[156] the ring A

is constructed as a direct limit. We show in Christel’s Example
4.3.3
4.17 that A can also

be described as an intersection. For this we use that A is Noetherian implies that
its completion Â is a faithfully flat extension, and then we apply Remark

remflat
2.37.9.

4.3.3 Example 4.17. (Christel) Let x, y, z be algebraically independent over a field
k, where char k = 0, and let R be the localized polynomial ring R = k[x, y, z](x,y,z).
Let σ =

∑∞
i=1 aix

i ∈ k[[x]] and τ =
∑∞
i=1 bix

i ∈ k[[x]] be power series such that
x, σ, τ are algebraically independent over k, for example, if k = Q, we may take
σ = ex − 1 and τ = ex

2 − 1. Let u := y + σ and v := z + τ . Define
A := k(x, y, z, uv) ∩ (k[y, z](y,z)][[x]]).

We demonstrate some properties of the ring A in Remark
4.3.31
4.18.

4.3.31 Remark 4.18. The integral domain A of Example
4.3.3
4.17 is a Nagata domain

that is not excellent. Rotthaus shows in
R1
[156] that A is Noetherian and that

the completion Â of A is k[[x, y, z]], so A is a 3-dimensional regular local domain.
Moreover she shows the formal fibers of A are reduced, but are not regular. Since
u, v are part of a regular system of parameters of Â, it is clear that (u, v)Â is a
prime ideal of height two. It is shown in

R1
[156] that (u, v)Â ∩A = uvA. Thus uvA

is a prime ideal and Â(u,v)Â/uvÂ(u,v)Â is a non-regular formal fiber of A. Therefore
A is not excellent.

Since A contains a field of characteristic zero, to see that A is a Nagata domain
it suffices to show for each prime ideal P of A that the integral closure of A/P is a
finite A/P -module; see Theorem

intclfinsep
2.4. Since the formal fibers of A are reduced, the

integral closure of A/P is a finite A/P -module; see Remark
compvsintcl
3.23.1.

4.4. Prototypes
proto

In this section we develop examples called Prototypes. The reason for the term
“Prototype” is because these rings have a simple format, but they enable us to
construct and verify properties of more intricate and sophisticated examples. As
we see in Remark

dvrunique
4.20 and Proposition

proprop
4.27, a (Local) Prototype is just a (localized)

polynomial ring over a DVR C such that k[x] ⊆ C ⊆ k[[x]], for some field k and an
indeterminate x.

proset Setting 4.19. Let x be an indeterminate over a field k, and let s be a positive
integer. By Fact

psunctd
3.10, there exist elements τ1, . . . , τs ∈ xk[[x]] that are algebraically

independent over k(x). In order to construct Prototypes associated to τ1, . . . , τs,
we first construct a discrete valuation domain Cs such that

• k[x] ⊂ Cs,
• the maximal ideal of Cs is xCs,
• the x-adic completion of Cs is k[[x]],
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• Cs has field of fractions k(x, τ1, . . . , τs).

dvrunique Remark 4.20. If Cs is a DVR satisfying the properties in Setting
proset
4.19, then

by Remark
3.38.0
3.3.

N*Jff
4, Cs = k(x, τ1, . . . , τs)∩k[[x]]. Hence Cs is uniquely determined by

its field of fractions.

We describe two methods to construct the integral domain Cs. They are given
below as Construction

intdvr
4.21 and Construction

apprdvr
4.22.

intdvr Construction 4.21. The intersection method. In this case Cs is denoted A.
This method is used in Example

4.1.1
4.7. We show that the intersection integral domain

A = k(x, τ1, . . . , τs) ∩ k[[x]] satisfies the properties in Setting
proset
4.19.

By Exercise
rmk3.02.01prf
3 of Chapter

ptools2
3, the integral domain A is a DVR with field of

fractions k(x, τ1, . . . , τs). Furthermore, we have xnk[[x]] ∩ A = xnA, for every
positive integer n, and

k[x]

xnk[x]
⊆ A

xnA
⊆ k[[x]]

xnk[[x]]
=

k[x]

xnk[x]
.

Thus the inclusions above are equalities, xA is the maximal ideal of A, and the
x-adic completion of A is Â = k[[x]].

apprdvr Construction 4.22. The approximation method: In this case, we denote the
ring Cs by B.

This method is relevant for the construction of many examples later in the book.
The ring B is defined as a nested union of subrings Bn of the field k(x, τ1, . . . , τs).
In order to define B we consider the last parts or the endpieces τin of τi. Suppose
that for all 1 ≤ i ≤ s the power series τi is given by:

τi :=

∞∑
j=1

aijx
j ∈ xk[[x]],

where aij ∈ k. The nth endpiece of τi is the power series:

(
apprdvr
4.22.0) τin :=

1

xn
(τi −

n∑
j=1

aijx
j) =

∞∑
j=n+1

aijx
j−n ∈ xk[[x]].

For each n ∈ N and each i ∈ {1, . . . , s}, we have an endpiece recursion relation:
(
apprdvr
4.22.1) τin = τin+1x + ain+1x ∈ k(x, τ1, . . . , τs) ∩ k[[x]].

We define
(
apprdvr
4.22.2) Bn := k[x, τ1n, . . . , τsn](x,τ1n,...,τsn).

Each of the rings Bn is a localized polynomial ring in s+ 1 variables over the field
k. Because of the recursion relation in Equation

apprdvr
4.22.1, we have that Bn ⊂ Bn+1

for each n ∈ N. We define B to be the directed union:
B =

⋃
n∈N

Bn = lim−→
n

Bn.

We show that B has the five properties listed in Setting
proset
4.19. We first describe

a different construction of B. For each n ∈ N define:
(
apprdvr
4.22.3) Un := k[x, τ1n, . . . , τsn].
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Notice that Un is a polynomial ring in s + 1 variables over the field k. By the
recursion relation in Equation

apprdvr
4.22.1, we have Un ⊂ Un+1. Consider the directed

union of polynomial rings:

U :=
⋃
n∈N

Un = lim−→
n

Un.

By the recursion relation in Equation
apprdvr
4.22.1, each τin ∈ xUn+1; this implies that

xB ∩Un = (x, τ1n, . . . , τsn)Un is a maximal ideal of Un, and it follows that xB ∩U
is a maximal ideal of U . Since each Bn is a localization of Un, the ring B is a
localization of the ring U at the maximal ideal xB ∩ U . We show in Theorem

11.2.51
5.14

that B can also be expressed as B = (1 + xU)−1U .
approxU Proposition 4.23. With notation as in Construction

apprdvr
4.22, for each γ ∈ U

and each t ∈ N, there exist elements gt ∈ k[x] and δt ∈ U such that:
γ = gt + xtδt.

Proof. We have γ ∈ Un for some n ∈ N. Thus we can write γ as a polynomial
in τ1n, . . . , τsn with coefficients in k[x]:

γ =
∑

a(j)τ
j1
1n . . . τ

js
sn,

where a(j) ∈ k[x] and (j) represents the tuple (j1, . . . , js). Using the recursion
relation in Equation

apprdvr
4.22.1, for all 1 ≤ i ≤ s, we have

τin = xtτin+t + ri

where ri ∈ k[x]. By substituting xtτin+t + ri for τin we can write γ as an element
of Un+t as follows:

γ =
∑

a(j)(x
tτ1n+t + r1)

j1 . . . (xtτsn+t + rs)
jt = gt + xtδt,

where gt ∈ k[x] and δt ∈ Un+t. □
Bdvr Proposition 4.24. The ring B is a DVR with maximal ideal xB, and we have

xtk[[x]] ∩B = xtB, for every t ∈ N.
Proof. Let γ ∈ B with γ ∈ xtk[[x]]. First note that γ = γ0ε where ε is a unit

of B and γ0 ∈ U . By Proposition
approxU
4.23,

γ0 = gt+1 + xt+1δt+1,

where gt+1 ∈ k[x] and δt+1 ∈ U . By assumption, γ ∈ xtk[[x]]; thus gt+1 ∈ xtk[[x]].
Since the embedding k[x](x) ↪→ k[[x]] is faithfully flat, we have gt+1 ∈ xtk[x](x),
and therefore γ ∈ xtB. This shows that xtk[[x]] ∩B = xtB, for every t ∈ N.

Since
⋂
t∈N(x

t)k[[x]] = (0), every nonzero element γ ∈ B can be written as
γ = xtε where ε ∈ B is a unit. It follows that the ideals of B are linearly ordered
and B is a DVR with maximal ideal xB. □

The ring B also satisfies the five conditions of Setting
proset
4.19. Obviously, B

dominates k[x](x) and is dominated by k[[x]]. By Proposition
Bdvr
4.24, B is a DVR

with maximal ideal xB, and by construction k(x, τ1, . . . , τs) is the field of fractions
of B. By Proposition

Bdvr
4.24, we have xtk[[x]] ∩B = xtB, for every t ∈ N. Therefore

we have:
k[x]

xtk[x]
⊆ B

xtB
⊆ k[[x]]

xtk[[x]]
=

k[x]

xtk[x]
.

Thus the inclusions above are equalities, and so B̂ = k[[y]].
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dvrnote Note 4.25. By Remark
dvrunique
4.20, we have Cs = A = B, where A is the DVR

described as an intersection in Construction
intdvr
4.21 and B is the DVR described as a

directed union in Construction
apprdvr
4.22.

We extend this example to higher dimensions by adjoining additional variables.

proexample Local Prototype Example 4.26. Assume as in Setting
proset
4.19 that x is an

indeterminate over a field k, that s is a positive integer, and that τ1, . . . , τs ∈ xk[[x]]
are algebraically independent over k(x). Let Cs be the DVR of Constructions

intdvr
4.21

and
apprdvr
4.22 with maximal ideal xCs. Let r be a positive integer and let y1, . . . , yr be

additional indeterminates over Cs.
We construct a regular local ring D such that
(1) k[x, y1, . . . yr] ⊂ D,
(2) the maximal ideal of D is (x, y1, . . . , yr)D,
(3) the x-adic completion of D is k[y1, . . . , yr](y1,...,yr)[[x]],
(4) The completion ofD with respect to its maximal ideal is D̂ = k[[x, y1, . . . , yr]].
(5) D has field of fractions k(x, τ1, . . . , τs, y1, . . . , yr), and
(6) the transcendence degree of D over k is s+ r + 1.

proprop Proposition 4.27. With the notation of Setting
proset
4.19 and Constructions

intdvr
4.21

and
apprdvr
4.22, we define D := Cs[y1, . . . , yr](x,y1,...,yr). Then we have:
(1) D satisfies properties 1-6 of Local Prototype Example

proexample
4.26.

(2) D = k(x, τ1, . . . , τs, y1, . . . , yr) ∩ k[y1, . . . , yr](y1,...,yr)[[x]] and
D = k(x, τ1, . . . , τs, y1, . . . , yr) ∩ k[[x, y1, . . . , yr]].

(3) D =
⋃∞
n=1 k[x, τ1n, . . . , τsn, y1, . . . , yr](x,τ1n,...,τsn,y1,...,yr) a directed union

of localized polynomial rings, where each τin is the nth endpiece of τi, as
in Equation

apprdvr
4.22.1.

Proof. We first observe that D as defined is a regular local ring with maximal
ideal m = (x, y1, . . . , yr)D, that the m-adic completion of D is k[[x, y1, . . . , yr]], and
that the x-adic completion of D is k[y1, . . . , yr](y1,...,yr)[[x]]. Therefore D satisfies
the six properties of Local Prototype Example

proexample
4.26. Since completions of Noether-

ian local rings are faithfully flat, we have that D satisfies part 2 of Proposition
proprop
4.27;

see Remark
3.38.0
3.3.

N*Jff
4.

In order to establish that D is the directed union of localized polynomial rings
of the third part of Proposition

proprop
4.27, we define for each n ∈ N:

Wn := k[x, y1, . . . , yr, τ1n, . . . , τsn] = Un ⊗k k[y1, . . . , yr]

and
Dn := Bn[y1, . . . , yr](mn,y1,...,yr),

where mn = (x, τ1n, . . . , τsn)Bn is the maximal ideal of Bn. Thus Wn is a polyno-
mial ring in s + r + 1 variables over the field k, and Dn is a localization of Wn at
the maximal ideal of Wn generated by these s+ r + 1 variables.

We have the inclusions Wn ⊂Wn+1 ⊂ k[y1, . . . , yr][[x]], and

Dn ⊂ Dn+1 ⊂ k[y1, . . . , yr](y1,...,yr)[[x]].

We define
W :=

⋃
n∈N

Wn and D′ :=
⋃
n∈N

Dn.
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Since direct limits commute with tensor products, we have:
W = U [y1, . . . , yr].

It follows that
D′ = W(x,y1,...,yr) = Cs[y1, . . . , yr](x,y1,...,yr) = D,

as desired for the proposition. □

A regular local ring D as described in Local Prototype Example
proexample
4.26 exists for

each positive integer s and each nonnegative integer r.

prodef Definition 4.28. With the notation of Local Prototype Example
proexample
4.26, the

regular local ring D = Cs[y1, . . . , yr](x,y1,...,yr) is called the Local Prototype or
the Local Prototype Domain associated to {τ1, . . . , τs, y1, . . . , yr}. The Intersection
Form of the Prototype is
(
prodef
4.28.1) D = k(x, τ1, . . . , τs, y1, . . . , yr) ∩ k[y1, . . . , yr](y1,...,yr)[[x]].

proincl Remarks 4.29. With the notation of Local Prototype Example
proexample
4.26, let R be

the localized polynomial ring R := k[x, y1, . . . , yr](x,y1,...,yr), and let R∗ denote the
x-adic completion of R. Thus R∗ = k[y1, . . . , yr](y1,...,yr)[[x]].

(1) Equation
prodef
4.28.1 implies that Local Prototype D of Definition

prodef
4.28 satisfies

(
proincl
4.29.11) D = Q(R)(τ1, . . . , τs) ∩ R∗,

where Q(R) denotes the field of fractions of R.
(2) As mentioned at the beginning of this section, the ring D is called a “Proto-

type” because of its use in the construction of other examples. Later we construct
more complex integral domains E that dominate R and are dominated by the local
integral domain D so that we have:

R = k[x, y1, . . . , yr](x,y1,...,yr) ↪→ E ↪→ D ↪→ k[[x, y1, . . . , yr]].

Exercises
(1) Prove that the intersection domain A of Example

4.1.1
4.7 is a DVR with field of

fractions L and y-adic completion A∗ = Q[[y]].
Comment. Exercise 2 of Chapter

3tools
2 implies that A is a DVR. With the addi-

tional hypothesis of Example
4.1.1
4.7, it is true that the y-adic completion of A is

Q[[y]].
princcontr (2) Let R be an integral domain with field of fractions K.

(i) Let F be a subfield of K and let S := F ∩ R. For each principal ideal aS
of S, prove that aS = aR ∩ S.

(ii) Assume that S is a subring of R with the same field of fractions K. Prove
that aS = aR ∩ S for each a ∈ S ⇐⇒ S = R.

(3) Let R be a local domain with maximal ideal m and field of fractions K. Let
F be a subfield of K and let S := F ∩ R. Prove that S is local with maximal
ideal m∩S, and thus conclude that R dominates S. Give an example where R
is not Noetherian, but S is Noetherian.
Remark. It can happen that R is Noetherian while S is not Noetherian; see
Chapter

insidepssec
14.
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(4) Assume the notation of Theorem
4.1.2
4.9. Thus y is an indeterminate over the

DVR C and D = C[[y]] ∩ L, where L is a subfield of the field of fractions of
C[[y]] with C[y] ⊂ L. Let x be a generator of the maximal ideal of C and let
R := C[y](x,y)C[y]. Observe that R is a two-dimensional RLR with maximal
ideal (x, y)R and that C[[y]] is a two-dimensional RLR with maximal ideal
(x, y)C[[y]] that dominates R. Let m := (x, y)C[[y]] ∩D.
(i) Using Exercise 2, prove that

C ∼=
R

yR
↪→ D

yD
↪→ C[[y]]

yC[[y]]
∼= C.

(ii) Deduce that C ∼= D
yD , and that m = (x, y)D.

(iii) Let k := C
xC denote the residue field of C. Prove that D

xD is a DVR and
that

k[y] ↪→ R

xR
↪→ D

xD
↪→ C[[y]]

xC[[y]]
∼= k[[y]].

(iv) For each positive integer n, prove that
R

(x, y)nR
∼=

D

(x, y)nD
∼=

C[[y]]

(x, y)nC[[y]]
.

Deduce that R̂ = D̂ = Ĉ[[y]], where Ĉ is the completion of C.
(v) Let P be a prime ideal of D such that x 6∈ P . Prove that there exists b ∈ P

such that b(D/xD) = yr(D/xD) for some positive integer r, and deduce
that P ⊂ (b, x)D.

(vi) For a ∈ P , observe that a = c1b + a1x, where c1 and a1 are in D. Since
x 6∈ P , deduce that a1 ∈ P and hence a1 = c2b+ a2x, where c2 and a2 are
in D. Conclude that P ⊂ (b, x2)D. Continuing this process, deduce that

bD ⊆ P ⊆
∞⋂
n=1

(b, xn)D.

(vii) Extending the ideals to C[[y]], observe that

bC[[y]] ⊆ PC[[y]] ⊆
∞⋂
n=1

(b, xn)C[[y]] = bC[[y]],

where the last equality is because the ideal bC[[y]] is closed in the topology
defined by the ideals generated by the powers of x on the Noetherian local
ring C[[y]]. Deduce that P = bD.

(viii) Conclude by Theorem
3.2.1
2.25 thatD is Noetherian and hence a two-dimensional

regular local domain with completion D̂ = Ĉ[[y]].
(5) Let k be a field and let f ∈ k[[x, y]] be a formal power series of order r ≥ 2.

Let f =
∑∞
n=r fn, where fn ∈ k[x, y] is a homogeneous form of degree n. If

the leading form fr factors in k[x, y] as fr = α · β, where α and β are coprime4

homogeneous polynomials in k[x, y] of positive degree, prove that f factors in
k[[x, y]] as f = g · h, where g has leading form α and h has leading form β.

4coprime means α and β have no common factors in k[x, y].
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Suggestion. Let G =
⊕

n≥0Gn represent the polynomial ring k[x, y] as a
graded ring obtained by defining deg x = deg y = 1. Notice that Gn has
dimension n+ 1 as a vector space over k. Let degα = a and deg β = b. Then
a + b = r and for each integer n ≥ r + 1, we have dim(α · Gn−a) = n − a + 1
and dim(β ·Gn−b) = n− b+ 1. Since α and β are coprime, we have

(α ·Gn−a) ∩ (β ·Gn−b) = fr ·Gn−r.
Conclude that α · Gn−a + β · Gn−b is a subspace of Gn of dimension n + 1
and hence that Gn = α ·Gn−a + β ·Gn−b. Let ga := α and hb := β. Since
fr+1 ∈ Gr+1 = α ·Gr+1−a + β ·Gr+1−b = ga ·Gb+1 + hb ·Ga+1, there exist
forms hb+1 ∈ Gb+1 and ga+1 ∈ Ga+1 such that fr+1 = ga·hb+1+hb·ga+1. Since
Gr+2 = ga ·Gb+2 +hb ·Ga+2, there exist forms hb+2 ∈ Gb+2 and ga+2 ∈ Ga+2

such that fr+2 − ga+1 · hb+1 = ga · hb+2 + hb · ga+2. Proceeding by induction,
assume for a positive integer s that there exist forms ga, ga+1, . . . , ga+s and
hb, hb+1, . . . , hb+s such that the power series f−(ga+· · ·+ga+s)(hb+· · ·+hb+s)
has order greater than or equal to r + s+ 1. Using that

Gr+s+1 = ga ·Gb+s+1 + hb ·Ga+s+1,

deduce the existence of forms ga+s+1 ∈ Ga+s+1 and hb+s+1 ∈ Gb+s+1 such that
the power series f − (ga + · · · + ga+s+1)(hb + · · · + hb+s+1) has order greater
than or equal to r + s+ 2.

(6) Let k be a field of characteristic zero. Prove that both
xy + z3 and xyz + x4 + y4 + z4

are irreducible in the formal power series ring k[[x, y, z]]. Thus there does not
appear to be any natural generalization to the case of three variables of the
result in the previous exercise.





CHAPTER 5

The Inclusion Constructionconstrincl

This chapter introduces and describes a technique that yields the examples of
Chapter

fex
4 and also leads to more examples. This technique, Inclusion Construc-

tion
4.4.1
5.3, is a version of Intersection Construction

RamQ.0
1.3. As defined in Section

4.4ic
5.1,

Construction
4.4.1
5.3 gives an “Intersection Domain” A := L∩R∗, where R∗ is an ideal-

adic completion of an integral domain R and L is a subfield of the total quotient
ring of R∗ that contains the field of fractions of R.

The approximation methods in Section
4.45
5.2 yield a subring B of the constructed

domain A of Inclusion Construction
4.4.1
5.3. This subring B is helpful for describing A.

The “Approximation Domain” B is a directed union of localized polynomial rings
over R.

Section
baspropapp
5.3 includes basic properties of Inclusion Construction

4.4.1
5.3. With the

hypotheses of Setting
setinclconstr
5.1, Construction Properties Theorem

11.2.51
5.14 states that the

domains A and B both have ideal-adic completion R∗. If R is a UFD and x is a
prime element in R, Theorem

Bufd
5.24 asserts that B is also a UFD.

5.1. The Inclusion Construction and a picture
4.4ic

We establish the following setting for Inclusion Construction
4.4.1
5.3:

setinclconstr Setting 5.1. Let R be an integral domain with field of fractions K and let
x ∈ R be a nonzero nonunit. Assume that

• R is separated in the x-adic topology, that is,
⋂
n∈N x

nR = (0), and
• the x-adic completion R∗ of R is a Noetherian ring.

Remark
3.1.2
3.5.1 implies that x is a regular element of R∗ in Setting

setinclconstr
5.1.

In many of our applications, the ring R is a Noetherian integral domain. Often
the ring R is a polynomial ring in one or more variables over a field.

zadic Remarks 5.2. (1) If x is a nonzero nonunit of a Noetherian integral domain
R, then the two conditions of Setting

setinclconstr
5.1 hold by Krull’s Theorem

3.2.01
2.22.2, by Re-

marks
3.38.0
3.3, parts

I*ps
5 and

N*fl
2, and by Remark

remflat
2.37.

flreg
6.

(2) Moreover, if R is Noetherian, Remark
3.1.2
3.5 implies that R∗ has the form

R∗ =
R[[y]]

(y − x)R[[y]]
,

where y is an indeterminate over R. It is natural to ask for conditions that imply
R∗ is an integral domain, or, equivalently, that imply (y−x)R[[y]] is a prime ideal.
The element y − x obviously generates a prime ideal of the polynomial ring R[y].
Our assumption that x is a nonunit of R implies that (y−x)R[[y]] is a proper ideal.
Exercise

Nzadicex
2 of this chapter provides examples where (y − x)R[[y]] is a prime ideal

and examples where it is not a prime ideal.

59
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Inclusion Construction
4.4.1
5.3 features an “Intersection Domain” A that is tran-

scendental over R and is contained in a power series extension of R, in the sense of
Remarks

3.1.2
3.5.1.

4.4.1 Inclusion Construction 5.3. Assume Setting
setinclconstr
5.1. Let τ1, . . . , τs ∈ xR∗ be

algebraically independent elements over R such that K(τ1, . . . , τs) ⊆ Q(R∗), the
total ring of fractions ofR∗.1 Thus every nonzero element ofR[τ1, . . . , τs] is a regular
element of R∗. Define A to be the Intersection Domain A := K(τ1, . . . , τs) ∩ R∗
inside Q(R∗). Thus A is a subring of R∗ and A is a transcendental extension of R.

Diagram
4.4.1
5.3 below shows how A is situated.

Q(R∗)

ooo
ooo

ooo
ooo

o

PPP
PPP

PPP
PPP

R∗

NNN
NNN

NNN
NNN

L = K({τi})

ooo
ooo

ooo
oo

NNN
NNN

NNN
NNN

A = L ∩R∗

PPP
PPP

PPP
PPP

PP
K = Q(R)

ooo
ooo

ooo
ooo

o

R

Diagram
4.4.1
5.3.1. A := L ∩R∗

The first difficulty we face with Construction
4.4.1
5.3 is identifying precisely what

we have constructed—because, while the form of the example as an intersection as
given in Construction

4.4.1
5.3 is wonderfully concise, sometimes it is difficult to fathom.

For this reason, we construct in Section
4.45
5.2 an “Approximation Domain” B that is

useful for describing A.

5.2. Approximations for the Inclusion Construction
4.45

This section contains an explicit description of the Approximation Domain
B that approximates the integral domain A of Inclusion Construction

4.4.1
5.3. The

approximation uses the last parts, the endpieces, of the power series τ1, . . . , τs.
First we describe the endpieces for a general element γ of R∗.

4.2.3 Endpiece Notation 5.4. Let R, x and R∗ be as in Setting
setinclconstr
5.1. By Re-

marks
3.1.2
3.5, each γ ∈ xR∗ has an expansion as a power series in x over R,

γ :=

∞∑
i=1

cix
i, where ci ∈ R.

1Since we are interested in the polynomial ring R[τ1, . . . , τs], there is no loss of generality in
the assumption that the τi ∈ xR∗ rather than τi ∈ R∗. Substituting τi + r for τi, where r ∈ R,
does not change the ring R[τ1, . . . , τs] nor the field K(τ1, . . . , τs).
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For each nonnegative integer n, define the nth endpiece γn of γ with respect to this
expansion:

(
4.2.3
5.4.1) γn :=

∞∑
i=n+1

cix
i−n.

It follows that, for each nonnegative integer n, there is a basic useful relation.

(
4.2.3
5.4.2) γn = cn+1x + xγn+1.

EndRecRel Endpiece Recursion Relation 5.5. With R, x and R∗ as in Setting
setinclconstr
5.1 and

γ =
∑∞
i=1 cix

i, where each ci ∈ R, the following Endpiece Recursion Relations hold
for γ:

(
EndRecRel
5.5.1)

γn = cn+1x + xγn+1 ; γn+1 = cn+2x + xγn+2 ;

γn = cn+1x+ cn+2x
2 + x2γn+2 ; · · · .

γn = cn+1x ++ · · · + cn+rx
r + xrγn+r =⇒

γn = ax + xrγn+r and γn+1 = bx + xr−1γn+r ,

for some a ∈ (cn+1, . . . , cn+r)R and b ∈ (cn+2, . . . , cn+r)R.

Now assume that elements τ1, . . . τs ∈ xR∗ are algebraically independent over
the field of fractions K of R and have the property that every nonzero element of
the polynomial ring R[τ1, . . . , τs] is a regular element of R∗. Thus K(τ1, . . . , τs) is
contained in the total quotient ring Q(R∗). As in Inclusion Construction

4.4.1
5.3, define

the Intersection Domain A := K(τ1, . . . , τs) ∩R∗ inside Q(R∗). Set
U0 := R[τ1, . . . , τs] ⊆ A := K(τ1, . . . , τs) ∩R∗.

Thus U0 is a polynomial ring in s variables over R. Each τi ∈ xR∗ has a representa-
tion τi :=

∑∞
j=1 rijx

j , where the rij ∈ R. For each nonegative integer n, associate
with this representation of τi the nth endpiece,

(
4.2.3
5.4.3) τin :=

∞∑
j=n+1

rijx
j−n.

Define
(
4.2.3
5.4.4) Un := R[τ1n, . . . , τsn] and Bn := (1 + xUn)

−1Un.

For each n ∈ N0, the ring Un is a polynomial ring in s variables over R, and x
is in every maximal ideal of Bn, and so x ∈ J (Bn), the Jacobson radical of Bn;
see Section

3.02
2.1. By Endpiece Recursion Relation

EndRecRel
5.5, there is a birational inclusion

of polynomial rings Un ⊂ Un+1, for each n ∈ N0. Also Un+1 ⊂ Un[1/x]. By
Remark

3.38.0
3.3.1, the element x is in J (R∗). Hence the localization Bn of Un is also a

subring of A and Bn ⊂ Bn+1. Define rings U and B associated to the construction:

(
4.2.3
5.4.5) U :=

∞⋃
n=0

Un =

∞⋃
n=0

R[τ1n, . . . , τsn] and B :=

∞⋃
n=0

Bn.
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inclrem Remarks 5.6. (1) For each n ∈ N0, Un ⊆ Un+1. Moreover each Bn ⊆ Bn+1.
The ring U is a directed union of polynomial rings over R, and the ring B, the
Approximation Domain for the construction, is a localization of U . Then
(
4.2.3
5.4.6) B = (1 + xU)−1U and B ⊆ A := K(τ1, . . . , τs) ∩R∗.
Thus x is in the Jacobson radical of B.

(2) By Endpiece Recursion Relation
EndRecRel
5.5 and Equations

4.2.3
5.4.4 and

4.2.3
5.4.5,

(
4.2.3
5.4.7) R[τ1, . . . , τn][1/x] = U0[1/x] = U1[1/x] = · · · = U [1/x].

appintdef Definition 5.7. With Setting
setinclconstr
5.1, the ring A = K(τ1, . . . , τs) ∩ R∗ is called

the Intersection Domain of Inclusion Construction
4.4.1
5.3 associated to τ1, . . . , τs.

The ring B =
⋃∞
n=0Bn is called the Approximation Domain of Inclusion Construc-

tion
4.4.1
5.3 associated to τ1, . . . , τs. If the context is clear they are simply called the

“Intersection Domain” and “Approximation Domain”.

Remark 5.8. The representation in Equation
4.2.3
5.4.3,

τi =

∞∑
j=1

rijx
j

of τi as a power series in x with coefficients in R, is not unique. Indeed, since x ∈ R,
it is always possible to modify the coefficients rij in this representation. It follows
that the endpiece τin is also not unique. However, as is shown in Proposition

4.5.22
5.9,

the rings U and Un are uniquely determined by the τi.

4.5.22 Proposition 5.9. Assume Setting
setinclconstr
5.1 and the notation of Equations

4.2.3
5.4.4 and4.2.3

5.4.5. Then the ring U and the rings Un are independent of the representation of
the τi as power series in x with coefficients in R. Hence also the ring B and the
rings Bn are independent of the representation of the τi as power series in x with
coefficients in R.

Proof. For 1 ≤ i ≤ s, assume that τi and ωi = τi have representations

τi :=

∞∑
j=1

aijx
j and ωi :=

∞∑
j=1

bijx
j ,

where each aij , bij ∈ R. Define the nth-endpieces τin and ωin as in (
4.2.3
5.4):

τin =

∞∑
j=n+1

aijx
j−n and ωin =

∞∑
j=n+1

bijx
j−n.

Then

τi =

∞∑
j=1

aijx
j =

n∑
j=1

aijx
j + xnτin =

∞∑
j=1

bijx
j =

n∑
j=1

bijx
j + xnωin = ωi.

Therefore, for 1 ≤ i ≤ s and each positive integer n,

xnτin − xnωin =

n∑
j=1

bijx
j −

n∑
j=1

aijx
j , and so τin − ωin =

∑n
j=1(bij − aij)xj

xn
.

Thus
∑n
j=1(bij − aij)xj ∈ R is divisible by xn in R∗. Then xnR = R∩ xnR∗, since

xnR is closed in the x-adic topology on R. Hence xn divides the sum
∑n
j=1(bij −

aij)x
j in R. Therefore τin−ωin ∈ R. Thus the ring Un and the ring U =

⋃∞
n=0 Un
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are independent of the representation of the τi. The rings Bn and the ring B are
also independent of the representation of the τi, since B =

⋃∞
n=0Bn and Bn =

(1 + xUn)
−1Un.

□

It is important to identify conditions in order that the Approximation Domain
B equals the Intersection Domain A of Inclusion Construction

4.4.1
5.3. The term “limit-

intersecting” of Definition
4.2li
5.10 refers to this situation.

4.2li Definition 5.10. Assume the setting and notation of Proposition
4.5.22
5.9. Then

Inclusion Construction
4.4.1
5.3 is limit-intersecting over R with respect to the τi if

B = A. In this case, the sequence of elements τ1, . . . τs ∈ xR∗ are called limit-
intersecting over R, or briefly, as limit-intersecting for A.

Observe that with the ringR = k[x], the elements τ1, . . . , τs are limit-intersecting
for the DVR of Constructions

intdvr
4.21 and

apprdvr
4.22, since these constructions yield the same

ring; see Note
dvrnote
4.25. With the ring R = k[x, y1, . . . , ym](x,y1,...,ym), the elements

τ1, . . . , τs are limit-intersecting for Local Prototype Example
proexample
4.26.

4.5.3 Remark 5.11. The limit-intersecting property depends on the choice of the
elements τ1, . . . , τs in the completion. For example, if R is the polynomial ring
Q[x, y], then the x-adic completion R∗ = Q[y][[x]]. Let s = 1, and let τ1 = τ :=
ex − 1 ∈ xR∗. Then τ is algebraically independent over Q(x, y). Let U0 = R[τ ].
Local Prototype Example

proexample
4.26 shows that τ is limit-intersecting. On the other hand,

the element yτ is not limit-intersecting. If U ′0 := R[yτ, ], then Q(U0) = Q(U ′0) and
the Intersection Domain

A = Q(U0) ∩ R∗ = Q(U ′0) ∩ R∗

is the same for τ and yτ . However the Approximation Domain B′ associated to
U ′0 does not contain τ . Indeed, τ 6∈ R[yτ ][1/x]. Hence B′ is properly contained
in the Approximation Domain B associated to U0. Thus B′ ( B = A and the
limit-intersecting property fails for the element yτ .

5.3. Basic properties of the constructed domainsbaspropapp

The following two lemmas are useful for proving basic properties of the integral
domains A and B of Construction

4.4.1
5.3 and Equation

4.2.3
5.4.5.

11.2.3ic Lemma 5.12. Let S be a subring of a ring T , and let x ∈ S be a nonunit regular
element of T . The following conditions are equivalent:

(1) Both (i) xS = xT ∩ S and (ii) T = S + xT hold.
Equivalently, (iii) S/xS = T/xT .

(2) For each positive integer n:
Both (i) xnS = xnT ∩ S, and (ii) T = S + xnT hold.
Equivalently, (iii) S/xnS = T/xnT .

(3) The rings S and T have the same x-adic completion.
(4) Both (i) S = S[1/x] ∩ T and (ii) T [1/x] = S[1/x] + T hold.

Proof. In item 1, to see that (i) and (ii) are equivalent to (iii), let ψ denote
the composite map

ψ : S ↪→ T ↠ T/xT,
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where the left map is inclusion and the right map is the natural projection. Then
kerψ = S ∩ xT , so that (i) is equivalent to injectivity of ψ : S/xS ↪→ T → T/xT ,
whereas (ii) is equivalent to surjectivity of ψ. Similarly, in item 2, (i) and (ii) are
equivalent to (iii).

To see that item 1 implies item 2, observe that
xnT ∩ S = xnT ∩ xS = x(xn−1T ∩ S),

so the equality xn−1S = xn−1T ∩S implies the equality xnS = xnT ∩S. Moreover
T = S + xT implies T = S + xT = S + x(S + xT ) = · · · = S + xnT , so S/xnS =
T/xnT for every n ∈ N. Therefore (1) implies (2).

It is clear that item 2 is equivalent to item 3.
To see that item 2 implies (4i), let s/xn ∈ S[1/x] ∩ T with s ∈ S and n ≥ 0.

Item 2 implies that s ∈ xnT ∩ S = xnS and therefore s/xn ∈ S. To see (4ii), let
t
xn ∈ T [1/x] with t ∈ T and n ≥ 0. Item 2 implies that t = s+xnt1 for some s ∈ S
and t1 ∈ T . Therefore t

xn = s
xn + t1. Thus (2) implies (4).

It remains to show that item 4 implies item 1. To see that (4) implies (1i), let
t ∈ T and s ∈ S be such that xt = s. Then t = s/x ∈ S[1/x] ∩ T = S, by (4i).
Thus xt ∈ xS. To see that (4) implies (1ii), let t ∈ T . Then t

x = s
xn + t′, for some

n ∈ N, s ∈ S and t′ ∈ T by (4ii). Thus t = s
xn−1 + t′x. Hence by (4ii)

t− t′x =
s

xn−1
∈ S[1/x] ∩ T = S. □

The following lemma is a generalization of Proposition
approxU
4.23 of Chapter

fex
4.

incconszt Lemma 5.13. Assume Setting
setinclconstr
5.1 and the notation of Equations

4.2.3
5.4.4 and4.2.3

5.4.5. Then:
(1) For every η ∈ U and every t ∈ N, there exist elements gt ∈ R and δt ∈ U

such that η = gt + xtδt.
(2) For each t ∈ N, xtR∗ ∩ U = xtU.

Proof. Since R∗ is the x-adic completion of R, we have xnR∗∩R = xnR. For
item 1, suppose that η ∈ Un, for some n ∈ N. Then η can be written as:

η =
∑

(j)∈Ns

r(j)τ
j1
1n . . . τ

js
sn,

where r(j) ∈ R, each (j) represents a tuple (j1, . . . , js), and only finitely many of
the r(j) are different from zero. Endpiece Recursion Relation

EndRecRel
5.5.1 for τjn implies,

for each j ∈ {1, . . . , s}, that:
τjn = xtτj,n+t + hj ,

where hj ∈ R. These expressions for the τjn imply:

η =
∑

(j)∈Ns

r(j)(x
tτ1,n+t + h1)

j1 . . . (xtτs,n+t + hs)
js = gt + xtδt,

where gt ∈ R and δt ∈ Un+t.
For item 2, assume that η ∈ xtR∗ ∩ U . Then η = gt + xtδt, where gt ∈ R and

δt ∈ U . Therefore gt ∈ xtR∗ ∩R. Then xtR∗ ∩R = xtR implies η ∈ xtU . □

Construction Properties Theorem
11.2.51
5.14 contains several basic properties of the

integral domains associated with Inclusion Construction
4.4.1
5.3.
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11.2.51 Construction Properties Theorem 5.14. Assume Setting
setinclconstr
5.1. Thus R is

an integral domain with field of fractions K, and x ∈ R is a nonzero nonunit such
that

⋂
n∈N x

nR = (0) and the x-adic completion R∗ of R is a Noetherian ring, Let
τ = {τ1, . . . , τs} be a set of elements of xR∗ that are algebraically independent over
K and such that K(τ) ⊆ Q(R∗). The ring R[τ ] is a polynomial ring in s variables
over R. As in Inclusion Construction

4.4.1
5.3, define A := K(τ) ∩ R∗. Let Un, Bn, B

and U be defined as in Equations
4.2.3
5.4.4 and

4.2.3
5.4.5. Then:

znintA (1) xnR∗ ∩R = xnR, xnR∗ ∩A = xnA, xnR∗ ∩B = xnB and
xnR∗ ∩ U = xnU , for each n ∈ N.

Rmodzn (2) R/xnR = U/xnU = B/xnB = A/xnA = R∗/xnR∗, for each n ∈ N,
and these rings are all Noetherian.

compR* (3) The x-adic completions of the rings U,B and A are all equal to R∗, that
is, R∗ = U∗ = B∗ = A∗.

Rt1/z (4) R[τ ][1/x] = U [1/x], U = R[τ ][1/x]∩B = R[τ ][1/x]∩A; B[1/x] is
a localization of R[τ ] and thus B is a localization S−1n Bn of Bn, for every
n ∈ N, where Sn is a multiplicatively closed subset of Bn. In addition:
(a) The integral domains R[τ ], U,B and A all have the same field of

fractions, namely K(τ).
(b) BP = UP∩U = R[τ ]P∩R[τ ], for every P ∈ SpecB such that x /∈ P .

defindps (5) The definitions in Equation
4.2.3
5.4.5 of B and U are independent of the

representations given in Notation
4.2.3
5.4 for the τi as power series in R∗.

localcase (6) If R∗ is local with maximal ideal mR∗ , then mR := mR∗ ∩R is a maximal
ideal of R and B is local with maximal ideal mR∗ ∩B. Also,

B = (1 + xU)−1U =

∞⋃
n=0

(Un)(mR,τ1n,...,τsn)Un
= U(mR∗∩ U),

where Un = R[τ1n, . . . , τsn], as defined in Equation
4.2.3
5.4.4, and the τin are

the nth endpieces of the τi, using Endpiece Notation
4.2.3
5.4.

RtoBff (7) The inclusions R ↪→ Bn, for n ∈ N, and R ↪→ B are flat. If x ∈ J (R),
then all these inclusions are faithfully flat. Thus, if R is a local integral
domain, then all these inclusions are faithfully flat.

Proof. For item
znintA
1, xnR∗ ∩ R = xnR by Fact

R*hat
3.2, xnR∗ ∩ U = xnU by

Lemma
incconszt
5.13, and xnR∗ ∩ A = xnA by Exercise

znA
3 at the end of this chapter. If

η ∈ xnR∗ ∩ B, then η = η0ε, where η0 ∈ U and ε a unit in B. Since x is in the
Jacobson radical of R∗, ε is also a unit in R∗ and therefore η0 ∈ xnR∗ ∩ U = xnU .
Thus η ∈ xnB.

To prove item
Rmodzn
2, observe that from item

znintA
1, there are embeddings:

R/xnR ↪→ U/xnU ↪→ B/xnB ↪→ A/xnA ↪→ R∗/xnR∗.

Since R/xnR ↪→ R∗/xnR∗ is an isomorphism, for every n ∈ N, all the equalities
follow. Since R∗ is Noetherian, so are R∗/xnR∗ and all of the rings isomorphic to
R∗/xnR∗.

Item
compR*
3 follows from item

Rmodzn
2.

For item
Rt1/z
4, Remark

inclrem
5.6.2 implies U [1/x] = R[τ ][1/x]. Then U = U [1/x]∩B =

R[τ ][1/x] ∩ B = R[τ ][1/x] ∩ A, by applying item
compR*
3 and Lemma

11.2.3ic
5.12.4 with U for

the ring S and B or A for the ring T in Lemma
11.2.3ic
5.12.4. By Remark

inclrem
5.6.1, B is a

localization of U . Since U [1/x] = R[τ ][1/x], it follows that B[1/x] is a localization
of R[τ ]. This implies the fields of fractions of U , B, and A are all contained
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in the field of fractions K(τ) of R[τ ], and so statement a of item
Rt1/z
4 holds. For

statement b of item
Rt1/z
4, since B[1/x] is a localization of R[τ ] and of U and BP is

a localization of B[1/x], it follows that BP is a localization of R[τ ] and of U . By
Exercise

bplocu
1, BP = R[τ ]P∩R[τ ] = UP∩U .

Item
defindps
5 is Proposition

4.5.22
5.9.

For item
localcase
6, notice that x ∈ mR. By Remark

inclrem
5.6.1, x ∈ J (B), that is, x is in

every maximal ideal of B. By item 2, B/xB = R∗/xR∗. Since R∗ is local with
maximal ideal mR∗ , it follows that B is local with maximal ideal mR∗ ∩ B. The
first equality of the displayed equation of item 6 is by Remark

inclrem
5.6.1.

We show that B is also the directed union of the localized polynomial rings
Cn := (Un)Pn

, where Pn := (mR, τ1n, . . . , τsn)Un and Un = R[τ1n, . . . , τsn]. Note
that Pn is a maximal ideal of Un with mR∗ ∩ Un = Pn, Then Cn ⊆ Cn+1. Also
Pn ∩ (1 + xUn) = ∅ implies that Bn ⊆ Cn. We show that Cn ⊆ B: Let a

d ∈ Cn,
where a ∈ Un and d ∈ Un \ Pn. Then a ∈ B and d ∈ B \ (mR∗ ∩ B). Since B is
local with maximal ideal mR∗ ∩B, d is a unit in B. Hence a/d ∈ B.

For item
RtoBff
7, R ↪→ Un = R[τn], where τn = {τ1n, . . . , τsn} are the nth endpieces

of the τi, is faithfullly flat because R[τn] is a polynomial ring in n indeterminates
over R. Since Bn is a localization of Un, R ↪→ Bn is also flat, for every n ∈ N.
Therefore R ↪→ B is flat; see

B
[23, Chap.1, Sec.2.3, Prop.2, p.14]. If x ∈ J (R),

then 1 + xu is a unit for every u ∈ U . Thus, for every maximal ideal m of R, the
intersection m ∩ (1 + xU) = ∅. Therefore m(1 + xU)−1U 6= (1 + xU)−1U = B, and
so R ↪→ B is faithfully flat, and so is R ↪→ Bn, for every n ∈ N. If R is local, then
x ∈ J (R), and so the result holds.

This completes the proof of Theorem
11.2.51
5.14. □

11.2.51c Corollary 5.15. Assume the setting and notation of Theorem
11.2.51
5.14, and as-

sume R is Noetherian. Then:
(1) B/xB and B[1/x] are Noetherian.
(2) The extension R ↪→ B[1/x] has regular fibers.

Proof. For item 1, since R is Noetherian, the polynomial ring U0 := R[τ ] is
Noetherian. By Theorem

11.2.51
5.14.4, B[1/x] is a localization of R[τ ], and so B[1/x] is

Noetherian. By Theorem
11.2.51
5.14.2, B/xB is Noetherian.

For item 2, B[1/x] is a localization of U0 by Theorem
11.2.51
5.14.4. Since U0 is

a polynomial ring over R, the composite map R ↪→ U0 ↪→ B[1/x] has regular
fibers. □

4.211 Remark 5.16. In items 1 and 3 below we apply part 6 of Construction Prop-
erties Theorem

11.2.51
5.14 to the case that the base ring R is a localized polynomial ring

over a field in variables x, y1, . . . , yr, where r ∈ N0, and the completion is taken
with respect to the variable x. For one variable, the idea is quite simple, as shown
in items 1 and 2 below. Let τ1, . . . , τs ∈ xR∗ be algebraically independent elements
over R as in Construction

4.4.1
5.3.

(1) In the special case where R = k[x](x), the x-adic completion of R is R∗ =
k[[x]] and Un = k[x](x)[τ1n, . . . , τsn]. Then B =

⋃∞
n=0 k[x](x)[τ1n, . . . , τsn]Pn

, where
Pn := (x, τ1n, . . . , τsn)k[x](x)[τ1n, . . . , τsn], by Theorem

11.2.51
5.14.6. It follows that also

B =
⋃∞
n=0 k[x, τ1n, . . . , τsn](x,τ1n,...,τsn).

(2) If R = k[x], then Un = k[x, τ1n, . . . , τsn] and R∗ = k[[x]] is the x-adic
completion of R. Then B =

⋃∞
n=0 k[x, τ1n, . . . , τsn](x,τ1n,...,τsn), by the proof of
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part 6 of Theorem
11.2.51
5.14. That is, the ring B is the same for R = k[x] as for

R = k[x](x).
(3) Let R be the localized polynomial ring k[x, y1, . . . , yr](x,y1,...,yr) over a field

k with variables x, y1, . . . , yr, and let m := (x, y1, . . . , yr)R. Then the x-adic com-
pletion of R is R∗ = k[y1, . . . , yr](y1,...,yr)[[x]]. Let τ1, . . . , τs be elements of xR∗
that are algebraically independent over R. By part 6 of Theorem

11.2.51
5.14,

B =

∞⋃
n=0

R[τ1n, . . . , τsn](m,τ1n,...,τsn).

Since R is the localization of k[x, y1, . . . , yr] at the maximal ideal generated by
x, y1, . . . , yr,

R[τ1n, . . . , τsn](m,τ1n,...,τsn) = k[x, y1, . . . , yr, τ1n, . . . , τsn](x,y1,...,yr,τ1n,...,τsn).

(4) With the base ring R = k[x, y1, . . . , yr](x,y1,...,yr) as in item 3, if τ1, . . . , τs are ele-
ments of xk[[x]] that are algebraically independent over k(x), then Proposition

proprop
4.27

implies the ring B is the ring D of Local Prototype Example
proexample
4.26.

Proposition
11.2.52
5.17 concerns the extension to R∗ of a prime ideal of either A or

B that does not contain x, and provides information about the maps from SpecR∗

to SpecA and to SpecB. We use Proposition
11.2.52
5.17 in Chapters

motiv
12 and

insidepssec
14–

insideps2
16.

11.2.52 Proposition 5.17. With the notation of Construction Properties Theorem
11.2.51
5.14:

zJB (1) x is in the Jacobson radical of each of the rings B, A and R∗. If P ∈
SpecB or P ∈ SpecA, then PR∗ 6= R∗.

pRpU (2) Let q be a prime ideal of R. Then
(a) qU is a prime ideal in U .
(b) Either qB = B or qB is a prime ideal of B.
(c) If qB 6= B, then qB ∩ U = qU and UqU = BqB.
(d) If x /∈ q, then qU ∩ Un = qUn and UqU = (Un)qUn

.
(e) If x /∈ q and qB 6= B, then qB ∩Bn = qBn and

(Un)qUn = UqU = BqB = (Bn)qBn .

ztIR* (3) Let I be an ideal of B or of A and let t ∈ N. Then xt ∈ IR∗ ⇐⇒ xt ∈ I.
znpna (4) Let P ∈ SpecB or P ∈ SpecA with x /∈ P . Then x is a nonzerodivisor

on R∗/PR∗. Thus x /∈ Q for each associated prime of R∗/PR∗. Since
x is in the Jacobson radical of R∗, it follows that PR∗ is contained in a
nonmaximal prime ideal of R∗.

Bloc (5) If R is local, then R∗, A and B are local. Let mR, mR∗ ,mA and mB
denote the maximal ideals of R, R∗, A and B, respectively. In this case
(a) mB = mRB, and mA = mRA. Each prime ideal P of B such that

ht(mB/P ) = 1 is contracted from R∗, and each prime ideal P of A
such that ht(mA/P ) = 1 is contracted from R∗.

(b) R̂ = B̂ = Â, where R̂, B̂, and Â are the mR,mB, and mA-adic
completions of R, B, and A, respecitvely.

(c) Let I be an ideal of B. Then IR∗ is primary for mR∗ ⇐⇒ I is
primary for mB. In this case, IR∗ ∩B = I and B/I ∼= R∗/IR∗. Let
I be an ideal of A. Then IR∗ is primary for mR∗ ⇐⇒ I is primary
for mA. In this case, IR∗ ∩A = I and A/I ∼= R∗/IR∗.
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Proof. For item
zJB
1, since Bn = (1+ xUn)

−1Un, it follows that 1+ xb is a unit
of Bn for each b ∈ Bn. Therefore x is in the Jacobson radical of Bn for each n
and thus x is in the Jacobson radical of B. By Remark

3.38.0
3.3.1, x is in the Jacobson

radical of R∗. Hence 1+ax is a unit of R∗ for every a ∈ R∗. Since A = Q(A)∩R∗,
an element of A is a unit of A if and only if it is a unit of R∗. Thus x is in the
Jacobson radical of A.

By Theorem
11.2.51
5.14.2, B/xB = R∗/xR∗. If P ∈ SpecB, then P is contained in

a maximal ideal m of B and x ∈ m. Therefore m/xB = mR∗/xR∗, and PR∗ 6= R∗.
Similarly, if P ∈ SpecA, then PR∗ 6= R∗.

For item
pRpU
2, since each Un is a polynomial ring over R, the ideal qUn is a prime

ideal of Un and thus qU =
⋃∞
n=0 qUn is a prime ideal of U . Since B is a localization

of U , either qB = B, or qB is a prime ideal of B such that qB ∩ U = qU and
UqU = BqB .

For part d of item
pRpU
2, since Un[1/x] = U [1/x] and the ideals qUn and qU are

prime ideals in Un and U that do not contain x, the localizations (Un)qUn and UqU

are both further localizations of U [1/x]. Moreover, they both equal U [1/x]qU [1/x].
Thus UqU = (Un)qUn

. Since Un ⊂ U , also qU ∩Un = qUn. Since B is a localization
of U , the assertions in part e follow as in the proof of part d.

To see item
ztIR*
3, let I be an ideal of B. The proof for A is identical. Observe that

there exist elements b1, . . . , bs ∈ I such that IR∗ = (b1, . . . , bs)R
∗. If xt ∈ IR∗,

there exist αi ∈ R∗ such that

xt = α1b1 + · · ·+ αsbs.

Then αi = ai + xt+1λi for each i, where ai ∈ B and λi ∈ R∗. Thus

xt[1− x(b1λ1 + · · ·+ bsλs)] = a1b1 + · · ·+ asbs ∈ B ∩ xtR∗ = xtB.

Hence γ := 1−x(b1λ1+ · · ·+bsλs) ∈ B. Thus x(b1λ1+ · · ·+bsλs) ∈ B∩xR∗ = xB,
and so b1λ1+ · · ·+ bsλs ∈ B. By item 1, the element x is in the Jacobson radical of
B. Therefore γ is invertible in B. Since γxt ∈ (b1, · · · , bs)B, it follows that xt ∈ I.
If xt ∈ I, then xt ∈ IR∗. This proves item

ztIR*
3.

For item
znpna
4, assume that P ∈ SpecB. The proof for P ∈ SpecA is identical.

Observe that

P ∩ xB = xP and so P

xP
=

P

P ∩ xB
∼=
P + xB

xB

By Construction Properties Theorem
11.2.51
5.14.3, B/xB is Noetherian. Hence the B-

module P/xP is finitely generated. Let P = (g1, . . . , gt)B+xP , with g1, . . . , gt ∈ P .
Then also PR∗ = (g1, . . . , gt)R

∗ + xPR∗ = (g1, . . . , gt)R
∗, the last equality by

Nakayama’s Lemma.
Let f̂ ∈ R∗ be such that xf̂ ∈ PR∗. We show that f̂ ∈ PR∗.
Since f̂ ∈ R∗, we have f̂ :=

∑∞
i=0 cix

i, where each ci ∈ R. For each m > 1, let
fm :=

∑m
i=0 cix

i, the first m + 1 terms of this expansion of f̂ . Then fm ∈ R ⊆ B

and there exists an element ĥ1 ∈ R∗ so that.

f̂ = fm + xm+1ĥ1.

Since xf̂ ∈ PR∗,
xf̂ = â1g1 + · · ·+ âtgt,
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where âi ∈ R∗. The âi have power series expansions in x over R, and thus there
exist elements aim ∈ R such that âi − aim ∈ xm+1R∗. Thus

xf̂ = a1mg1 + · · ·+ atmgt + xm+1ĥ2,

where ĥ2 ∈ R∗, and

xfm = a1mg1 + · · ·+ atmgt + xm+1ĥ3,

where ĥ3 = ĥ2−xĥ1 ∈ R∗. The gi are inB, and so xm+1ĥ3 ∈ xm+1R∗∩B = xm+1B,
the last equality by Construction Properties Theorem

11.2.51
5.14.1. Therefore ĥ3 ∈ B.

By rearranging the last displayed equation above,

x(fm − xmĥ3) = a1mg1 + · · ·+ atmgt ∈ P.

Since x /∈ P , we have fm−xmĥ3 ∈ P . It follows that f̂ ∈ P+xmR∗ ⊆ PR∗+xmR∗,
for each m > 1. Hence f̂ ∈ PR∗, as desired.

For item
Bloc
5, if R is local, then B is local, A is local, R∗ is local, and mB = mRB,

mA = mRA, and mR∗ = mRR
∗, since R/xR = B/xB = A/xA = R∗/xR∗ and x is

in the Jacobson radical of B and of A.
We complete the proof of item

Bloc
5.a for the ring B; the same proof works for A.

If x 6∈ P ∈ SpecB, then item 4 implies that no power of x is in PR∗. Hence PR∗ is
contained in a prime ideal Q of R∗ that does not meet the multiplicatively closed
set {xn}∞n=1. Thus P ⊆ Q ∩ B ( mB . Since ht(mB/P ) = 1, we have P = Q ∩ B,
so P is contracted from R∗. If x ∈ P , then B/xB = R∗/xR∗ implies that PR∗ is
a prime ideal of R∗ and P = PR∗ ∩B.

For part b of item
Bloc
5, Fact

R*hat
3.2 implies that R̂∗ = R̂. Also, by Theorem

11.2.51
5.14.3,

A∗ = B∗ = R∗. Thus the mA-adic completion of A and mB-adic completion of B
are equal to the completion of R∗, which is R̂.

For part c of item
Bloc
5, let I be an ideal of B. By item 3, for each t ∈ N, we have

xt ∈ IR∗ ⇐⇒ xt ∈ I. If either IR∗ is mR∗ -primary or I is mB-primary, then xt ∈ I
for some t ∈ N. By Theorem

11.2.51
5.14.3, B/xtB = R∗/xtR∗. Hence the mB-primary

ideals containing xt are in one-to-one inclusion preserving correspondence with the
mR∗ -primary ideals that contain xt. This completes the proof of item

Bloc
5. □

d1impht Theorem 5.18. Let the notation be as in Inclusion Construction
4.4.1
5.3, and as-

sume that (R,mR) is a Noetherian local integral domain of dimension d. Let U and
B be the Approximation Domains as in Equation

4.2.3
5.4.5 corresponding to elements

τ = τ1, . . . , τs of xR∗ that are algebraically independent over R. Then, for each
P ∈ SpecB such that P is maximal with respect to x /∈ P ,

(1) dim(B/P ) = 1 = dim(R/(P ∩R)).
(2) If R is catenary, then ht(P ∩R) = d− 1, and d− 1 ≤ htP ≤ d+ s− 1.

Proof. By Proposition
11.2.52
5.17.

Bloc
5.a and Theorem

11.2.51
5.14.

localcase
6, B = U(mB∩U), where

mB is the maximal ideal of B. Since B is local and P ∈ SpecB is maximal with
respect to x /∈ P , the ideal x(B/P ) is in every nonzero prime of B/P . Therefore
(B/P )[1/x] = B[1/x]/PB[1/x] is a field and PB[1/x] is a maximal ideal of B[1/x].
Let Q ∈ SpecB with P ( Q ⊆ mB , then x ∈ Q. By Theorem

11.2.51
5.14.2, Q = (Q∩R)B.

Therefore the prime ideals of B that properly contain P are in one-to-one inclusion
preserving correspondence with the prime ideals of R that properly contain P ∩R.
Since R/(P ∩R) is a Noetherian local domain, it follows that dimR/(P ∩R) = 1.
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For each prime Q of B that properly contains P , we have Q ∩ R = mR, and so
Q = mB , by Proposition

11.2.52
5.17.

Bloc
5. Thus dim(B/P ) = 1. This proves item 1.

For item 2, if R is catenary of dimension d, then ht(P ∩ R) = d − 1. Since
x /∈ P ,

htBP = htB[1/x]PB[1/x] = htR[τ ][1/x](P ∩R[τ ])R[τ ][1/x]
= htR[τ ](P ∩R[τ ])R[τ ] ≥ htR(P ∩R) = d− 1.

Since R[τ ] is a polynomial ring in s ≥ 1 variables over R, htBP ≤ d+ s− 1. □
Proposition

nudimhgt
5.19 is used to compute the dimensions of the Approximation Do-

mains B resulting from Inclusion Construction
4.4.1
5.3.

nudimhgt Proposition 5.19. Let C =
⋃
n∈N Cn be a nested union of integral domains

such that dimCn ≤ d for each n ∈ N. Then
(1) For P ∈ SpecC and h ∈ N, if htP ≥ h, then ht(P ∩ Cn) ≥ h for all

sufficiently large n ∈ N.
(2) dimC ≤ d.

Proof. Assume that 0 = P0 ( P1 ( · · · ( Ph = P is a strictly ascending chain
of prime ideals in C. For each j ∈ {1, . . . , h}, there exists an element aj ∈ Pj \Pj−1.
Since C =

⋃
n∈N Cn, we have {aj}hj=1 ⊆ Ci for some i. Then for all n ≥ i
P0 ∩ Cn ( P1 ∩ Cn ( · · · ( Ph ∩ Cn = P ∩ Cn

is a strictly ascending chain of prime ideals of Cn of length h. This proves item 1.
Item 2 follows from item 1. □

Proposition
z1/zNsp
5.20 is useful for establishing that the prime spectra of rings con-

structed with Construction
4.4.1
5.3 are often Noetherian.

z1/zNsp Proposition 5.20. Let x be an element in a ring C. If the rings C/xC and
C[1/x] have Noetherian spectrum, then SpecC is Noetherian. Thus, if the rings
C/xC and C[1/x] are Noetherian, then SpecC is Noetherian.

Proof. SpecC is the union of Spec(C/xC) and Spec(C[1/x]). □
z1/zNspc Corollary 5.21. With the setting and notation of Inclusion Construction

4.4.1
5.3,

assume in addition that R is a Noetherian domain. Then the Approximation Do-
main B of Construction

4.4.1
5.3 has Noetherian spectrum.

Proof. Let x be the nonzero nonunit of R from Construction
4.4.1
5.3. By Corol-

lary
11.2.51c
5.15, B/xB and B[1/x] are Noetherian. Proposition

z1/zNsp
5.20 implies that SpecB

is Noetherian. □
basconsnonNspc Remark 5.22. The more general Intersection Construction

BCdef
1.5 sometimes pro-

duces an intersection domain that fails to have Noetherian spectrum, even if the
base ring R is Noetherian. In Corollary

6.3.9
22.20 with R = k[x, y](x,y), we prove

the existence of elements τ1, . . . , τn, . . . ∈ R̂ = k[[x, y]] such that, for the field
L = k(τ1, . . . , τn, . . .), the Intersection Domain A = L∩ k[[x, y]] is a localized poly-
nomial ring over k in infinitely many variables. Thus SpecA is not Noetherian.

In Proposition
nflR=B
5.23, we establish that the non-flat loci of the inclusion maps

into R∗[1/x] are the same for the two rings S := R[τ ] and B of Inclusion Construc-
tion

4.4.1
5.3.
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nflR=B Proposition 5.23. Assume the notation of Inclusion Construction
4.4.1
5.3. Then

the non-flat locus of the extension α : S := R[τ ] ↪→ R∗[1/x] equals the non-flat
locus of the extension β : B ↪→ R∗[1/x]. It follows that the non-flat locus of the
map α is defined by an ideal of R∗[1/x] if and only if the non-flat locus of the map
β is defined by the same ideal of R∗[1/x].

Proof. By Definition
nfldef
2.40, it suffices to show for each Q∗ ∈ Spec(R∗[1/x])

that:

αQ∗ : S ↪→ R∗[1/x]Q∗ is flat ⇐⇒ βQ∗ : B ↪→ R∗[1/x]Q∗ is flat.

By Remarks
remflat
2.37.

floc
1,

αQ∗ is flat ⇐⇒ SQ∗∩S ↪→ R∗[1/x]Q∗ is flat.

Similarly,
βQ∗ is flat ⇐⇒ BQ∗∩B ↪→ R∗[1/x]Q∗ is flat.

By Construction Properties Theorem
11.2.51
5.14.

Rt1/z
4.b, SQ∗∩S = BQ∗∩B . This completes

the proof. □

In many of the examples constructed in this book, the ring R is a polynomial
ring (or a localized polynomial ring) in finitely many variables over a field; such
rings are UFDs. We observe in Theorem

Bufd
5.24 that the constructed ring B is a UFD

if R is a UFD and x is a prime element of R.

Bufd Theorem 5.24. With the notation of Construction Properties Theorem
11.2.51
5.14:

(1) If R is a UFD and x is a prime element of R, then xU and xB are
principal prime ideals of U and B respectively, and U and B are UFDs.

(2) If R is a regular Noetherian UFD, then B[1/x] is also a regular Noetherian
UFD.

Proof. By Proposition
11.2.52
5.17.2, parts a and b, xU and xB are prime ideals.

Since R is a UFD and R[τ ] is a polynomial ring over R, it follows that R[τ ] is a
UFD. By Theorem

11.2.51
5.14.2, the rings U [1/x] and B[1/x] are localizations of R[τ ] and

thus are UFDs; moreover B[1/x] is regular if R is regular. It suffices to prove U is a
UFD for the remaining assertion, since B is a localization of U . By Theorem

11.2.51
5.14.4,

the x-adic completion of U is R∗. By Proposition
11.2.52
5.17.1, x is in the Jacobson radical

of R∗. Since R∗ is Noetherian,
⋂∞
n=1 x

nR∗ = (0). Thus
⋂∞
n=1 x

nU = (0). It follows
that UxU is a DVR

N2
[138, (31.5)].

By Fact
Intdomint
2.28, the ring U = U [1/x]∩UxU . Therefore U is a Krull domain. Since

U [1/x] is a UFD and U is a Krull domain, Theorem
krullufd
2.27 implies that U is a UFD.

Then also B is a UFD and the proof is complete. □

Exercises
bplocu (1) If R is a subring of an integral domain B, P ∈ SpecB, S is a multiplicatively

closed subset of R, and BP = S−1R, prove that RP∩R = BP .
Suggestion: Observe that every element of S is a unit of BP .

Nzadicex (2) Let x be a nonzero nonunit of a Noetherian integral domain R, let y be an
indeterminate, and let R∗ = R[[y]]

(x−y)R[[y]] be the x-adic completion of R.
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(i) If x = ab, where a, b ∈ R are nonunits such that aR + bR = R, prove that
there exists a factorization

x− y = (a+ a1y + · · · ) · (b+ b1y + · · · ) = (

∞∑
i=0

aiy
i) · (

∞∑
i=0

biy
i),

where the ai, bi ∈ R, a0 = a and b0 = b.
(ii) If R is a principal ideal domain (PID), prove that R∗ is an integral domain

if and only if xR has prime radical.
znA (3) Let A be an integral domain with field of fractions F . Let C be an extension

ring of A such that every nonzero element of A is a regular element of C. If
A = C ∩ F , prove that xA = xC ∩ F , for every x ∈ A.

lem2.3ex (4) Let x be a nonzero nonunit of a Noetherian local domain R and let R∗ denote
the x-adic completion of R. Assume that L is a subfield of the total quotient
ring of R∗ with R ⊂ L, and let A := L ∩R∗. Prove:
(a) For each n ∈ N, xnA = xnR∗ ∩A and R/xnR ∼= A/xnA ∼= R∗/xnR∗.
(b) R∗ is the completion of A in the xA-adic topology on A.
(c) If R is one-dimensional, then A is Noetherian local and one-dimensional.
Suggestion: For the second part of item a, consider the composition map
A ↪→ R∗ → R∗/xnR∗.

R4211ex (5) Prove item 2 of Remark
4.211
5.16, that is, with R a polynomial ring k[x] over

a field k and R∗ = k[[x]] the x-adic completion of R, show that, with the
notation of Construction

4.4.1
5.3, the ring B =

⋃∞
n=0 Cn, where Cn = (Un)Pn and

Pn := (x, τ1n, . . . , τsn)Un. Conclude that B is a DVR that is the directed union
of a birational family of localized polynomial rings in n+ 1 indeterminates.



CHAPTER 6

Flatness and the Noetherian propertynoeflic

This chapter includes Noetherian Flatness Theorem
11.3.25
6.3. Theorem

11.3.25
6.3 is fun-

damental for determining if a constructed ring B is Noetherian. The ring B of
Inclusion Construction

4.4.1
5.3 is Noetherian if and only if a certain map is flat. To

describe this precisely, we formulate as Theorem
11.1.1
6.1 the following implication of

Theorem
11.3.25
6.3. Theorem

11.3.25
6.3 is proved in Section

11.3
6.1.

11.1.1 Theorem 6.1. Let R be a Noetherian integral domain with field of fractions K.
Let x be a nonzero nonunit of R and let R∗ denote the x-adic completion of R. Let
τ1, . . . , τs ∈ xR∗ be algebraically independent elements over K such that the field
K(τ1, . . . , τs) is a subring of the total quotient ring of R∗. As in Equations

4.2.3
5.4.4,4.2.3

5.4.5 and
4.2.3
5.4.6, define

Un := R[τ1n, . . . , τsn], U :=

∞⋃
n=1

Un, and B := (1 + xU)−1U.

Then B is Noetherian if and only the extension R[τ1, . . . τs] ↪→ R∗[1/x] is flat.

The crucial Lemma
11.3.1
6.2 relates flatness and the Noetherian property. Local

Flatness Theorem
Noeth2
6.13 gives conditions on prime ideals P of the ring B in order

that BP is Noetherian.
In Section

introIns
6.2, motivated by Noetherian Flatness Theorem

11.3.25
6.3, we examine the

embedding ψ : U0 ↪→ R∗[1/x] and seek necessary and sufficient conditions for ψ to
be flat. Theorem

InsIncThm
6.17 gives a sufficient condition for ψ to be flat. The “Insider

Construction” combines Local Prototype
prodef
4.28 with Inclusion Construction

4.4.1
5.3.

In Sections
16.1gn
6.3 and

16.1ng
6.4, we apply Theorem

11.3.25
6.3 and Theorem

InsIncThm
6.17 to show that

Nagata’s Example
4.3.1
4.15 and Christel’s Example

4.3.3
4.17 are Noetherian.

6.1. The Noetherian Flatness Theorem
11.3

Lemma
11.3.1
6.2 is used in the proof of Noetherian Flatness Theorem

11.3.25
6.3. We thank

Roger Wiegand for observing Lemma
11.3.1
6.2 and its proof.

11.3.1 Lemma 6.2. Let S be a subring of a ring T and let x ∈ S be a regular element
of T . Assume that xS = xT ∩ S and S/xS = T/xT . Then

(1) T [1/x] is flat over S ⇐⇒ T is flat over S.
(2) If T is flat over S, then D := (1 + xS)−1T is faithfully flat over C :=

(1 + xS)−1S.
(3) If T is Noetherian and T is flat over S, then C = (1 + xS)−1S is Noe-

therian.
(4) If T and S[1/x] are both Noetherian and T is flat over S, then S is

Noetherian.

73
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Proof. For item 1, if T is flat over S, then, by transitivity of flatness, Re-
mark

remflat
2.37.

flfl
13, the ring T [1/x] is flat over S. For the converse, Lemma

11.2.3ic
5.12 implies

that S = S[1/x]∩T and T [1/x] = S[1/x]+T . Thus the following sequence is exact.

0→ S = S[1/x] ∩ T α−−−−→ S[1/x]⊕ T β−−−−→ T [1/x] = S[1/x] + T → 0,

where α(b) = (b,−b) for all b ∈ S and β(c, d) = c + d for all c ∈ S[1/x], d ∈ T .
Since the two end terms are flat S-modules, the middle term S[1/x] ⊕ T is also
S-flat by Remark

remflat
2.37.

flses
12. By Definition

flat
2.36, a direct summand of a flat S-module

is S-flat. Hence T is S-flat .
For item 2, since the map S → T is flat, the embedding

C = (1 + xS)−1S ↪→ (1 + xS)−1T = D

is flat. Since C/xC = S/xS = T/xT = D/xD and xC is in the Jacobson radical
of C, each maximal ideal of C is contained in a maximal ideal of D, and so D is
faithfully flat over C. This establishes item 2.

If T is Noetherian, then D is Noetherian. Since D is faithfully flat over C, it
follows that C is Noetherian by Remark

remflat
2.37.

ffNN
8, and thus item 3 holds.

For item 4, let J be an ideal of S. By item 3, C is Noetherian, and by hypothesis
S[1/x] is Noetherian. Thus there exists a finitely generated ideal J0 ⊆ J such that
J0S[1/x] = JS[1/x] and J0C = JC. To show J0 = J , it suffices to show for
each maximal ideal m of S that J0Sm = JSm. If x 6∈ m, then Sm is a localization
of S[1/x], and so J0Sm = JSm, while if x ∈ m, then Sm is a localization of C,
and so JSm = J0Sm. Therefore J = J0 is finitely generated. It follows that S is
Noetherian. □

11.3.25 Noetherian Flatness Theorem 6.3. (Inclusion Version) As in Setting
setinclconstr
5.1,

assume that R is an integral domain with field of fractions K, x ∈ R is a nonzero
nonunit,

⋂
n∈N x

nR = (0), and the x-adic completion R∗ of R is a Noetherian ring.
Let τ1, . . . , τs ∈ xR∗ be algebraically independent elements over K such that the field
K(τ1, . . . , τs) is a subring of the total quotient ring of R∗. As in Equations

4.2.3
5.4.4,4.2.3

5.4.5 and
4.2.3
5.4.6 of Notation

4.2.3
5.4, define

Un := R[τ1n, . . . , τsn], U :=

∞⋃
n=1

Un, Bn := (1 + xUn)
−1Un,

A := K(τ1, . . . , τs) ∩ R∗, and B :=

∞⋃
n=1

Bn = (1 + xU)−1U.

Then:
(1) The following statements are equivalent:

(a) The extension ψ : U0 := R[τ1, . . . τs] ↪→ R∗[1/x] is flat.
(a′) The extension ψ′ : B ↪→ R∗[1/x] is flat.
(b) The ring B is Noetherian.
(c) The extension B ↪→ R∗ is faithfully flat.
(d) The ring A is Noetherian and A = B.
(e) The ring A is Noetherian, and A is a localization of a subring of

U0[1/x] = U [1/x].
(2) The equivalent conditions of item 1 imply the map R ↪→ R∗ is flat.
(3) If x is an element of the Jacobson radical J (R) of R, e.g. if R is a local

domain, the equivalent conditions of item 1 imply that R is Noetherian.
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(4) If R is assumed to be Noetherian, then items a-e are equivalent to the ring
U being Noetherian.

Proof. For item 1, (a) =⇒ (a′) =⇒ (b), if ψ : U0 = R[τ1, . . . , τs] ↪→
R∗[1/x] is flat, then U [1/x] = U0[1/x] = R[τ1, . . . , τs][1/x] ↪→ R∗[1/x] is flat, and
so U ↪→ R∗[1/x] is flat. Since B is a localization of U formed by inverting elements
of (1+xU), it follows that B ↪→ R∗[1/x] is flat, that is, (a′) holds. By Lemma

11.3.1
6.2.3

with S = U and T = R∗, the ring B is Noetherian.
For (b) =⇒ (c), since B is Noetherian, the extension B∗ = R∗ is flat over B

by Remark
3.38.0
3.3.

N*fl
2. By Proposition

11.2.52
5.17.

zJB
1, the element x ∈ J (B). Thus B∗ = R∗ is

faithfully flat over B by Remark
3.38.0
3.3.

N*Jff
4.

For (c) =⇒ (d), assume B∗ = R∗ is faithfully flat over B. Then

B = Q(B) ∩R∗ = Q(A) ∩R∗ = K(τ1, . . . , τs) ∩R∗ = A,

by Remark
remflat
2.37.

ffint
9, and so A = B is Noetherian.

For (d) =⇒ (e), since B = A, the ring A is a localization of U , and U is a
subring of R[τ1, . . . , τs][1/x] = U0[1/x].

For (e) =⇒ (a), since A is a localization of a subring D of R[τ1, . . . , τs][1/x], it
follows that A := Γ−1D, where Γ is a multiplicatively closed subset of D. Now

R[τ1, . . . , τs] ⊆ A = Γ−1D ⊆ Γ−1R[τ1, . . . , τs][1/x] ⊆ Γ−1A[1/x] = A[1/x],

and so A[1/x] is a localization of R[τ1, . . . , τs]. That is, to obtain A[1/x] we localize
R[τ1, . . . , τs] by the elements of Γ and then localize by the powers of x. Since A is
Noetherian, A ↪→ A∗ = R∗ is flat by Remark

3.38.0
3.3.

N*fl
2. Thus A[1/x] ↪→ R∗[1/x] is flat.

Since A[1/x] is a localization of R[τ1, . . . , τs], it follows that R[τ1, . . . , τs] ↪→ R∗[1/x]
is flat. This completes the proof of item 1.

For item 2, since U0 is flat over R, condition a of item 1 implies that R∗[1/x]
is flat over R. By Lemma

11.3.1
6.2.1 with S = R and T = R∗, if R ↪→ R∗[1/x] is flat,

then R ↪→ R∗ is flat.
For item 3, assume the equivalent conditions of item 1 hold and x ∈ J (R).

The extension R ↪→ R∗ is flat by item 2. If P is a maximal ideal of R, then x ∈ P
and R/xR = R∗/xR∗. Hence PR∗ 6= R∗. Therefore R ↪→ R∗ is faithfully flat. By
Remark

remflat
2.37.

ffNN
8, R is Noetherian.

For item 4, assume the equivalent conditions of item 1 hold and R is Noetherian;
then U0[1/x] = U [1/x] is Noetherian. The composite embedding

U ↪→ B = A ↪→ B∗ = A∗ = R∗

is flat because B is a localization of U and B∗ = R∗ is faithfully flat over B. By
Lemma

11.2.3ic
5.12, parts 1 and 4, with S = U and T = R∗, it follows that U is Noetherian.

If U is Noetherian, then the localization B of U is Noetherian, and so condition b
holds. This completes the proof of Theorem

11.3.25
6.3. □

In later chapters, it is useful to have a name for the constructed domain of
Inclusion Construction

4.4.1
5.3 for the situation where the Intersection Domain and

the Approximation Domain are equal and Noetherian, that is, the conditions of
Theorem

11.3.25
6.3.1 hold. The terminology “Noetherian Limit Intersection Domain” of

Definition
NLIDdef
6.4 is an extension of the concept of “limit-intersecting” elements in Defi-

nition
4.2li
5.10, for the situation where the Intersection Domain and the Approximation

Domain are equal, but not necessarily Noetherian.
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NLIDdef Definition 6.4. Assume the notation of Noetherian Flatness Theorem
11.3.25
6.3. If

condition 1.d holds, that is, the Approximation Domain B equals the Intersection
Domain A and is Noetherian, then B = A is called a Noetherian Limit Intersection
Domain.

NLIDdefr Remark 6.5. By Theorem
11.3.25
6.3, B is a Noetherian Limit Intersection Domain

if and only if the extension R[τ1, . . . , τs] ↪→ R∗[1/x] is flat. Thus it follows that a
Local Prototype D as in Definition

prodef
4.28 is a Noetherian Limit Intersection Domain.

nftcor Corollary 6.6. Assume notation as as in Noetherian Flatness Theorem
11.3.25
6.3.

If dimR∗ = 1, then B = A is a Noetherian Limit Intersection Domain.
Proof. We show the map ψ : R[τ1, . . . , τs] ↪→ R∗[1/x] is flat. Since dimR∗ = 1

and x is a regular element in R∗ with x ∈ J (R∗), it follows that dimR∗[1/x] = 0.
Hence R∗[1/x] is the total quotient ring of R∗, and the map ψ factors as the com-
position of the inclusion maps R[τ1, . . . , τs] ↪→ K(τ1, . . . , τs) ↪→ R∗[1/x]. Modules
over a field are free and hence flat, and compositions of flat maps are flat by Re-
marks

remflat
2.37, parts

flelt
2 and

flfl
13. Hence the map ψ is flat. By Theorem

11.3.25
6.3.1, the result

holds. □
In the setting of Theorem

11.3.25
6.3, if dimR∗ = 2, Example

Rondex
6.7 shows the Approx-

imation Domain B may not equal the Intersection Domain A; that is B is not a
Noetherian Limit Intersection Domain for the construction in Example

Rondex
6.7. Thus,

by Noetherian Flatness Theorem
11.3.25
6.3.1, ψ′ : B ↪→ R∗[1/x] is not flat and B is non-

Noetherian.1 We are motivated to give Example
Rondex
6.7 by a question of Guillaume

Rond, who has been studying constructions similar to Inclusion Construction
4.4.1
5.3.

Rondex Example 6.7. Let R := C[[t]][x], where C is the complex numbers and t and
x are variables. Then the x-adic completion of R is R∗ = C[[t, x]]. Let

τ :=

∞∑
k=1

fk(t)x
k ∈ C[[t, x]] and c :=

∞∑
k=1

fk(t)t
k ∈ R,

where each fk(t) is a power series in C[[t]] and τ is a power series in C[[t, x]] that
is not algebraic over R. Then τ − c =

∑∞
k=1 fk(t)(x

k − tk) ∈ R[τ ], and

θ : =
τ − c
x− t

∈ A : = Q(C[[t]][x, τ ]) ∩ C[[t, x]].

By Theorem
4.1.2
4.9, A is a two-dimensional regular local ring. By Theorem

11.2.51
5.14.

Rt1/z
4,

B[1/x] is a localization of U0 = C[[t]][x, τ ]. We show the element θ is not in B, and
so B ( A. Suppose that θ is an element of B. Then

τ − c ∈ (x− t)B ∩ U = (x− t)U,
since (x− t)B ⊆ (x, t)B = mB and UmB∩U = B. Also

U ⊂ U [1/x] = R[τ ][1/x] ⊂ R[τ ](x−t)R[τ ].

The last inclusion follows because x /∈ (x− t)R[τ ]. Therefore
τ − c ∈ (x− t)R[τ ](x−t)R[τ ] ∩ R[τ ] = (x− t)R[τ ].

This contradicts the fact that τ − c is algebraically independent over R, and U0 =
R[τ ] is a polynomial ring over R in τ . Thus θ /∈ B[1/x], and so θ /∈ B. Therefore
A 6= B and by Theorem

11.3.25
6.3.1, B is not Noetherian.

1Example
4.7.13
12.7 describes another example where B is not Noetherian and B ( A.
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Corollary
nftflp
6.8.3 gives a simplified flatness property for Local Prototypes.

nftflp Corollary 6.8. Let R = k[x, y1, . . . , yr](x,y1,...,yr), where x, y1, . . . , yr are vari-
ables over a field k, let R∗ = k[y1, . . . , yr](y1,...,yr)[[x]] denote the x-adic completion
of R and let τ1, . . . , τs be elements of xR∗ that are algebraically independent over
R. Then:

(1) The ring B of Noetherian Flatness Theorem
11.3.25
6.3 may or may not be Noe-

therian, and is equal to the following directed union:

B =

∞⋃
n=0

k[x, y1, . . . , yr, τ1n, . . . , τsn](x,y1,...,yr,τ1n,...,τsn),

where τin is the nth-endpiece of τi for each i with 1 ≤ i ≤ s.
(2) The ring B is a Noetherian Limit Intersection Domain if and only if the

map
ψ′ : U ′0 := k[x, y1, . . . , yr, τ1, . . . , τs] ↪→ R∗[1/x]

is flat.
(3) If τ1, . . . , τs are elements of xk[[x]] and V = k(x, τ1, . . . , τs) ∩ k[[x]], then

(a) The ring D = V [y1, . . . , yr](x,y1,...,yr) is the Local Prototype of Defi-
nition

prodef
4.28, and

(b) The maps ψ : R[τ1, . . . , τs] ↪→ R∗[1/x] and ψ′ : U ′0 ↪→ R∗[1/x] are
flat.

Proof. Item 1 is Remark
4.211
5.16.3. For item 2, the map ψ′ is the composition

U ′0 ↪→ U0
ψ
↪→ R∗[1/x],

and U ′0 ↪→ U0 is flat by
remflat
2.37.

locfl
4. Thus flatness of U0 ↪→ R∗[1/x] implies ψ′ is flat, by

Remark
remflat
2.37.

flfl
13. If ψ′ is flat, then U0 ↪→ R∗[1/x] is flat by Remark

remflat
2.37.

floc
1, and so

item 2 holds.
For item 3, by Remark

proincl
4.29.1, the ring D = Q(R)(τ1, . . . , τs) ∩R∗. That is, D

is the Intersection Domain of Inclusion Construction
4.4.1
5.3 for R with respect to the

τi. Thus Noetherian Flatness Theorem
11.3.25
6.3 applies. By Proposition

proprop
4.27, D equals

its Approximation Domain, given in item 1. Since D is an RLR, the equivalent
conditions of item 1 of Theorem

11.3.25
6.3 hold, and so the map ψ is flat. Equivalently,

by item 2, the map ψ′ is flat. □

heitprf Remark 6.9. The original proof given for Noetherian Flatness Theorem
11.3.25
6.3 innoehom

[78] is an adaptation of a proof given by Heitmann in
H1
[96, page 126]. Heitmann

considers the case where there is one transcendental element τ and defines the
corresponding extension U to be a simple PS-extension of R for x. Heitmann
proves in this case that a certain monomorphism condition on a sequence of maps
is equivalent to U being Noetherian

H1
[96, Theorem 1.4].

11.3.26 Remark 6.10. Examples where A = B and A is not Noetherian show that it
is possible for A to be a localization of U and yet for A, and therefore also U , to
fail to be Noetherian, even if R is Noetherian; see Example

16.5.4de
16.4 and Theorem

16.5.4t
16.6.

Thus the equivalent conditions of Noetherian Flatness Theorem
11.3.25
6.3 are not implied

by the property that A is a localization of U .
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The following diagram displays the situation concerning possible implications
among certain statements for Inclusion Construction

4.4.1
5.3 and the approximations

in Section
4.45
5.2:

R∗[1/x] is flat over U0 = R[τ ] B Noetherian

A is a localization of U A Noetherian

nftloc Remarks 6.11. Let R, x ∈ R, τ = {τ1, . . . , τs} and ψ : R[τ ] ↪→ R∗[1/x] be as
in Inclusion Construction

4.4.1
5.3 and Noetherian Flatness Theorem

11.3.25
6.3.

(1) It is sometimes difficult to determine whether the map ψ is flat. One
helpful fact is given in Remark

remflat
2.37.

flgd
10: If there exists a prime ideal P of

R∗[1/x] such that htP < ht(P ∩ R[τ ]), then R[τ ] ↪→ R∗[1/x] is not flat,
and hence U is not Noetherian.

(2) Assume that the equivalent conditions of item 1 of Theorem
11.3.25
6.3 hold. Let

∆ be a multiplicatively closed subset of R and let R′ := ∆−1R. Assume
that xR = R ∩ xR′, and consider the following diagram:

R∗ −−−−→ ∆−1R∗ −−−−→ (∆−1R∗)∗x x x
R −−−−→ ∆−1R = R′ −−−−→ (R′)∗,

where (∆−1R∗)∗ is the (x∆−1R∗)-adic completion of ∆−1R∗, and (R′)∗

is the (xR′)-adic completion of R′. It follows from the diagram that the
τi =

∑
aijx

j can be considered as elements of (R′)∗ and, for each i and
n, the nth-endpiece τin of τi is the same in (R′)∗.

Let B be the Approximation Domain associated to R and the τi and
and B′ be the Approximation Domain associated to R′ and the τi. Then
B′ = ∆−1B. To see this, as in Theorem

11.3.25
6.3, Un = R[τ1n, . . . , τsn] and

Bn = (1 + xUn)
−1Un. Similarly

B′n := (1 + xU ′n)
−1U ′n,

where U ′n := R′[τ1n, . . . , τsn] = (∆−1R)[τ1n, . . . , τsn] = ∆−1Un. Then
xUn = Un ∩ xU ′n, and so
B′n = (1 + x∆−1Un)

−1∆−1Un = ∆−1(1 + xUn)
−1Un = ∆−1Bn,

since doing these two localizations yields the same result in the reverse
order. Therefore B′ =

⋃∞
n=1B

′
n = ∆−1B.

Since B = A is Noetherian, B′ is Noetherian. Hence the equivalent
conditions of item 1 of Theorem

11.3.25
6.3 hold for the construction over R′.

(3) In certain cases the non-flat locus of ψ : R[τ ] ↪→ R∗[1/x] is closed. This is
true for the cases considered in Corollary

nftflp
6.8. But it is unclear that this

holds in general.

bpnoethq Question 6.12. If the Approximation Domain B of Noetherian Flatness The-
orem

11.3.25
6.3 is not Noetherian, for which prime ideals P of B is BP Noetherian?
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The first part of Local Flatness Theorem
Noeth2
6.13 answers Question

bpnoethq
6.12 for the

prime ideals P of B with x ∈ P . If the non-flat locus of the map ψ of Theorem
11.3.25
6.3

is defined by an ideal of R∗[1/x], then a more complete answer is given in Local
Flatness Theorem

Noeth2
6.13.2. Remark

Noeth2r
6.14 applies if R is Noetherian and x /∈ P .

Noeth2 Local Flatness Theorem 6.13. Assume the notation of Noetherian Flat-
ness Theorem

11.3.25
6.3, and let P be a prime ideal of B such that x ∈ P . Then

(1) The following statements are equivalent:
(a) ψPR∗ : R[τ ] ↪→ R∗PR∗ [1/x] is flat.
(b) BP ↪→ R∗PR∗ is faithfully flat.
(c) BP is Noetherian.

(2) Assume that there exists an ideal F of R∗ such that FR∗[1/x] defines the
non-flat locus of the map ψ : R[τ ] ↪→ R∗[1/x]. If ψ is flat, set F = R∗.
Then the equivalent conditions in item d are each equivalent to statements
a-c of part 1:
(d) (F, x)R∗ ∩ R * P ; equivalently, (F, x)R∗ ∩ B * P ; equivalently,

(F, x)R∗ * PR∗; equivalently, (F, x)R∗ ∩R * P ∩R.

Proof. Let p = P ∩R. By Construction Properties Theorem
11.2.51
5.14.

Rmodzn
2,

(
Noeth2
6.13.1) R/xR = B/xB = R∗/xR∗,

and so P = pB and PR∗ = pR∗ is a prime ideal of R∗.
For part 1 of Theorem

Noeth2
6.13, Noetherian Flatness Theorem

11.3.25
6.3.1 implies that the

statement BpB = BP is Noetherian is equivalent to each of the following conditions:
(i) the map BpB ↪→ (Rp)

∗ is faithfully flat, and
(ii) the map Rp[τ ] ↪→ (Rp)

∗[1/x] is flat.
By Remark

3.38.0
3.3.

R*P**
6, the completion (Rp)

∗ of Rp in the xRp-adic topology is also the
completion of R∗pR∗ in the xR∗pR∗ -adic topology. Hence the canonical maps

Rp ↪→ R∗pR∗
θ
↪→ (Rp)

∗

are faithfully flat. Since the map θ is faithfully flat, condition i is equivalent to
faithful flatness of the map BP = BpB ↪→ R∗pR∗ = R∗PR∗ , that is, statement b. Also
condition ii is equivalent to flatness of the map Rp[τ ] ↪→ R∗pR∗ [1/x] or, equivalently,
to flatness of the map ψPR∗ : R[τ ] ↪→ R∗PR∗ [1/x]. Thus statements a,b, and c are
equivalent.

For part 2, Equation
Noeth2
6.13.1 implies ((F, x)R∗ ∩R)B = (F, x)R∗ ∩B and also

(F, x)R∗ ⊆ PR∗ ⇐⇒ ((F, x)R∗ ∩R)B ⊆ P ⇐⇒ (F, x)R∗ ∩R ⊆ p,

since x ∈ p. Thus the four conditions of item d are equivalent. In addition

(
Noeth2
6.13.2) F ⊆ PR∗ ⇐⇒ (F, x)R∗ ⊆ PR∗.

If xn ∈ F , for some n ∈ N, then FR∗[1/x] = R∗[1/x], and so ψ is flat. Then
F = R∗, by assumption. Also statement a holds and (F, x)R∗ * PR∗. Thus part
2 holds in the case xn ∈ F .

Assume xn /∈ F for all n ∈ N. To show, as in part 2, that the conditions of
item d are equivalent to the statements of part 1 of Theorem

Noeth2
6.13, first assume

(F, x)R∗ ⊆ PR∗, and show statement a fails. Since x ∈ PR∗ \ F , F is properly
contained in PR∗. Let q be an ideal of R∗ such that F ⊆ q ⊆ PR∗ and q is maximal
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with q ∩ {xn | n ∈ N} = ∅. Then q is a prime ideal properly contained in PR∗ and
the map

ψq : R[τ ] ↪→ R∗[1/x]qR∗[1/x] = R∗q

is not flat. Since R∗q is a localization of R∗PR∗ [1/x], the map ψPR∗ is not flat. This
shows statement a =⇒ the conditions of item d.

For the other direction, assume the condition (F, x)R∗ * PR∗ from item d. To
show statement a, that ψPR∗ : R[τ ] ↪→ R∗PR∗ [1/x] is flat, let Q1 ∈ Spec(R∗PR∗ [1/x]).
Then Q1 = QR∗PR∗ [1/x], where Q ∈ SpecR∗, Q ⊆ PR∗, and x /∈ Q. Let ψQ denote
the map R[τ ] ↪→ R∗Q, and let ψQ1 denote the map R[τ ] ↪→ (R∗PR∗ [1/x])Q1 . Since
(R∗PR∗ [1/x])Q1

= R∗Q, the map ψQ1
= ψQ. By Equation

Noeth2
6.13.2, there exists an

element h ∈ F \ PR∗, and h /∈ PR∗ implies h /∈ Q. Therefore the non-flat locus
FR∗[1/x] * QR∗[1/x], and so ψQ = ψQ1

is flat. This holds for every prime ideal
Q1 of R∗PR∗ [1/x]. It follows that ψPR∗ : R[τ ] ↪→ R∗PR∗ [1/x] is flat. This completes
the proof of Theorem

Noeth2
6.13. □

Noeth2r Remark 6.14. Assume the notation of Noetherian Flatness Theorem
11.3.25
6.3, and

assume that R is Noetherian. Then BP is Noetherian for every prime ideal P such
that x /∈ P . This follows because BP is a localization of B[1/x], and B[1/x] is
Noetherian by Corollary

11.2.51c
5.15.

By Proposition
nflR=B
5.23, the non-flat locus of the map ψ : R[τ ] ↪→ R∗[1/x] is the

same as the non-flat locus of the map ϕ : B ↪→ R∗[1/x]. If the non-flat locus of ψ,
or, equivalently, of ϕ is closed, then Theorem

Noeth
6.15 implies that certain homomorphic

images of B are Noetherian.

Noeth Theorem 6.15. Let R be a Noetherian integral domain, let x ∈ R be a nonzero
nonunit, and let R∗ denote the x-adic completion of R. Let τ = {τ1, . . . , τs} be a
set of elements of R∗ that are algebraically independent over R, and are such that
the field K(τ1, . . . , τs) is a subring of the total quotient ring of R∗. Let B be the
Approximation Domain associated to τ as in Definition

appintdef
5.7. Assume there exists

an ideal F of R∗[1/x] that defines the non-flat locus of the map ϕ : B → R∗[1/x].
Let I be an ideal of B such that IR∗ ∩B = I and x is regular on R∗/IR∗.

(1) If IR∗[1/x] + F = R∗[1/x], then the tensor product map below is flat:

ϕ⊗B (B/I) : B/I ∼= B ⊗B (B/I)→ R∗[1/x]⊗B (B/I) ∼= R∗[1/x]/IR∗[1/x].

(2) If R∗[1/x]/IR∗[1/x] is flat over B/I, then R∗/IR∗ is flat over B/I.
(3) If IR∗[1/x] + F = R∗[1/x], then B/I is Noetherian.

Proof. For item 1, ϕP is flat for each P ∈ SpecR∗[1/x] with I ⊆ P by
hypothesis. Hence for each such P we have ϕP ⊗B (B/I) is flat. Since flatness is a
local property, it follows that ϕ⊗B (B/I) is flat.

For items 2 and 3, apply Lemma
11.3.1
6.2 with S = B/I and T = R∗/IR∗; the

element x of Lemma
11.3.1
6.2 is the image in B/I of the element x. Since IR∗ ∩B = I,

the ring B/I embeds into R∗/IR∗. Since B/xB = R∗/xR∗, we have

R∗/(I, x)R∗ = B/(I, x)B and x(R∗/IR∗) ∩ (B/I) = x(B/I).

Item 2 of Theorem
Noeth
6.15 follows from item 1 of Lemma

11.3.1
6.2. Item 3 of Theorem

Noeth
6.15

follows from item 2 of Theorem
Noeth
6.15 and item 4 of Lemma

11.3.1
6.2. □



6.2. INTRODUCTION TO INSIDER CONSTRUCTION
16.1.1
10.7 81

6.2. Introduction to Insider Construction
16.1.1
10.7introIns

In this section we demonstrate that Inclusion Construction
4.4.1
5.3 can be used to

construct a variety of examples that are contained inside a Local Prototype domain.
The technique we use is called “Insider Inclusion Construction”, or more briefly, the
“Insider Construction”. Basically we use Inclusion Construction

4.4.1
5.3 twice: First we

use it to build a more standard simple “Prototype” example using some variables
τi, then we iterate the procedure using variables fj which are polynomials in the
τi. This technique is defined formally in Insider Construction

16.1.1
10.7.

We present in this chapter several examples using the Insider Construction,
including two classical examples of Nagata and Rotthaus. The Insider Construction
simplifies the verification of flatness for the maps associated to examples constructed
using Inclusion Construction

4.4.1
5.3.

For the examples considered in this chapter, we use Setting
InsIncSet
6.16:

InsIncSet Setting 6.16. Let k be a field, let s ∈ N and r ∈ N0, let x, y1, . . . yr be variables
over k, and let R = k[x, y1, . . . , yr](x,y1,...,yr) be the localized polynomial ring in
these variables. Let the elements τ1, . . . , τs ∈ xk[[x]] be algebraically independent
over k(x). As in Corollary

nftflp
6.8.3, the ring R is the base ring of a Local Prototype

domain D = V [x, y1, . . . , yr](x,y1,...,yr), where V = k(x, y1, . . . , yr) ∩ k[[x]], and the
map

ψ : R[τ1, . . . , τs] ↪→ R∗[1/x]

is flat. We construct two “insider” integral domains A and B inside the Local
Prototype D, where A is an Intersection Domain as in Construction

4.4.1
5.3, and B is

an integral domain that “approximates” A as in Section
4.45
5.2.

Let f ∈ R[τ1, . . . , τs] ⊆ R∗ be transcendental over Q(R) = k(x, y1, . . . , yr).
As in Inclusion Construction

4.4.1
5.3, let A = Q(R)(f) ∩ R∗. Define endpieces fn

as in Equation
4.2.3
5.4.1 of Notation

4.2.3
5.4, and define the Approximation Domain B

associated with f , as in Equation
4.2.3
5.4.5 and Noetherian Flatness Theorem

11.3.25
6.3. By

Corollary
nftflp
6.8.1, B is a directed union

B =

∞⋃
n=1

R[fn](m,fn),

where m is the maximal ideal of R. Let S = R[f ] and let T = R[τ1, . . . , τs].

As we describe in Theorem
InsIncThm
6.17, the condition that the insider Approximation

Domain B is Noetherian is related to flatness of the extension S ↪→ T , an extension
of polynomial subrings of R∗. We apply Theorem

InsIncThm
6.17 to conclude that Nagata’s

Example
4.3.1
4.15 and Christel’s Example

4.3.3
4.17 are Noetherian.

InsIncThm Theorem 6.17. In the notation of Setting
InsIncSet
6.16, if the extension

S := R[f ]
φ
↪→ T := R[τ1, . . . , τs]

is flat, then B is Noetherian and A equals B. Hence A is Noetherian.

Proof. By Corollary
nftflp
6.8 the map ψ : T ↪→ R∗[1/x] is flat. By hypothesis,

ϕ : S := R[f ] ↪→ R[τ1, . . . , τs] is flat.
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R∗[1/x]

R ↪→ S = R[f ] T = R[τ1, . . . , τs]

ψ

α:=ψφ(
16.1.1g
6.18.1)

φ

Since the composition of flat maps is again flat (Remark
remflat
2.37.

flfl
13), we conclude

that α : S ↪→ R∗[1/x] is flat. By Noetherian Flatness Theorem
11.3.25
6.3, we have that

A = B, as desired. □

This idea is the basis for Insider Construction
16.1.1
10.7. The same argument goes

through for several elements f1, . . . , ft ∈ T that are algebraically independent over
Q(R). Moreover, non-flatness of the extension ϕ sometimes implies non-flatness of
the extension U0 ↪→ R∗[1/x]; see Theorem

16.3.2
10.9. In Corollary

16.2.4p
7.7 we show ϕ : S ↪→ T

is flat if and only if htQ ≥ ht(Q ∩ S) for every Q ∈ SpecT .

6.3. Nagata’s example
16.1gn

In Proposition
16.1n
6.19 we use Theorem

InsIncThm
6.17 to prove that Nagata’s Example

4.3.1
4.15

is Noetherian.

16.1.1g Setting 6.18. Let k be a field, let x and y be indeterminates over k, and set

R : = k[x, y](x,y) and R∗ : = k[y](y)[[x]].

The power series ring R∗ is the xR-adic completion of R. Let τ ∈ xk[[x]] be a
transcendental element over k(x). Since R∗ is an integral domain, every nonzero
element of the polynomial ring R[τ ] is a regular element of R∗. Thus the field
k(x, y, τ) is a subfield of Q(R∗). The Local Prototype domain D corresponding to
τ is D := k(x, y, τ) ∩ R∗, as in Definition

prodef
4.28. By Proposition

proprop
4.27, D is a two-

dimensional regular local domain and is a directed union of localized polynomial
rings in three variables over the field k.

Let f be a polynomial in R[τ ] that is algebraically independent over Q(R), for
example, f = (y + τ)2, as in Nagata’s example. Let A := Q(R[f ]) ∩ R∗ be the
Intersection Domain corresponding to f . Since R[f ] ⊆ R[τ ], we have k(x, y, f) =
Q(R[f ]) ⊆ Q(R∗). The Intersection Domain A is a subring of the Local Prototype
domain D.

By Corollary
nftflp
6.8.1, the natural Approximation Domain B associated to A is

(
16.1.1g
6.18.0) B =

⋃
n∈N

k[x, y, fn](x,y,fn),

where the fn are the nth endpieces of f .

By Corollary
nftflp
6.8.3b, the extension T := R[τ ]

ψ
↪→ R∗[1/x] is flat, where ψ is the

inclusion map. Let S := R[f ] ⊆ R[τ ] and let ϕ be the embedding

(
16.1.1g
6.18.e) ϕ : S := R[f ]

φ
↪→ T = R[τ ].

Put α := ψ ◦ ϕ : S → R∗[1/x]. Then we have the following commutative diagram:
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R∗[1/x]

R ↪→ S = R[f ] T = R[τ ]

ψ

α:=ψφ(
16.1.1g
6.18.1)

φ

The proof in Proposition
16.1n
6.19 of the Noetherian property for Nagata’s Exam-

ple
4.3.1
4.15 is different from the proof given in

N2
[138, Example 7, pp.209-211].

16.1n Proposition 6.19. With the notation of Setting
16.1.1g
6.18, let f := (y + τ)2. In

Nagata Example
4.3.1
4.15, the ring B = A and B is Noetherian with completion k[[x, y]].

By Theorem
forextreg
3.33, B is a two-dimensional regular local domain.

Proof. The ring T = R[τ ] is a free S-module with free basis 〈1, y + τ〉. By
Remark

remflat
2.37.

flelt
2, the map ϕ is flat. By Theorem

InsIncThm
6.17, B is Noetherian andB = A. □

16.1nr Remarks 6.20. (1) In Nagata’s original example
N2
[138, Example 7,pp. 209-

211], the field k has characteristic different from 2. This assumption is not necessary
for showing that the domain B of Proposition

16.1n
6.19 is a two-dimensional regular local

domain.
(2) Whether or not the ring B is Noetherian depends upon the polynomial f .

In Example
16.1nn
6.24.2, the ring B is constructed in a similar way to the ring B of

Proposition
16.1n
6.19, but the ring B of Example

16.1nn
6.24.2 is not Noetherian.

6.4. Christel’s Example
16.1ng

In this section and Section
NFTins
6.5, we present additional examples using the tech-

niques of Section
16.1gn
6.3. Consider elements σ and τ in xk[[x]] that are algebraically

independent over the field k(x). To describe these examples, modify Setting
16.1.1g
6.18

as follows.

16.2.2g Setting 6.21. Let k be a field, let x, y, z be indeterminates over k, and set

R : = k[x, y, z](x,y,z) and R∗ : = k[y, z](y,z)[[x]].

The power series ring R∗ is the xR-adic completion of R. Let σ and τ in xk[[x]]
be algebraically independent over k(x). We use the Local Prototype Domain D
corresponding to σ, τ as in Definition

prodef
4.28, that is,

D := k(x, y, z, σ, τ) ∩ k[y, z](y,z)[[x]].

In the examples of this section, f is an element of R[σ, τ ] such that f is tran-
scendental over K = Q(R). The Intersection Domain of Inclusion Construction

4.4.1
5.3

corresponding to f is

A = K(f) ∩R∗ = k(x, y, z, f) ∩ k[y, z](y,z)[[x]].

Thus A is an “insider” Intersection Domain contained in the Local Prototype Do-
main D. As in Setting

16.1.1g
6.18 for the Nagata Example, the Approximation Domain

B associated to f is a directed union of localized polynomial rings over k in four
variables.
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16.2.2gr Remark 6.22. With Setting
16.2.2g
6.21, let T := R[σ, τ ] and let S := R[f ], where f is

a polynomial in R[σ, τ ] that is algebraically independent over Q(R). Let ϕ : S ↪→ T
denote the inclusion map from S to T . Since σ and τ are algebraically independent
over R, the element f in R[σ, τ ] has a unique expression

f = c00 + c10σ + c01τ + · · ·+ cijσ
iτ j + · · ·+ cmnσ

mτn,

where the cij ∈ R. The cij with at least one of i or j nonzero are the nonconstant
coefficients of f . The ideal L := (c10, c01, . . . , cmn)R is the ideal generated by the
nonconstant coefficients of f . We show in Theorem

16.3.7
7.28 of Chapter

flatpoly
7 that

(
16.2.2gr
6.22.b) ϕ is flat ⇐⇒ LR = R.

Theorem
InsIncThm
6.17 implies the Noetherian property for the following example of

Rotthaus
R1
[156], Example

4.3.3
4.17 of Chapters

fex
4.

16.1r Example 6.23. (Christel) This is the first example of a Nagata ring that is not
excellent. With Setting

16.2.2g
6.21, let f := (y + σ)(z + τ) and consider the intesection

domain A = k(x, y, z, f)∩R∗ contained in Local Prototype D = k(x, y, z, σ, τ)∩R∗.
The nonconstant coefficients of f = yz + σz + τy + στ as a polynomial in R[σ, τ ]
are {1, z, y} . They do generate the unit ideal of R, and so, since we assume
Remark

16.2.2gr
6.22.4 for now, it follows that ϕ is flat. Thus, by Theorem

InsIncThm
6.17, the

associated nested union domain B is Noetherian and is equal to A.

6.5. Further implications of the Noetherian Flatness TheoremNFTins

Noetherian Flatness Theorem
11.3.25
6.3 also yields examples that are not Noetherian

even if the Approximation Domain B is equal to the Intersection Domain A.

16.1nn Examples 6.24. (1) With Setting
16.2.2g
6.21, let f := yσ + zτ . We show in Ex-

amples
16.3.10
10.15 that the map R[f ] ↪→ R[σ, τ ] is not flat and that A = B, i.e., A is

“limit-intersecting” as in Definition
4.2li
5.10, but is not Noetherian. Thus we have a

situation where the Intersection Domain equals the Approximation Domain, but is
not Noetherian.

(2) The following is a related simpler example: Again with the notation of Set-
ting

16.2.2g
6.21, let f := yτ + zτ2 ∈ R[τ ] ⊆ D = k(x, y, z, τ) ∩ R∗, the Prototype. Then

the constructed Approximation Domain B (using f) is not Noetherian by Theo-
rem

16.3.9
10.12. Moreover, B is equal to the intersection domain A := R∗ ∩ k(x, y, z, f)

by Corollary
16.3.4
9.19.

In dimension two (the two variable case), an immediate consequence of Val-
abrega’s Theorem

4.1.2
4.9 is the following.

16.3.11g Theorem 6.25. (Valabrega) Let x and y be indeterminates over a field k and
let R = k[x, y](x,y). Then R̂ = k[[x, y]] is the completion of R. If L is a field between
the field of fractions of R and the field of fractions of k[y](y)[[x]], then A = L ∩ R̂
is a two-dimensional regular local domain with completion R̂.

Example
16.1nn
6.24 shows that the three-dimensional analog to Valabrega’s result

fails. With R = k[x, y, z](x,y,z) the field L = k(x, y, z, f) is between k(x, y, z) and
the fraction field of k[y, z] [[x]], but L ∩ R̂ = L ∩R∗ is not Noetherian.
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16.4nn Example 6.26. The following example is continued in Example
oglike
19.6. With

the notation of Setting
16.2.2g
6.21, let f = (y + σ)2 and g = (y + σ)(z + τ). It is shown

in Chapter
intIIsec
25 that the Intersection Domain A := R∗ ∩ k(x, y, z, f, g) properly

contains its associated Approximation Domain B and that both A and B are non-
Noetherian.

We use Ratliff’s Equidimension Theorem
ratliff
3.25 to show that the universally

catenary property is preserved by Inclusion Construction
4.4.1
5.3, if the constructed

domain is Noetherian.

IncUncat Theorem 6.27. Assume the notation of Noetherian Flatness Theorem
11.3.25
6.3, and

assume that (R,m) is a universally catenary Noetherian local domain. Then:
(1) If A is Noetherian, then A is a universally catenary Noetherian local

domain.
(2) If B is Noetherian, then B = A and B is a universally catenary local

domains.

Proof. By Construction Properties Theorem
11.2.51
5.14.4, R∗ = B∗ = A∗. By

Proposition
11.2.52
5.17.

Bloc
5, A and B are local and their maximal ideals are mA and mB,

respectively. The m-, mA- and mB-adic completions of R, A and B, respectively, all
equal the mR∗-adic completion of R∗, and so R̂ = Â = B̂. Ratliff’s Equidimension
Theorem

ratliff
3.25 states that a Noetherian local domain is universally catenary if and

only if its completion is equidimensional. By assumption R is universally catenary,
and so R̂ is equidimensional by Ratliff’s Theorem

ratliff
3.25. Thus, if A is Noetherian,

then A is also universally catenary. If B is Noetherian, then B = A, by Noetherian
Flatness Theorem

11.3.25
6.3, and so B is universally catenary. □

Exercise
(1) Let x be a regular element of a commutative ring S. Prove that S is Noetherian

if S[1/x] and (1 + xS)−1S are both Noetherian.
Suggestion. Apply the proof of item 4 of Lemma

11.3.1
6.2.





CHAPTER 7

The flat locus of an extension of polynomial rings
May 29, 2020 (flatpoly)flatpoly

Let R be a Noetherian ring, let n be a positive integer and let z1, . . . , zn be
indeterminates over R. This chapter concerns the flat locus of an extension ϕ of
polynomial rings of the form

(
flatpoly
7.01) S := R[f1, . . . , fm]

φ
↪→ R[z1, . . . , zn] =: T,

where the fj are polynomials in R[z1, . . . , zn] that are algebraically independent
over R, as in Definition

algind
2.2. Our aim is to provide a self-contained discussion of

the Jacobian ideal (Definition
16.2.5
7.17) and related topics, and their relation to the

flat locus of ϕ in Equation
flatpoly
7.01. We are motivated to examine the flat locus of the

extension ϕ by the flatness condition of Theorem
InsIncThm
6.17 in the Insider Construction

of Section
introIns
6.2.

Section
13.2p
7.1 contains a general result on flatness. Section

16.pj
7.2 concerns the Ja-

cobian ideal of the map ϕ : S ↪→ T of (
flatpoly
7.01) and the non-smooth and non-flat

loci of this map. In Section
16.3p
7.3 we discuss applications to polynomial extensions.

Related results are given in the papers of Picavet
P
[150] and Wang

Wang
[183].

7.1. Flatness criteria
13.2p

Recall that a Noetherian local ring (R,m) of dimension d is Cohen-Macaulay
if there exist elements x1, . . . , xd in m that form a regular sequence as defined in
Chapter

3tools
2.

The following definition is useful in connection with what is called the “local
flatness criterion”

M
[123, page 173].

sepfortop Definition 7.1. Let I be an ideal of a ring A.
(1) An A-module N is separated for the I-adic topology if

⋂∞
n=1 I

nN = (0).
(2) An A-module M is said to be I-adically ideal-separated if a ⊗M is sep-

arated for the I-adic topology for every finitely generated ideal a of A.

6.5.5 Remark 7.2. In Theorem
13.2.0p
7.3, we use the following result on flatness. Let I

be an ideal of a Noetherian ring A and let M be an I-adically ideal-separated A-
module. By

M
[123, part (1) ⇐⇒ (3) of Theorem 22.3], M is A-flat ⇐⇒ the

following two conditions hold: (a) I ⊗AM ∼= IM , and (b) M/IM is (A/I)-flat.
Theorem

13.2.0p
7.3 is a general result on flatness involving the Cohen-Macaulay prop-

erty and a trio of Noetherian local rings.
13.2.0p Theorem 7.3. Let (R,m), (S, n) and (T, e) be Noetherian local rings, and as-

sume there exist local maps:
R −→ S −→ T,

87
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such that
(i) R→ T is flat and T/mT is a Cohen-Macaulay ring, and
(ii) R→ S is flat and S/mS is a regular local ring.

Then the following statements are equivalent:
(1) S → T is flat.
(2) For each prime ideal q of T , we have ht q ≥ ht(q ∩ S).
(3) For each prime ideal q of T such that q is minimal over nT , we have

ht(q) ≥ ht(n).

Proof. The implication (2) =⇒ (3) is obvious and the implication (1) =⇒ (2)
is clear by Remark

remflat
2.37.

flgd
10. To prove (3) =⇒ (1), we observe that T is an mS-

adically ideal-separated S-module, since T is a Noetherian local ring; see Defini-
tion

sepfortop
7.1 and Krull’s Intersection Theorem

3.2.01
2.22. Hence, by Remark

6.5.5
7.2 with A = S,

I = mS and M = T , it suffices to show:
(a) mS ⊗S T ∼= mT .
(b) The map S/mS −→ T/mT is faithfully flat.

Proof of (a): Since R ↪→ S is flat, we have mS ∼= mR⊗R S. Therefore

mS ⊗S T ∼= (m⊗R S)⊗S T ∼= m⊗R T ∼= mT,

where the last isomorphism follows because the map R→ T is flat.
Proof of (b): By assumption, T/mT is Cohen-Macaulay and S/mS is a regular local
ring. We also have T/nT = (T/mT )⊗S/mS (S/n). By

M
[123, Theorem 23.1], if

(
13.2.0p
7.3.c) dim(T/mT ) = dim(S/mS) + dim(T/nT ),

then S/mS → T/mT is flat. Thus to prove (3) =⇒ (1), it suffices to establish
Equation

13.2.0p
7.3.c.

In order to prove Equation
13.2.0p
7.3.c, we may reduce to the case where m = 0.

Thus we may assume that R is a field, S is an RLR and T is a Cohen-Macaulay
local ring. Let q ∈ SpecT be such that nT ⊆ q. Since the map S → T is a local
homomorphism, we have q ∩ S = n. By

M
[123, Theorem 15.1i] we have

ht(q) ≤ ht(n) + dim(Tq/nTq).

If q is minimal over nT , then dim(Tq/nTq) = 0, and hence ht q ≤ ht n. By state-
ment 3, ht(q) ≥ ht(n), and therefore ht(q) = ht(n), for every minimal prime divisor
q of nT . Thus ht(n) = ht(nT ).

Since T is Cohen-Macaulay and hence is catenary, we have

dim(T/nT ) = dim(T )− ht(nT ) = dim(T )− ht(n)

Thus dimT = dimS + dim(T/nT ), as desired. □

In Theorem
13.2.1p
7.4 we present a result closely related to Theorem

13.2.0p
7.3 with a Cohen-

Macaulay hypothesis on all the fibers of R→ T and a regularity hypothesis on all
the fibers of R → S. A ring homomorphism f : A → B of Noetherian rings
has Cohen-Macaulay fibers with respect to f if, for every P ∈ SpecA, the ring
B ⊗A k(P ) is Cohen-Macaulay, where k(P ) is the field of fractions of A/P . For
more information about the fibers of a map, see Discussion

3.21d
3.29 and Definition

3.388
3.38.
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13.2.1p Theorem 7.4. Let (R,m), (S, n) and (T, e) be Noetherian local rings, and as-
sume there exist local maps:

R −→ S −→ T,

such that
(i) R→ T is flat with Cohen-Macaulay fibers, and
(ii) R→ S is flat with regular fibers.

Then the following statements are equivalent:
(1) S → T is flat with Cohen-Macaulay fibers.
(2) S → T is flat.
(3) For each prime ideal q of T , we have ht q ≥ ht(q ∩ S).
(4) For each prime ideal q of T such that q is minimal over nT , we have

ht q ≥ ht n.

Proof. The implications (1) =⇒ (2) and (3) =⇒ (4) are obvious and the
implication (2) =⇒ (3) is clear by Remark

remflat
2.37.

flgd
10. By Theorem

13.2.0p
7.3, item 4 implies

that S → T is flat.
To show Cohen-Macaulay fibers for S → T , it suffices to show, for each prime

ideal q of T , if p := q∩S then Tq/pTq is Cohen-Macaulay. Let q∩R = a. By passing
to R/a ⊆ S/aS ⊆ T/aT , we may assume q ∩R = (0). Let ht p = n. Since R→ Sp

has regular fibers and p ∩ R = (0), Sp is an RLR, and the ideal pSp is generated
by n elements. Moreover, faithful flatness of the map Sp → Tq implies that the
ideal pTq has height n by Remark

remflat
2.37.

flgd
10. Since Tq is Cohen-Macaulay, a set of n

generators of pSp forms a regular sequence in Tq. Hence Tq/pTq is Cohen-MacaulayM
[123, Theorems 17.4 and 17.3]. □

CMfibr Remark 7.5. Let ϕ : C ↪→ E be a faithfully flat local homomorphism of
Cohen-Macaulay local rings. Then ϕ has Cohen-Macaulay fibers. To see this, let
q ∈ SpecE and let p = q ∩ C ∈ SpecC; then the fiber Eq/pEq is Cohen-Macaulay,
by

M
[123, Corollary, page 181].

Since flatness is a local property by Remark
remflat
2.37.

locfl
4, the following two corollaries

are immediate from Theorem
13.2.1p
7.4; see also

P
[150, Théorème 3.15].

16.2.3p Corollary 7.6. Let T be a Noetherian ring and let R ⊆ S be Noetherian
subrings of T . Assume that R → T is flat with Cohen-Macaulay fibers and that
R→ S is flat with regular fibers. Then S → T is flat if and only if, for each prime
ideal q of T , we have ht q ≥ ht(q ∩ S).

As a special case of Corollary
16.2.3p
7.6, we have:

16.2.4p Corollary 7.7. Let R be a Noetherian ring and let z1, . . . , zn be indetermi-
nates over R. Assume that f1, . . . , fm ∈ R[z1, . . . , zn] are algebraically independent
over R, and let ϕ : S := R[f1, . . . , fm] ↪→ T := R[z1, . . . , zn]. Then:

(1) ϕ is flat if and only if ht(q) ≥ ht(q ∩ S), for every prime ideal q of T .
(2) For q ∈ SpecT , ϕq : S → Tq is flat if and only if ht p ≥ ht(p ∩ S), for

every prime ideal p ⊆ q of T .

Proof. Since S and T are polynomial rings over R, and Tq is a localization of
T , the maps R → S, R → T and R → Tq are flat with regular fibers. Hence both
assertions follow from Corollary

16.2.3p
7.6. □
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dimB=dimRr Remark 7.8. Assume the notation of Inclusion Construction
4.4.1
5.3 and Defini-

tion
appintdef
5.7; thus R is an integral domain and B is the constructed Approximation

Domain.
(1) If R is a Noetherian local domain and B is Noetherian, then B∗ = R∗ is

faithfully flat over B, and so dimB = dimR∗ = dimR.
(2) If R is a Cohen-Macaulay local domain and dimB = dimR, then B is

Noetherian by Theorem
dimB=dimRt
7.9 below.

Theorem
dimB=dimRt
7.9 is proved by applying Theorem

13.2.1p
7.4 to Inclusion Construction

4.4.1
5.3,

and using Noetherian Flatness Theorem
11.3.25
6.3.1.

dimB=dimRt Theorem 7.9. Let x be a nonzero nonunit of a Cohen-Macaulay local domain
R. Let τ1, . . . , τs ∈ xR∗ be algebraically independent over R as in Inclusion Con-
struction

4.4.1
5.3, and let B be the Approximation Domain associated to τ1, . . . , τs, as

in Definition
appintdef
5.7. Then dimB = dimR ⇐⇒ B is Noetherian.

Proof. The ⇐= direction is shown in Remark
dimB=dimRr
7.8.1. For the =⇒ direction,

it suffices to show B ↪→ R∗[1/x] is flat, by Noetherian Flatness Theorem
11.3.25
6.3.1.

Consider the inclusion maps α and β:

R
α
↪→ B[1/x]

β
↪→ R∗[1/x].

By Corollary
11.2.51
5.14, B[1/x] is Noetherian and α : R ↪→ B[1/x] is flat with regular

fibers.
Let p ∈ SpecB be maximal with respect to x /∈ p, and set p0 = p ∩ R. Then

dim(B/p) = 1 = dim(R/p0) by Theorem
d1impht
5.18.1. Since x /∈ p0 and dim(R/p0) = 1,

p0 is maximal in R with respect to x /∈ p0. Let q ∈ SpecR∗ be such that q∩B = p.
Then x /∈ q. Since q ∩ R = p0 and R∗/p0R

∗ is the x-adic completion of R/p0, it
follows that dim(R/p0) = 1 = dim(R∗/p0R

∗). Therefore q is minimal over p0R
∗,

for every q ∈ SpecR∗ such that q ∩B = p.
The maps αp and βq ◦αp shown below are faithfully flat local homomorphisms:

Rp0

αp

↪→ Bp

βq

↪→ R∗q.

Since Rp0
and R∗q are Cohen-Macaulay, Remark

CMfibr
7.5 implies that the map βq ◦ αp

has Cohen-Macaulay fibers. Since α : R ↪→ B[1/x] is flat with regular fibers, αp is
faithfully flat with regular fibers.

Now Theorem
13.2.1p
7.4, (2) ⇐⇒ (4), implies that βq : Bp ↪→ R∗q is flat if and only

if ht q1 ≥ ht p, for each prime ideal q1 ∈ Spec(R∗q) that is minimal over pR∗q. From
the above paragraph, q itself is minimal over pR∗q. Therefore it is enough to check
that ht q ≥ ht p.

Let d = dimR = dimB = dimR∗. Since R is catenary, Theorem
d1impht
5.18.2 implies

that ht p0 = d − 1 = ht q and d − 1 ≤ ht p. Since dimB = d and x /∈ p, it follows
that ht p = d− 1. That is, ht q = ht p.

This holds for every q ∈ SpecR∗ minimal over pR∗. Thus B ↪→ R∗[1/x] is flat,
as desired. □

Question 7.10. Does the conclusion of Theorem
dimB=dimRt
7.9 hold for every Noetherian

local domain (not necessarily Cohen-Macaulay)?
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7.2. The Jacobian ideal and the smooth and flat loci
16.pj

We use the following definitions as in Swan
Swan
[175].

smooth Definition 7.11. Let R be a ring. An R-algebra A is said to be quasi-smooth
over R if for every R-algebra B and ideal N of B with N2 = 0, every R-algebra
homomorphism g : A → B/N lifts to an R-algebra homomorphism f : A → B. In
the commutative diagram below, let the maps θ : R → A and ψ : R → B be the
canonical ring homomorphisms that define A and B as R-algebras and let the map
π : B → B/N be the canonical quotient ring map

R A
θ

B B/N

(
smooth
7.11.1)

ψ g
∃f

π

If A is quasi-smooth over R, then there exists an R-algebra homomorphism f
from A to B such that π ◦ f = g. If A is finitely presented and quasi-smooth over
R, then A is said to be smooth over R. If A is essentially finitely presented and
quasi-smooth over R, then A is said to be essentially smooth over R; see Chapter

3tools
2

for the definitions of finitely presented and essentially finitely presented.

The terminology for smoothness varies. Matsumura
M
[123, p. 193] uses the term

0-smooth for what Swan calls “quasi-smooth”. Others such as Tanimoto
Tan
[177],

Tan2
[178]

use smooth for “quasi-smooth”.
Recall from Definition

3.41
3.41 that a homomorphism σ : R → A of Noetherian

rings is regular if σ is flat and has geometrically regular fibers. To avoid any possible
confusion in the case where R is a field, Swan in

Swan
[175] calls such a homomorphism

σ-geometrically regular.
Regularity and smoothness are the same for morphisms of Noetherian rings of

finite type, as is stated in Theorem
16.2.65
7.12.

16.2.65 Theorem 7.12.
Swan
[175, Corollary 1.2] Let σ : R → A be a homomorphism of

Noetherian rings with A a finitely generated R-algebra. Then the following are
equivalent:

(1) σ is regular.
(2) σ is smooth, that is, A is a smooth R-algebra.

Proof. This follows from
Swan
[175, Corollary 1.2]. □

Swan’s article
Swan
[175] gives a detailed presentation of D. Popescu’s proof that

a regular morphism of Noetherian rings is a filtered colimit of smooth morphisms.
However, even if R is a field and the R-algebra A is a Noetherian ring, the map
σ : R ↪→ A may be a regular morphism but not be quasi-smooth. Tanimoto shows
in

Tan
[177, Lemma 2.1] that, for a field k and an indeterminate x over k, the regular

morphism k −→ k[[x]] is quasi-smooth as in Definition
smooth
7.11 if and only if k has

characteristic p > 0 and [k : kp] <∞.

16.2.5gen Definitions 7.13. Let R be a ring and let A be an R-algebra; say A = R[Z]/I,
where Z = {zγ}γ∈Γ is a set of indeterminates over R indexed by a possibly infinite
index set Γ and I is an ideal of the polynomial ring R[Z].
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(1) We define F :=
⊕

γ∈ΓAdzγ to be the free A-module on a basis {dzγ}γ∈Γ;
this basis is to be in 1−1 correspondence with the set {zγ}γ∈Γ. DefineD : R[Z]→ F

by D(f) =
∑
γ∈Γ

∂f
∂zγ

dzγ , for every f ∈ I, where ∂
∂zγ

is the usual partial derivative
function on R[Z], with elements of R[Z \ {zγ}] considered to be “constants”. The
map D is a derivation in the sense that D is an R-module homomorphism and

D(fg) = gD(f) + fD(g), for every f, g ∈ I.

We have D(I2) = (0), since D(I2) ⊆ IF = (0). Hence D induces a map d,
called the differential morphism on I/I2, such that

d : I/I2 → F =
⊕
γ∈Γ

Adzγ and d(f + I2) =
∑
γ∈Γ

∂f

∂zγ
dzγ .

The differential morphism d is an A-linear map, since, for each a ∈ A, each f ∈ I,
and each zγ , we have ∂(af)

∂zγ
= a ∂f

∂zγ
+ f ∂a

∂zγ
, and f ∂a

∂zγ
is in IF = (0). See

M
[123,

p.190-2] for more discussion about derivations and differentials.

(2) Let Z = {z1, . . . , zn} be a finite set of inderminates and let g1, . . . , gs be
elements of I, where n, s ∈ N. Define the Jacobian matrix of the gi with respect to
the zj to be the s× n matrix

J(g1, . . . , gs; z1, . . . , zn) :=

(
∂gi
∂zj

)
1≤i≤s, 1≤j≤n

.

For s ≤ n, define the Delta ideal of the gi, ∆(g1, . . . , gs), to be the ideal
of A generated by the images in A of the s × s minors of the Jacobian matrix
J(g1, . . . , gs; z1, . . . , zn). If s = 0, we set ∆( ) = A.

(3) Assume that A is a finitely presented R-algebra. Then we may assume
that Z = {z1, . . . , zn} is a finite set, and there exist f1, . . . , fm in R[Z] such that
I = (f1, . . . , fm)R[Z].

Define the Elkik ideal H̃ of the ring A as an R-algebra to be

(
16.2.5gen
7.13.a) H̃ := H̃A/R :=

√( ∑
g1,...,gs

(∆(g1, . . . , gs) ·
[
(g1, . . . , gs) :R[Z] I

]
+ I)A

)
,

where
√

denotes the radical of the enclosed ideal, and the sum is taken over all
choices of s polynomials g, . . . , gs from the ideal I, for all s ≤ n; see Elkik

E
[47,

p. 555] and Swan
Swan
[175, Section 4]. Swan mentions that the Elkik ideal provides

a “very explicit definition” for the non-smooth locus of A as an R-algebra; see
Theorem

16.2.7thm
7.15.

Define a simpler ideal H that is similar to H̃ as follows:

(
16.2.5gen
7.13.b) H := HA/R :=

√( ∑
g1,...,gs

(∆(g1, . . . , gs) ·
[
(g1, . . . , gs) :R[Z] I

]
+ I)A

)
,

where the sum is taken over all subsets {g1, . . . , gs}, for all 1 ≤ s ≤ min(m,n), of
the given finite set {f1, . . . , fm} of generators of I. It is clear that H ⊆ H̃. We
show in Theorem

16.2.7thm
7.15 that H = H̃.
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The following theorem from Swan’s article
Swan
[175] connects quasi-smoothness of

an R-algebra A to the differential morphism d of Definition
16.2.5gen
7.13.1 being a split

monomorphism.
Swanthm Theorem 7.14.

Swan
[175, Parts of Theorem 3.4] Let R be a ring and let A be an R-

algebra A := R[Z]/I, where Z = {zγ}γ∈Γ is a possibly infinite set of indeterminates
over R, and I is an ideal of the polynomial ring R[Z]. Then the following two
statements are equivalent:

(1) R→ A is quasi-smooth.
(2) The differential morphism d : I/I2 →

⊕
γ∈ΓAdzγ is a split monomor-

phism.
Theorem

16.2.7thm
7.15 is a modification of

Swan
[175, Theorem 4.1], with the Elkik ideal H̃

replaced by the simpler ideal H of Equation
16.2.5gen
7.13.b. The proof of Theorem

16.2.7thm
7.15

shows that H defines the non-smooth locus of A and that H̃ = H. For the proof
we adapt Swan’s elegant argument. We call this theorem the Elkik-Swan Theorem.

16.2.7thm Theorem 7.15. The Elkik-Swan Theorem.
Swan
[175, Theorem 4.1] Let A be a

finitely presented algebra over a ring R. Write A = R[Z]/I, where Z = {z1, . . . , zn}
and I = (f1, . . . , fm)R[Z] are as in Definition

16.2.5gen
7.13. Let H be the ideal of A defined

in Definition
16.2.5gen
7.13.b, and let P be a prime ideal of A. Then:

(1) AP is essentially smooth over R if and only if H is not contained in P .
(2) H is the intersection of all P ∈ SpecA such that AP is not essentially

smooth over R.
(3) H is independent of the choice of presentation.
(4) The Elkik ideal H̃ describes the non-smooth locus of A as an R-algebra

and H̃ = H.
Proof. Let P ∈ SpecA and assume that H is not contained in P . Then some

summand in the expression for H is not contained in P . By relabeling the set
{f1, . . . , fm}, we let {f1, . . . , fr} denote the subset associated with the summand
not contained in P , where r ≤ m. Thus (∆(f1, . . . , fr)·[(f1, . . . , fr) :R[Z] I])A is not
contained in P . Let Q be the pre-image of P in R[Z]. Then [(f1, . . . , fr) :R[Z] I] is
not contained in Q. Therefore (f1, . . . , fr)R[Z]Q = IR[Z]Q = IQ, and so the images
of f1, . . . , fr generate (I/I2)P = IQ/I

2
Q. Also ∆(f1, . . . , fr)A is not contained in P .

Hence the image of some r× r minor of J(f1, . . . , fr; z1, . . . , zn) is not contained in
P . By relabeling the z’s, we may assume that the image in A of det( ∂fi∂zj

)1≤i,j≤r

is not contained in P . Thus det( ∂fi∂zj
)1≤i,j≤r is a unit of AP and so the matrix

( ∂fi∂zj
)1≤i,j≤r is invertible as a matrix with coefficients in AP .
Consider the following diagram: ⊕n

j=1AP dzj

(I/I2)P
⊕r

j=1AP dzj

p

dP(
16.2.7thm
7.15.1)

d̃=p◦dP

Here d is the map of Definition
16.2.5gen
7.13.1 so that dP (f + I2) =

∑n
j=1

∂f
∂zj

dzj , for
every f ∈ I, and p is the projection p(

∑n
i=1 aidzi) =

∑r
i=1 aidzi on the first r

summands. We let d̃ = p ◦ dP .



947. THE FLAT LOCUS OF AN EXTENSION OF POLYNOMIAL RINGS MAY 29, 2020 (FLATPOLY)

dPsplit Claim 7.16. The map dP has a left inverse, and so dP is a split monomor-
phism.

Proof. Of claim
dPsplit
7.16. The definition d̃ = p ◦dP implies d̃(fi) =

∑r
i=1

∂fi
∂zj

dzj .
Since ( ∂fi∂zj

)1≤i,j≤r is an invertible matrix over AP , the set {d̃(f1), . . . , d̃(fr)} forms
a basis of

⊕r
i=1AP dzi. Let idr denote the identity map on

⊕r
i=1AP dzi.

There exists an AP -linear map g :
⊕r

i=1AP dzi → (I/I2)P defined on this
basis; set g(d̃(fi)) = fi, for every i with 1 ≤ i ≤ r. Thus idr = g ◦ d̃ = g ◦ p ◦ dP ,
and so g ◦ p is a left inverse of dP . Therefore dP is a split monomorphism. □

Return to the proof of Theorem
16.2.7thm
7.15. By Theorem

Swanthm
7.14, AP is an essentially

smooth R-algebra.
Conversely, if AP is an essentially smooth R-algebra, dP is a split monomor-

phism by Theorem
Swanthm
7.14. Thus (I/I2)P is free, say of rank r. By relabeling, we

assume that f1, . . . , fr map to a basis of (I/I2)P = IQ/I
2
Q. By Nakayama’s lemma,

these elements generate IQ, and so [(f1, . . . , fr) :R[Z] I] is not contained in Q.
We identify (AP )

r and (I/I2)P by the isomorphism α(a1, . . . , ar) =
∑
aifi.

Then the map dp : (I/I
2)P −→ ⊕AP dzi can be identified with the linear map

dP : (AP )
r −→ ⊕AP dzi

given by the Jacobian matrix ( ∂fi∂zj
)1≤i≤r;1≤j≤n. Since dp is split, the induced map

dP : (AP /PAP )
r −→ ⊕(AP /PAP )dzi

remains injective. Thus some r × r-minor of ( ∂fi∂zj
)1≤i≤r;1≤j≤n is invertible in AP .

Since H is a radical ideal, and every prime ideal P ∈ SpecA containing H is
such that AP is not essentially smooth, we see that H equals the intersection given
in the second statement of Theorem

16.2.7thm
7.15. Since every presentation ideal I and

generating set f1, . . . , fm of I yield that H equals the same intersection of prime
ideals, the ideal H is independent of presentation.

For item 4, Swan’s Theorem in
Swan
[175, Theorem 4.1] shows that H̃ is the same

intersection as H. Thus H is equal to the Elkik ideal H̃. □

We return to the extension ϕ of polynomial rings from Equation
flatpoly
7.01

S := R[f1, . . . , fm]
φ
↪→ R[z1, . . . , zn] =: T,

where the fj are polynomials in R[z1, . . . , zn] that are algebraically independent
over R.

16.2.5 Definitions and Remarks 7.17. (1) The Jacobian ideal J of the extension
S ↪→ T is the ideal of T generated by the m × m minors of the m × n matrix J
defined as follows:1

J :=

(
∂fi
∂zj

)
1≤i≤m, 1≤j≤n

.

(2) As in Definition
nfldef
2.40, the non-flat locus of ϕ : S ↪→ T is the set

F := {q ∈ Spec(T ) | the map ϕq : S → Tq is not flat }.

1For related information on the Jacobian ideal of an algebra over a ring, see
SH
[176, Section 4.4,

p. 65].
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We define the set Fmin and the ideal F of T as follows:

Fmin := { minimal elements of F} and F :=
⋂
{q | q ∈ F}.

By Theorem
Mnflthm
2.42, the set F is closed in the Zariski topology on SpecT . Hence

F = V(F ) := {q ∈ SpecT | F ⊆ q }.

Thus the set Fmin is a finite set and is equal to the set MinF of minimal primes of
the ideal F of T . The ideal F defines the non-flat locus of ϕ.

By Remark
remflat
2.37.

flgd
10, a flat homomorphism has the Going-Down property. Corol-

lary
16.2.4p
7.7 implies that
(i) MinF ⊆ {q ∈ SpecT | ht q < ht(q ∩ S)}, and
(ii) If q ∈ MinF , then every prime ideal q′ ( q satisfies ht q′ ≥ ht(q′ ∩ S).

16.2.6 Example and Remarks 7.18. (1) Let k be a field, let x and y be indetermi-
nates over k and set f = x, g = (x− 1)y. Then k[f, g]

φ
↪→ k[x, y] is not flat.

Proof. For the prime ideal P := (x−1) ∈ Spec(k[x, y]), we see that ht(P ) = 1,
but ht(P ∩ k[f, g]) = 2; thus the extension is not flat by Corollary

16.2.4p
7.7. □

(2) The Jacobian ideal J of f and g in (1) is given by:

J = (det
(
∂f
∂x

∂f
∂y

δg
∂x

∂g
∂y

)
)k[x, y] = (det

(
1 0
y x− 1

)
)k[x, y] = (x− 1)k[x, y].

(3) In the example of item 1, the non-flat locus is equal to the set of prime
ideals Q of k[x, y] that contain the Jacobian ideal (x− 1)k[x, y], thus J = F .

(4) One can also describe the example of item 1 by taking the base ring R to be
the polynomial ring k[x] rather than the field k. Then both T = R[y] and S = R[g]
are polynomial rings in one variable over R with g = (x− 1)y. The Jacobian ideal
J is the ideal of T generated by ∂g

∂y = x− 1, so is the same as in item 1.

We record in Theorem
16.2.7
7.19 connections between the Jacobian ideal of the mor-

phism ϕ : S ↪→ T of Equation
flatpoly
7.01 and the smoothness or flatness of localizations

of ϕ.

16.2.7 Theorem 7.19. Let R be a Noetherian ring, let z1, . . . , zn be indeterminates
over R, and let f1, . . . , fm ∈ R[z1, . . . , zn] be algebraically independent over R.
Consider the embedding ϕ : S := R[f1, . . . , fm] ↪→ T := R[z1, . . . , zn]. Let J denote
the Jacobian ideal of ϕ, and let F and MinF be as in Definitions and Remarks

16.2.5
7.17.

Then:
(1) q ∈ SpecT does not contain J ⇐⇒ ϕq : S → Tq is essentially smooth.

Thus J defines the non-smooth locus of ϕ.
(2) If q ∈ SpecT does not contain J , then ϕq : S → Tq is flat. Thus J ⊆ F .
(3) MinF ⊆ {q ∈ SpecT | ht(q ∩ S) > ht q}.
(4) MinF ⊆ {q ∈ SpecT | ht q < dimS and ht(q ∩ S) > ht q}.
(5) ϕ is flat ⇐⇒ for every q ∈ Spec(T ) such that ht(q) < dimS, we have

ht(q ∩ S) ≤ ht(q).
(6) If htJ ≥ dimS, then ϕ is flat.
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Proof. For item 1, we show that, for our definition of the Jacobian ideal J
given in Definition

16.2.5
7.17, the radical of J is the Elkik ideal of an extension given in

Theorem
16.2.7thm
7.15. Using Theorem

16.2.7thm
7.15, we work with the simpler description H of the

Elkik ideal given in Equation
16.2.5gen
7.13.b.

Let u1, . . . , um be indeterminates over R[z1, . . . , zn] and identify

R[z1, . . . , zn] with R[u1, . . . , um][z1, . . . , zn]

({ui − fi}i=1,...,m)
.

Since u1, . . . , um are algebraically independent, the Jacobian ideal of the extension
ϕ is the ideal J generated by the m × m minors of J =

(
∂fi
∂zj

)
m,n

, using this
identification. We make this more explicit as follows.

Let B := R[u1, . . . , um, z1, . . . , zn] and I = ({fi − ui}i=1,...,m)B. Consider the
following commutative diagram

S := R[f1, . . . , fm] −−−−→ T := R[z1, . . . , zn]

∼=
y ∼=

y
S1 := R[u1, . . . , um] −−−−→ T1 := B/I

To show that H ⊆
√

(J), let g1, . . . , gs ∈ {f1 − u1, . . . , fm − um}. Notice
that f1 − u1, . . . , fm − um is a regular sequence in B. Thus, if s < m, we have
[(g1, . . . , gs) :B I] = (g1, . . . , gs)B. Thus the m ×m-minors of

(
∂fi
∂zj

)
generate H

up to radical, and so H =
√
J . Hence, by Theorem

16.2.7thm
7.15, for every prime ideal q of

T , Tq is essentially smooth over S if and only if q does not contain J .

For item 2, suppose q ∈ SpecT and J * q. Choose h ∈ J \ q and consider the
extension ϕh : S ↪→ T [1/h]. By item 1, ϕh is smooth. Since a smooth map is flatSwan
[175, page 2], ϕh is flat. Thus ϕq : S ↪→ Tq is flat.

In view of Corollary
16.2.4p
7.7 and Remarks

16.2.5
7.17.2, item 3 holds.

If ht q ≥ dimS, then ht(q ∩ S) ≤ dimS ≤ ht q. Hence the set
{q ∈ SpecT | ht(q ∩ S) > ht q}

= {q ∈ SpecT | ht q < dimS and ht(q ∩ S) > ht q}.

Thus item 3 is equivalent to item 4.
The ( =⇒ ) direction of item 5 is clear

M
[123, Theorem 9.5]. For the ( ⇐= )

direction of item 5 and for item 6, it suffices to show MinF is empty, and this holds
by item 4. □

16.2.8 Questions and Remarks 7.20. Let notation be as in Theorem
16.2.7
7.19.

(1) Questions: What is the set Fmin = MinF? In particular, when is J = F
and when is J ( F?

(2) Example
16.2.6
7.18 is an example where J = F , whereas Examples

16.4.3
7.32 contains

several examples where J ( F .
(3) If R is an integral domain, then the zero ideal is not in MinF and F 6= {0}.

16.2.8c Corollary 7.21. Assume the setting and notation of Theorem
16.2.7
7.19. Then:

(1) MinF = {q ∈ SpecT |ht(q ∩ S) > ht q and ht(p ∩ S) ≤ ht(p), for every
p ∈ SpecT with p ( q}.
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(2) For each prime ideal q of MinF , there exist prime ideals p′ and p of S
with p′ ( p such that q is a minimal prime of both p′T and pT .

Proof. Item 1 follows from item 3 of Theorem
16.2.7
7.19, and the definition of the

non-flat locus.
For item 2, let q ∈ MinF , let h := ht q, and let p := q ∩ S. Then ht p > h.

There exists a prime ideal p′ of S with p′ ( p and ht p′ = ht p − 1 ≥ h. Then
p′T ⊆ q′ ⊆ q, for some prime ideal q′ of T minimal over p′T . Suppose q′ 6= q. Since
q ∈ MinF , ht(q′ ∩ S) ≤ ht q′. Since p′ ⊆ q′ ∩ S, it follows that

h ≤ ht p′ ≤ ht(q′ ∩ S) ≤ ht q′ < ht q = h,

a contradiction. Thus q is a minimal prime of p′T and pT . □
Corollary

16.4.2
7.22 is immediate from Theorem

16.2.7
7.19.

16.4.2 Corollary 7.22. Let k be a field, let z1, . . . , zn be indeterminates over k and
let f, g ∈ k[z1, . . . , zn] be algebraically independent over k. Consider the embedding
ϕ : S := k[f, g] ↪→ T := k[z1, . . . , zn]. Assume that the associated Jacobian ideal J
is nonzero.2 Then:

(1) For every q ∈ MinF, ht q = 1.
(2) MinF ⊆ {minimal primes q of J with ht(q ∩ S) > ht q}.
(3) ϕ is flat ⇐⇒ for every height-one prime ideal q ∈ SpecT such that J ⊆ q

we have ht(q ∩ S) ≤ 1.
(4) If htJ ≥ 2, then ϕ is flat.

Proof. Item 1 holds since dimS = 2 and ht q < dimS for every q ∈ MinF .
□

16.4.5 Corollary 7.23. Assume the notation of Theorem
16.2.7
7.19. Then:

(1) If q ∈ MinF , then q is a nonmaximal prime of T .
(2) MinF ⊆ {q ∈ SpecT | J ⊆ q, dim(T/q) ≥ 1 and ht(q ∩ S) > ht q}.
(3) ϕ is flat ⇐⇒ ht(q ∩ S) ≤ ht(q) for every nonmaximal q ∈ Spec(T ) with

J ⊆ q.
(4) If dimR = d and htJ ≥ d+m, then ϕ is flat.

Proof. For item 1, suppose q ∈ MinF is a maximal ideal of T . Then ht q <
ht(q ∩ S) by Theorem

16.2.7
7.19.3. By localizing at R \ (R ∩ q), we may assume that R

is local with maximal ideal q ∩ R := m. Since q is maximal, T/q is a field finitely
generated over R/m. By the Hilbert Nullstellensatz

M
[123, Theorem 5.3], T/q is

algebraic over R/m and ht q = ht(m)+n. It follows that q∩S = p is maximal in S
and ht p = htm+m. The algebraic independence hypothesis for the fi implies that
m ≤ n, and therefore that ht p ≤ ht q. This contradiction proves item 1. Item 2
follows from Theorem

16.2.7
7.19.3 and item 1.

Item 3 follows from Theorem
16.2.7
7.19.5 and item 1, and item 4 follows from The-

orem
16.2.7
7.19.6. □

As an immediate corollary to Theorem
16.2.7
7.19 and Corollary

16.4.5
7.23, we have:

16.4.7 Corollary 7.24. Let R be a Noetherian ring, let z1, . . . , zn be indeterminates
over R and let f1, . . . , fm ∈ R[z1, . . . , zn] be algebraically independent over R.
Consider the embedding ϕ : S := R[f1, . . . , fm] ↪→ T := R[z1, . . . , zn], let J be the

2This is automatic if the field k has characteristic zero.



987. THE FLAT LOCUS OF AN EXTENSION OF POLYNOMIAL RINGS MAY 29, 2020 (FLATPOLY)

Jacobian ideal of ϕ and let F be the radical ideal that describes the non-flat locus
of ϕ as in Definition

16.2.5
7.17.2. Then:

(1) J ⊆ F .
(2) Either F = T , that is, ϕ is flat, or dim(T/q) ≥ 1, for every q ∈ MinF .
(3) ht q < dimS, for every q ∈ MinF .

7.3. Applications to polynomial extensions
16.3p

The analysis of polynomial extensions of this section uses Setting
polyextset
7.25.

polyextset Setting 7.25. Let R be a commutative ring, let z1, . . . , zn be indeterminates
over R, and let f1, . . . , fm ∈ R[z1, . . . , zn] be algebraically independent over R.
Consider the embedding ϕ : S := R[f1, . . . , fm] ↪→ T := R[z1, . . . , zn].

Proposition
16.4.4
7.26 concerns the behavior of the extension ϕ : S ↪→ T with respect

to prime ideals of R in Setting
polyextset
7.25.

16.4.4 Proposition 7.26. Assume Setting
polyextset
7.25.

(1) If p ∈ SpecR and ϕpT : S → TpT is flat, then pS = pT ∩S and the images
fi of the fi in T/pT ∼= (R/p)[z1, . . . , zn] are algebraically independent over
R/p.

(2) If ϕ is flat, then for each p ∈ Spec(R) we have pS = pT ∩S and the images
fi of the fi in T/pT ∼= (R/p)[z1, . . . , zn] are algebraically independent over
R/p.

Proof. Item 2 follows from item 1, so it suffices to prove item 1. Assume
that TpT is flat over S. Since pT 6= T , Remark

remflat
2.37.

flgd
10 implies that pT ∩ S = pS.

Suppose the fi are algebraically dependent over R/p, then there exist indetermi-
nates t1, . . . , tm and a polynomial G ∈ R[t1, . . . , tm] \ pR[t1, . . . , tm] such that
G(f1, . . . , fm) ∈ pT . This implies G(f1, . . . , fm) ∈ pT ∩ S = pS. But f1, . . . , fm
are algebraically independent over R and G(t1, . . . , tm) 6∈ pR[t1, . . . , tm] implies
G(f1, . . . , fm) 6∈ pS, a contradiction. □

16.4.8 Proposition 7.27. Assume Setting
polyextset
7.25 and in addition assume that R is a

Noetherian integral domain containing a field of characteristic zero. Let J be the
associated Jacobian ideal and let F be the reduced ideal of T defining the non-flat
locus of ϕ : S ↪→ T . Then:

(1) If p ∈ SpecR and J ⊆ pT , then ϕpT : S → TpT is not flat. Thus we also
have F ⊆ pT .

(2) If the embedding ϕ : S ↪→ T is flat, then for every p ∈ SpecR we have
J * pT .

Proof. Item 2 follows from item 1, so it suffices to prove item 1. Let p ∈
SpecR with J ⊆ pT , and suppose ϕpT is flat. Let fi denote the image of fi in
T/pT . Consider

ϕ : S := (R/p)[f1, . . . , fm]→ T := (R/p)[z1, . . . , zn].

By Proposition
16.4.4
7.26, f1, . . . , fm are algebraically independent over R := R/p.

Since the Jacobian ideal commutes with homomorphic images, the Jacobian ideal
of ϕ is zero. Thus for each Q ∈ SpecT the map ϕQ : S → TQ is not smooth. But
taking Q = (0) gives TQ is a field separable over the field of fractions of S and
hence ϕQ is a smooth map. This contradiction completes the proof. □
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Theorem
16.3.7
7.28 follows from

P
[150, Proposition 2.1] in the case of one indetermi-

nate z, so in the case where T = R[z].

16.3.7 Theorem 7.28. Assume Setting
polyextset
7.25. In addition assume that R is a Noe-

therian integral domain and that m = 1, so that there is exactly one polynomial
f . Thus z1, . . . , zn are indeterminates over R, T = R[z1, . . . zn], and f ∈ T \ R.
Then the following are equivalent:

(1) R[f ]→ T is flat.
(2) For each prime ideal q of R, we have qT ∩R[f ] = qR[f ].
(3) For each maximal ideal q of R, we have qT ∩R[f ] = qR[f ].
(4) The nonconstant coefficients of f generate the unit ideal of R.
(5) R[f ]→ T is faithfully flat.

Proof. Since f ∈ T \ R and R is an integral domain, R[f ] is a polynomial
ring in the indeterminate f over R. By Proposition

16.4.4
7.26.2, (1) =⇒ (2). To show

(2) =⇒ (1): by Corollary
16.2.4p
7.7, R[f ] ↪→ T is flat ⇐⇒ for each Q ∈ SpecT we

have htQ ≥ ht(Q ∩ R[f ]). Let q := Q ∩ R. We have ht q = ht(qR[f ]) = ht(qT ). If
P := Q ∩ R[f ] properly contains qR[f ], then htP = 1 + ht q, while if Q properly
contains qT , then htQ ≥ 1 + ht q. In every case, htQ ≥ ht(Q ∩ R[f ]), and so (2)
=⇒ (1). It is obvious that (2) =⇒ (3).

(3) =⇒ (4): Let a ∈ R be the constant term of f . If the nonconstant
coefficients of f are contained in a maximal ideal q of R, then f − a ∈ qT ∩ R[f ].
Since R is an integral domain, the element f − a is transcendental over R and
f − a 6∈ qR[f ] since R[f ]/qR[f ] is isomorphic to the polynomial ring (R/q)[x].
Therefore qT ∩R[f ] 6= qR[f ] if the nonconstant coefficients of f are in q.

(4) =⇒ (2): Let q ∈ SpecR and consider the map

(
16.3.7
7.28.a) R[f ]⊗R R

q = R[f ]
qR[f ]

φ−−−−→ T ⊗R R
q = T

qT
∼= (Rq )[z1, . . . , zn].

Since the nonconstant coefficients of f generate the unit ideal of R, the image of
f in (R/q)[z1, . . . , zn] has positive degree. This implies that ϕ is injective and
qT ∩R[f ] = qR[f ].

This completes a proof that items (1), (2), (3) and (4) are equivalent. It is
obvious that (5) =⇒ (1).

To show (4) =⇒ (5), it suffices to show for P ∈ Spec(R[f ]) that PT 6= T . Let
q = P ∩R, and let κ(q) denote the field of fractions of R/q. Let f denote the image
of f in R[f ]/qR[f ]. Then R[f ]/qR[f ] ∼= (R/q)[f ], a polynomial ring in one variable
over R/q, since the nonconstant coefficients of f are not in q. Tensoring the map
ϕ of equation

16.3.7
7.28.a with κ(q) gives an embedding of the polynomial ring κ(q)[f ]

into κ(q)[z1, . . . , zn]. The image of P in κ(q)[f ] is either zero or a maximal ideal of
κ(q)[f ]. In either case, its extension to κ(q)[z1, . . . , zn] is a proper ideal. Therefore
PT 6= T . This completes the proof of Theorem

16.3.7
7.28. □

16.3.7c Corollary 7.29. Assume the setting of Theorem
16.3.7
7.28 and let L denote the

ideal of R generated by the nonconstant coefficients of f . Then LT defines the
non-flat locus of the map R[f ] ↪→ T .

Proof. Let Q ∈ SpecT and let q = Q∩R. Tensoring the map R[f ]→ T with
Rq, we see that R[f ] ↪→ TQ is flat if and only if Rq[f ] ↪→ TQ is flat. Consider the
extensions:

Rq[f ]
θ
↪→ Rq[z1, . . . , zn] : = Tq

ψ
↪→ TQ.
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Since ψ is a localization the composite ψ ◦ θ is flat if θ is flat.
Assume L * Q. Then L * q, and so LRq = Rq. By (4) =⇒ (1) of

Theorem
16.3.7
7.28, we have R[f ] ↪→ TQ is flat.

Assume L ⊆ Q. Then L ⊆ q, and we have f − a ∈ qT ∩ R[f ], where a is the
constant term of f . This implies qTq ∩ R[f ] 6= qR[f ]. Since q is a prime ideal of
R, ht(qR[f ]) = ht(qRq[f ])) = ht q. But ht(qTq ∩ R[f ]) > ht qR[f ]. Therefore the
extension θ : Rq → Tq is not flat. We conclude that L defines the non-flat locus of
the map R[f ] ↪→ T . □

Remark 7.30. A different proof that (4) =⇒ (1) in Theorem
16.3.7
7.28 is as follows:

Let v be another indeterminate and consider the commutative diagram
R[v] −−−−→ T [v] = R[z1, . . . , zn, v]

π

y π′

y
R[f ]

φ−−−−→ R[z1,...,zn,v]
(v−f(z1,...,zn)) .

where π maps v → f and π′ is the canonical quotient homomorphism. By
M1
[121,

Corollary 2, p. 152] or
M
[123, Theorem 22.6 and its Corollary, p. 177], ϕ is flat if the

coefficients of f − v generate the unit ideal of R[v]. Moreover, the coefficients of
f − v as a polynomial in z1, . . . , zn with coefficients in R[v] generate the unit ideal
of R[v] if and only if the nonconstant coefficients of f generate the unit ideal of R.
For if a ∈ R is the constant term of f and a1, . . . , ar are the nonconstant coefficients
of f , then (a1, . . . , ar)R = R clearly implies that (a− v, a1, . . . , ar)R[v] = R[v]. On
the other hand, if (a − v, a1, . . . , ar)R[v] = R[v], then setting v = a implies that
(a1, . . . , ar)R = R.

We observe in Proposition
16.3.8
7.31 that item 1 implies item 4 of Theorem

16.3.7
7.28 also

holds for more than one polynomial f ; see also
P
[150, Theorem 3.8] for a related

result concerning flatness.
16.3.8 Proposition 7.31. Assume Setting

polyextset
7.25 and assume that R is an integral do-

main. If the inclusion map ϕ : S := R[f1, . . . fm]→ T is flat, then the nonconstant
coefficients of each of the fi generate the unit ideal of R.

Proof. The algebraic independence of the fi implies that the inclusion map
R[fi] ↪→ R[f1, . . . , fm] is flat, for each i with 1 ≤ i ≤ m. If S −→ T is flat,
then so is the composition R[fi] −→ S −→ T , and the statement follows from
Theorem

16.3.7
7.28. □

16.4.3 Examples 7.32. Let k be a field of characteristic different from 2 and let x, y, z
be indeterminates over k.

(1) With f = x and g = xy2 − y, consider S := k[f, g]
φ
↪→ T := k[x, y]. Then

J = (2xy − 1)T . This example may also be described by taking R = k[x]. We
then have ϕ : S := R[xy2 − y] ↪→ T := R[y]. The Jacobian J = (2xy − 1)T is the
same but is computed now as just a derivative. Then the coefficients of xy2 − y
in the variable y generate the unit ideal of R. By the implication (4) =⇒ (1) of
Theorem

16.3.7
7.28, ϕ is flat. But ϕ is not smooth, since J defines the non-smooth locus

and J 6= T ; see Theorem
16.2.7
7.19.1. Here we have J ( F = T .

(2) With f = x and g = yz, consider S := k[f, g]
φ
↪→ T := k[x, y, z]. Then

J = (y, z)T . Since htJ ≥ 2, ϕ is flat by Corollary
16.4.2
7.22.3. Again ϕ is not smooth

since J 6= T .
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(3) The example of item 2 may also be described by taking R = k[x]. Then
S := R[yz] ↪→ T := R[y, z]. The Jacobian J = (y, z)T is now computed by taking
the partial derivatives ∂(yz)

∂y and ∂(yz)
∂z .

(4) Let R = k[x] and S = R[xyz] ↪→ R[y, z] =: T . Then J = (xz, xy)T . Thus J
has two minimal primes xT and (y, z)T . Notice that xT ∩S = (x, xyz)S is a prime
ideal of S of height two, while (y, z)T ∩ S has height one. Therefore J ( F = xT .

(5) Let R = k[x] and S = R[xy + xz] ↪→ R[y, z] =: T . Then J = xT . The map
ϕ is not flat, since xT ∩ S = (x, xy + xz)S.

(6) Let R = k[x] and S = R[xy+ z2] ↪→ R[y, z] =: T . Then J = (y, z)T . Hence
S ↪→ T is flat but not smooth.

(7) Let R = k[x] and S = R[xy + z] ↪→ R[y, z] =: T . Then J = T . Hence
S ↪→ T is a smooth map.

Exercises
(1) Let k be a field and let T denote the polynomial ring k[x]. Let f ∈ T be a

polynomial of degree d ≥ 1 and let S := k[f ].
(i) Prove that the map S ↪→ T is free and hence flat.
(ii) Prove that the prime ideals Q ∈ SpecT for which S → TQ is not a regular

map are precisely the prime ideals Q such that the derivative df
dx ∈ Q.

Assume that the field k has characteristic p > 0.
(iii) If f = x+ xp, prove that S ↪→ T is smooth.
(iv) If f = xp, prove that S ↪→ TQ is not smooth, for each Q ∈ SpecT .
Assume that the field k has characteristic 0.
(v) If deg f = d ≥ 2, prove that there exists a finite nonempty set of maximal

ideals Q of T such that S ↪→ TQ is not smooth.
CM mod nilradical (2) Let k be a field and let T = k[[u, v, w, z]] be the formal power series ring over

k in the variables u, v, w, z. Define a k-algebra homomorphism ϕ of T into the
formal power series ring k[[x, y]] by defining

ϕ(u) = x4, ϕ(v) = x3y, ϕ(w) = xy3, ϕ(z) = y4.

Let P = ker(ϕ) and let I = (v3 − u2w, w3 − z2v)T . Notice that I ⊂ P . Let
A = T/I, and let R = k[[u, z]] ⊂ T .
(a) Prove that ϕ|R is injective, i.e., P ∩R = (0).
(b) Prove that the ringB := ϕ(T ) = k[[x4, x3y, xy3, y4]] is not Cohen-Macaulay.
(c) Prove that A = T/I is Cohen-Macaulay and is a finite free R-module.
(d) Prove that PA is the unique minimal prime of A, and A/PA is not flat

over R.
Suggestion. To see that A is module finite over R, observe that

A

(u, z)A
=

T

(u, z, v3 − u2w,w3 − z2v)T
,

and the ideal (u, z, v3−u2w,w3− z2v)T is primary for the maximal ideal of T .
By Theorem

3.38.1
3.16, A is a finite R-module.

Comment. The ring A of Exercise
CM mod nilradical
2 above is a complete Cohen-Macaulay

local ring with dimA = 2 such that A/n is not Cohen-Macaulay, where n is the
nilradical of A.
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(3) Let k be a field and let A = k[x, xy] ⊂ k[x, y] = B, where x and y are indeter-
minates. Let R = k[x] + (1− xy)B.
(a) Prove that R is a proper subring of B that contains A.
(b) Prove that B is a flat R-module.
(c) Prove that B is contained in a finitely generated R-module.
(d) Prove that R is not a Noetherian ring.
(e) Prove that P = (1−xy)B is a prime ideal of both R and B with R/P ∼= k[x]

and B/P ∼= R[x, 1/x].
(f) Prove that the map SpecB → SpecR is one-to-one but not onto.
Question. What prime ideals of R are not finitely generated?

(4) With S = k[x, xy2−y] ↪→ T = k[x, y] and J = (2xy−1)T as in Examples
16.4.3
7.32.1,

prove that ht(J ∩ S) = 1.
Suggestion. Show that J ∩ S ∩ k[x] = (0) and use that, for A an integral
domain, prime ideals of the polynomial ring A[y] that intersect A in (0) are in
one-to-one correspondence with prime ideals of K[y], where K = Q(A) is the
field of fractions of A.

(5) Let z1, . . . , zn be indeterminates over a ring R, and let T = R[z1, . . . zn]. Fix
an element f ∈ T \ R. Modify the proof of (3) implies (4) of Theorem

16.3.7
7.28 to

prove that qT∩R[f ] = qR[f ] for each maximal ideal q of R implies that the non-
constant coefficients of f generate the unit ideal of R without the assumption
that the ring R is an integral domain.
Suggestion. Assume that the nonconstant coefficients of f are contained in a
maximal ideal q of R. Observe that one may assume that f as a polynomial
in R[z1, . . . , zn] has zero as its constant term and that the ring R is local with
maximal ideal q. Let M be a monomial in the support of f of minimal total
degree and let b ∈ R denote the coefficient of M for f . Then b is nonzero,
but f ∈ qR[f ] implies that b ∈ q and this implies, by Nakayama’s lemma, that
b = 0.
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excel
The concept of “excellence” is deep and significant. It has ramifications and

relationships to other chapters of this book, and more generally to much of com-
mutative algebra. Section

exchist
8.1 contains an initial discussion of attributes that might

be considered desirable for a Noetherian ring labeled “excellent”. This motivates
discussions of the singular locus and the Jacobian criterion in Section

exchist
8.1 and of

Henselian rings and the Henselization of a Noetherian local ring in Section
Hensec
8.3.

Nagata rings are considered in Section
nagsec
8.2. For a Noetherian local ring (R,m) with

m-adic completion R̂, the fibers of the inclusion map R ↪→ R̂ play an important
role in determining whether R is excellent or a Nagata ring. For more information
about excellent rings see

G
[63],

M
[123],

R4
[161].

8.1. Background for excellent rings
exchist

In the 1950s, Nagata constructed an example in characteristic p > 0 of a
normal Noetherian local domain (R,m) such that the m-adic completion R̂ is not
reduced

N2
[138, Example 6, p.208],

N5
[134]. He constructed another example of a

normal Noetherian local domain (R,m) that contains a field of characteristic zero
and has the property that R̂ is not an integral domain

N2
[138, Example 7, p.209]; see

Example
4.3.1
4.15, Remarks

4.3.2
4.16 and Section

16.1gn
6.3 for information about this example.

The existence of these examples motivated the search for conditions on a Noetherian
local ring R that imply good behavior with respect to completion.

We consider the following questions:

Questions 8.1.ExcQ
(1) What properties should a “nice” Noetherian ring have?
(2) What properties of a Noetherian local ring ensure good behavior with

respect to completion?
(3) What properties of a Noetherian ring ensure “nice” properties of finitely

generated algebras over the given ring?

In the 1960s, Grothendieck systematically investigated Noetherian rings that
are exceptionally well behaved. He called these rings “excellent”. The intent of his
definition of excellent rings is that these rings should have the same nice properties
as the rings in classical algebraic geometry. 1

1Christel’s 1972 Master’s Thesis on excellent rings under the supervision of H. J. Nastold in
Münster was based on lecture notes by Nastold. In these notes Nastold used R. Kiehl’s ideas of
what the definition of an “excellent” ring should be, and Kiehl’s proofs of the main properties.
Kiehl’s definition is equivalent to, but somewhat different from, Grothendieck’s definition. The
notes were never published. Some of the regularity criteria used in Kiehl’s proofs are in

BKKN
[22].

103
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Among the rings studied in classical algebraic geometry are the affine rings
A = k[x1, . . . , xn]/I,

where k is a field and I is a ideal of the polynomial ring S := k[x1, . . . , xn].
There are four fundamental properties of affine rings that are relevant for the

definition of excellent rings. The third property involves the concept of the singular
locus as in Definition

excel3
8.2.

excel3 Definition 8.2. Let A be a Noetherian ring. The singular locus of A is:
SingA = {P ∈ SpecA |AP is not a regular local ring}.

Let A be a class of Noetherian rings that satisfy the following:
Property A.1: If A ∈ A and B is an algebra of finite type over A, then B ∈ A.
Property A.2: If A ∈ A, then A is universally catenary.
Property A.3: If A ∈ A, then the singular locus SingA is closed in the Zariski

topology of SpecA, that is, there is an ideal J ⊆ A such that SingA = V(J).2

Property A.4: If A ∈ A, then, for every maximal ideal m ∈ SpecA and for
every prime ideal Q ∈ Spec(Âm), we have:

(8.1) (Âm)Q is regular ⇐⇒ AQ∩A is regular.
We discuss these properties in the remainder of this section. Properties A.1-

A.4 hold for the class of affine rings. It is straightforward that affine rings satisfy
the first two properties, since an algebra of finite type over an affine ring is again
an affine ring, and every affine ring is universally catenary; see Remark

ucathom
3.27. The

third and fourth properties are not as obvious for affine rings; see Remark
Aff34
8.17.

They are, however, important properties for excellence.
David Mumford and John Tate discuss how Grothendieck’s work revolutionized

classical algebraic geometry in
Mublog
[127]. In particular, they write: Algebraic geometry

“is the field where one studies the locus of solutions of sets of polynomial equations
…”. One combines “the algebraic properties of the rings of polynomials with the
geometric properties of this locus, known as a variety.”

To apply this to the discussion of Property A.3, let k be an algebraically closed
field. For n a positive integer, let kn denote affine n-space. An affine algebraic
variety is a subset Z(I) of kn, where Z(I) is the zero set of an ideal I of the
polynomial ring S = k[x1, . . . , xn]:

Z(I) = {a ∈ kn | f(a) = 0, for all f ∈ I }.
It is clear that Z(I) = Z(

√
I). Let A = S/

√
I. The singular locus of Z(I) is defined

to be SingA.
The singular locus of a reduced affine ringA over an algebraically closed field is a

proper closed subset of SpecA; see for example Hartshorne’s book
H
[65, Theorem 5.3,

page 33]. Thus Property A.3 is satisfied for such a ring A.
Again quoting Mumford and Tate in

Mublog
[127]: Grothendieck “invented a class of

geometric structures generalizing varieties that he called schemes”. This applies to
any commutative ring, and thus includes fields that are not algebraically closed and
ideals that are not reduced.

Property A.3 is related to the Jacobian criterion for smoothness.

2Notation from Section
3.02
2.1.
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jaccrit Jacobian Criterion 8.3. Let A = S/I be an affine ring, where I is an ideal
of the polynomial ring S = k[x1, . . . , xn] over the field k. Let P be a prime ideal
of S with I ⊆ P , let p = P/I, and let r be the height of IP in SP . Assume that
I = (f1, . . . , fs)S. The Jacobian criterion for smoothness asserts the equivalence of
the following statements:

(1) The map ψ : k ↪→ Ap is smooth, or equivalently a regular homomorphism.
(2) rank (∂fi/∂xj) = r (mod P ).
(3) The ideal generated by the r×r minors of (∂fi/∂xj) is not contained in P .

These equivalent conditions imply that Ap is an RLR.

The rank of (∂fi/∂xj) (mod P ) is at most r; see Eisenbud’s book
Eis
[46, 16.19.a].

The Jacobian criterion for smoothness is proved in
M
[123, Theorem 30.3].

jaccritr Remarks 8.4. Let A = S/I, where S = k[x1, . . . , xn] is a polynomial ring over
a field k, and I is an ideal of S. Let the notation be as in Criterion

jaccrit
8.3.

(1) By Theorem
16.2.65
7.12, the morphism ψ : k ↪→ Ap is a regular morphism if and

only if ψ is smooth, or equivalently Ap is a smooth k-algebra.3 Since A is an affine
k-algebra, Ap is essentially of finite type over k. Regularity of ψ is equivalent to
ψ being flat with geometrically regular fibers. Equivalently, ψ is flat and, for each
prime ideal Q of A and each finite algebraic field extension L of k, the ring AQ⊗kL
is a regular local ring. Since k is a field, AQ is a free k-module and so the extension
ψ is flat by Remark

remflat
2.37.

flelt
2.

(2) If every prime ideal of S minimal over I has the same height r, then the
Elkik ideal of A as a k-algebra is equal to the radical of the ideal generated by the
r× r minors of the Jacobian matrix of I. To see this, by Theorem

16.2.7thm
7.15.3, the Elkik

ideal of A as a k-algebra defines the non-smooth locus of k ↪→ A. By Jacobian
Criterion

jaccrit
8.3, the r × r minors of the Jacobian matrix of I are not contained in P

if and only if the map ψ : k ↪→ AP is smooth, if and only if the map ψ is regular.
It follows that the Elkik ideal is equal to the radical of the ideal generated by the
r × r minors of the Jacobian matrix of I.

More generally, if T is a localization of S at a multiplicatively closed set and
every prime ideal of T minimal over IT has the same height r, then the Elkik ideal
of T/IT as a k-algebra is equal to the radical of the ideal generated by the r × r
minors of the Jacobian matrix of I.

(3) If k is a perfect field, then Ap is a regular local ring if and only if the
equivalent conditions of Criterion

jaccrit
8.3 hold. This follows because every algebraic

extension of k is separable algebraic. Thus AQ is a regular local ring if and only if
AQ⊗kL is an RLR, for every Q ∈ SpecAp and every finite algebraic field extension
L of k. Hence the map k ↪→ Ap is regular if and only if Ap is a regular local ring.

(4) If k is a perfect field, A is equidimensional and ht I = r, then the Jacobian
criterion defines the singular locus of A. In this case the singular locus of A is V(J)
where J is the ideal of S generated by I and the r×r minors of the Jacobian matrix
(∂fi/∂xj).

(5) If k is not a perfect field, then the equivalent conditions of Criterion
jaccrit
8.3 are

stronger than the statement that Ap is a regular local ring
M
[123, Theorem 30.3].

Example
rlrnotsmooth
8.5 is an example of a Noetherian local ring over a non-perfect field

k that is a regular local ring, but is not smooth over k.

3Regularity is defined in Definition
3.41
3.41. For smoothness see Definition

smooth
7.11.
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rlrnotsmooth Example 8.5. Let k be a field of characteristic p > 0 such that k is not perfect,
that is, kp is properly contained in k. Let a ∈ k \ kp and let f = xp − a. Then
L = k[x]/(f) is a proper purely inseparable extension field of k. Since ∂f/∂x = 0,
the Jacobian criterion for smoothness implies L is not smooth over k. However, L
is a field and thus a regular local ring.

jaccritr2 Remark 8.6. Zariski’s Jacobian criterion for regularity in polynomial rings
applies in the case where the ground field is not perfect; see

M
[123, Theorem 30.5].4

Assume the notation of Criterion
jaccrit
8.3. The singular locus of A is closed in SpecA

and is defined by an ideal J of A; that is, Sing(A) = V(J). In Criterion
jaccrit
8.3, the

ideal J is generated by the r×r minors of the Jacobian matrix, whereas in Zariski’s
Jacobian criterion for regularity in polynomial rings if k has characteristic p and is
not perfect, then the Jacobian matrix is extended by certain kp-derivations of S,
and J is generated by appropriate minors of the extended matrix. For Example

rlrnotsmooth
8.5,

there exists a kp-derivation D : k[x] → k[x] with D(f) 6= 0; see for example
M
[123,

page 202].

We return to properties for excellence. A first approach towards obtaining a
class A of Noetherian rings that satisfy Properties A.1, A.2, A.3 and A.4 might
be to consider the rings satisfying “Jacobian criteria”, similar to the conditions of
Criterion

jaccrit
8.3. Unfortunately this class is rather small. Example

derex
8.7 is an excellent

Noetherian local domain that fails to satisfy Jacobian criteria. This example is
related to Theorem

7.6.1.1
12.18.

derex Example 8.7.
R4
[161, p. 319] Let σ = e(e

x−1) ∈ Q[[x]]. By a result of Ax
Ax
[19,

Corollary 1, p. 253], σ and ∂σ/∂x are algebraically independent over Q(x); see
the proof of item 1 of Theorem

7.6.1.1
12.18. As in Example

4.1.1
4.7, consider the intersection

domain
A := Q(x, σ) ∩Q[[x]].

By Remark
3.02.1
2.1, A is a DVR with maximal ideal xA and field of fractions Q(x, σ).

Then Q[x](x) ⊂ A ⊂ Q[[x]]. For every derivation d : A ↪→ Q[[x]], it follows that
d(σ) = dx(∂σ/∂x). Since ∂σ/∂x /∈ Q(x, σ), we have d(σ) /∈ A whenever d(x) 6= 0.
Hence there is only the trivial derivation d = 0 from A into itself. Since every
DVR containing a field of characteristic 0 is excellent, the ring A is excellent; see
Remarks

3.435
3.48.

There is an important class of Noetherian local rings that admit Jacobian and
regularity criteria, namely, the class of complete Noetherian local rings. These
criteria were established by Nagata and Grothendieck and are similar to the above
mentioned criterion. A principal objective of the theory of excellent rings is to
exploit the Jacobian criteria for the completion Â of an excellent local ring A in
order to describe certain properties of A, even if the ring A itself may fail to satisfy
Jacobian criteria. This theory requires considerable theoretical background. The
goal of Grothendieck’s theory of formal smoothness and regularity is to determine
the connection between a local ring A and its completion Â; see

G
[63, No 24, (6.8),

pp. 150-153].

Cohenexc Remark 8.8. Let (A,m) be a Noetherian local ring. By Cohen’s structure
theorems, the m-adic completion Â of A is the homomorphic image of a formal

4Historically this goes back to Zariski’s influential paper
Z3
[191].
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power series ring over a ring K, where K is either a field or a complete discrete
valuation ring, that is, Â ∼= K[[x1, . . . , xn]]/I; see Remarks

3.38.4
3.19.3. The singular

locus Sing Â of Â is closed by the Jacobian criterion on complete Noetherian local
rings

M
[123, Corollary to Theorem 30.10].

The following discussion relates to Properties A.3 and A.4 and the definition
of excellence.

excel1 Discussion 8.9. Let ϕ : A ↪→ C be a faithfully flat homomorphism of Noe-
therian rings. For example, let (A,m) be a Noetherian local ring and let C be the
m-adic completion of A. We observe connections between the singular loci SingA
and SingC. Consider the following two conditions regarding SingA and SingC and
regularity of localizations of A and C

(
excel1
8.9.a) SingA = V(J) and SingC = V(JC), for some ideal J of A.

(
excel1
8.9.b) For every Q ∈ SpecC, AQ∩A is regular ⇐⇒ CQ is regular.

Condition
excel1
8.9.a implies that SingA and SingC are closed. We show in Theorem

excel22
8.10

below if SingC is closed, then Condition
excel1
8.9.a is equivalent to Condition

excel1
8.9.b. We

first make some observations about Condition
excel1
8.9.b.

(
excel1
8.9.1) “⇐ ” of Condition

excel1
8.9.b is always satisfied.

Proof. The induced morphism AQ∩A −→ CQ is faithfully flat. Since flatness
descends regularity by Theorem

forextreg
3.33.1, CQ is regular implies AQ∩A is regular. □

(
excel1
8.9.2) If ϕ : A→ C has regular fibers as in Definition

3.388
3.38, then Condition

excel1
8.9.b

holds.
Proof. Let P = Q ∩ A. Since the fiber over P is regular, the ring CQ/PCQ is
regular. By Theorem

forextreg
3.33.2, if AP and CQ/PCQ are both regular, then the ring

CQ is regular. Thus “⇒ ” of Condition
excel1
8.9.b holds. By statement

excel1
8.9.1, “⇐ ” of

Condition
excel1
8.9.b always holds. □

excel22 Theorem 8.10. Let ϕ : A ↪→ C be a faithfully flat homomorphism of Noether-
ian rings. Assume SingC is closed. Then:

(1) Condition
excel1
8.9.a is equivalent to Condition

excel1
8.9.b.

(2) If in addition the fibers of ϕ are regular, then SingA is closed.

Proof. For item 1, it is clear that Condition
excel1
8.9.a implies Condition

excel1
8.9.b.

Assume Condition
excel1
8.9.b and let I be the radical ideal of C such that SingC = V(I).

Then I =
⋂n
i=1Qi, where the Qi are prime ideals of C. Let Pi = Qi ∩A for each i

and let I ∩A = J . Then J =
⋂n
i=1 Pi. We observe that SingA = V(J). Since CQi

is not regular, Condition
excel1
8.9.b implies that APi

is not regular. Let P ∈ SpecA. If
J ⊆ P , then Pi ⊆ P for some i, and Pi ⊆ P implies that APi

is a localization of
AP . Therefore AP is not regular.

Assume that J 6⊆ P . There exists Q ∈ SpecC such that Q ∩ A = P , and it is
clear that I 6⊆ Q. Hence CQ is regular, and thus by Condition

excel1
8.9.b, the ring AP

is regular. Therefore SingA = V(J).
It remains to observe that

√
JC = I. Clearly

√
JC ⊆ I. Let Q ∈ SpecC with

JC ⊆ Q. Then J ⊆ Q ∩ A := P and AP is not regular. By Condition
excel1
8.9.b, the

ring CQ is not regular, so I ⊆ Q.
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For item 2, Condition
excel1
8.9.b holds for A, by (

excel1
8.9.2). By item 1, Condition

excel1
8.9.b

implies Condition
excel1
8.9.a. Hence the singular locus of A is closed in SpecA. □

excel22fin Corollary 8.11. Let ϕ : A ↪→ C be a faithfully flat homomorphism of Noe-
therian rings. Let B be an essentially finite A-algebra such that Sing(B ⊗A C) is
closed. If the fibers of ϕ are geometrically regular, then SingB is closed.

Proof. By Fact
tensorflat
2.38, the map 1B ⊗A ϕ : B ↪→ B ⊗A C is faithfully flat. Let

Q ∈ Spec(B ⊗A C), and let P ′ and P denote the contractions of Q to B and A,
respectively. Since B is essentially finite over A, the field k(P ′) = (B \ P ′)−1BP ′

is a finite algebraic extension of the field k(P ) = (A \ P )−1AP . The fiber over P
of the map ϕ is Spec(k(P ) ⊗A C); see Discussion

3.21d
3.29. Since ϕ has geometrically

regular fibers, Spec(k(P ′)⊗AC) is regular, that is, (k(P ′)⊗AC)Q′ is a regular local
ring for every prime ideal Q′ of k(P ′)⊗A C.

Also the fiber over P ′ of the map 1B ⊗A ϕ is Spec(k(P ′)⊗B (B ⊗A C)). Since
k(P ′)⊗B (B ⊗A C) = k(P ′)⊗A C, the map 1B ⊗A ϕ has regular fibers.

By Theorem
excel22
8.10.2, SingB is closed. □

excel2 Corollary 8.12. Let (A,m) be a Noetherian local ring and let ϕ : A ↪→ Â be
the canonical map from A to its m-adic completion Â.

(1) Condition
excel1
8.9.a is equivalent to Condition

excel1
8.9.b.

(2) If the formal fibers of A are regular, then SingA is closed.

Proof. By Remark
Cohenexc
8.8, Theorem

excel22
8.10 applies. □

notsingcl Remark 8.13. Let A be a Noetherian local ring with regular formal fibers. By
Corollary

excel2
8.12, SingA is closed. In order to obtain that every algebra essentially of

finite type over A also has the property that its singular locus is closed, the stronger
condition that the formal fibers of A are geometrically regular as in Definition

3.389
3.39

is needed. This is demonstrated by an example of Rotthaus of a regular local
ring A that is a Nagata ring and has the property that its formal fibers are not
geometrically regular; the example is described in Remark

22.2.7
20.8. In the example of

Rotthaus, the ring A contains a prime element ω such that the singular locus of
the quotient ring A/(ω) is not closed.

The following two theorems are due to Nagata.

nagsingalg Theorem 8.14.
M1
[121, Theorem 73]. Let A be a Noetherian ring. Then the

following two statements are equivalent:
(1) For every A algebra B that is essentially finite over A, the singular locus

SingB is closed in SpecB.
(2) For every A algebra B that is essentially of finite type over A, the singular

locus SingB is closed in SpecB.

univopen Theorem 8.15.
M1
[121, Theorem 74]. If A is a complete Noetherian local ring,

then A satisfies the equivalent conditions of Theorem
nagsingalg
8.14

From Theorems
nagsingalg
8.14 and

univopen
8.15, we have:

univclosed Corollary 8.16. Let A be a Noetherian local ring. If the formal fibers of A
are geometrically regular, then for every A-algebra B essentially of finite type over
A, the singular locus SingB is closed in SpecB.
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Proof. Let B be an A-algebra that is essentially finite over A. Then B ⊗A Â
is an essentially finite Â-algebra. By Theorem

univopen
8.15, Sing(B ⊗A Â) is closed. By

Corollary
excel22fin
8.11 with C replaced by Â, we have SingB is closed. This holds for every

A-algebra B that is essentially finite over A. Thus by Theorem
nagsingalg
8.14, SingB is

closed for every A-algebra B that is essentially of finite type over A. □

Aff34 Remark 8.17. Let A be an affine k-algebra, m a maximal ideal of A, and Âm

the m-adic completion of A. By Jacobian Criterion
jaccrit
8.3 and Remarks

jaccritr
8.4.4 and

jaccritr2
8.6,

the singular locus of A is closed and SingA = V(J), for an ideal J defined by
partial derivatives and derivations. For every maximal ideal m of A, Sing Âm =

V(JÂm), since the partial derivates ∂fi/∂xj and the kp derivations on A and Am

extend to derivations of Âm. That is, every Am satisfies Condition
excel1
8.9.a, and, by

Theorem
excel22
8.10.1, Condition

excel1
8.9.b holds. Therefore every affine algebra A satisfies

Property A.3 and Property A.4.

8.2. Nagata rings and excellence
nagsec

Classical developments leading to the concept of excellent rings were made by
Zariski, Cohen, Chevalley, Abhyankar, Nagata, Rees, Tate, Hironaka, Grothendieck
and Kiehl among others over the two decades from the early 1940’s to the 1960’s.
These authors were investigating ideal-theoretic properties of rings, the behavior
of these properties under certain kinds of extension, and the relations among these
properties.

For the class of Nagata rings5, Nagata Polynomial Theorem
Nagpolythm
2.21 implies that

algebras essentially of finite type over Nagata rings are again Nagata. Another
classical result is Rees Finite Integral Closure Theorem

3.38.6
3.21; this gives a connection

between the integral closure of a reduced Noetherian local ring (R,m) and the
completion of R.

Another classical result of Nagata is:

Nagthm Theorem 8.18.
M1
[121, Theorem 70]

N2
[138, 36.4, p. 132, p. 219] Let R be a

Noetherian local Nagata domain. Then R is analytically unramified.

Theorem
Nagthm
8.18 implies every Noetherian local Nagata ring R satisfies:

(∗) For every P ∈ SpecR, the ring R/P is analytically unramified.

There exist Noetherian local domains (R,m) that are not Nagata, but satisfy
condition (∗). Proposition

16.5.18
10.4 and Remark

perfnexc
10.5 describe examples of DVRs and

other Noetherian regular rings that are not Nagata rings.
Condition (∗) requires only that the formal fibers of R are reduced. It does not

require for a finite field extension L of k(P ) that the fibers of the map R ⊗R L ↪→
R̂⊗R L are reduced.

A necessary and sufficient condition for a Noetherian local ring (R,m) to be
Nagata, is that the formal fibers of R are geometrically reduced.

Theorem 8.19.
G
[63, No 24, (7.6.4)] A Noetherian local ring R is a Nagata ringnaglocequiv

if and only if the formal fibers of R are geometrically reduced.

5For the definition of a Nagata ring see Definition
Nag
2.20.
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If R is a Nagata ring, the normal locus:

NorR = {P ∈ SpecR |RP is a normal ring}

is open in SpecR. Theorem
naglocequiv
8.19 implies that every Noetherian local ring with

geometrically reduced formal fibers has an open normal locus. For Noetherian non-
local rings this is no longer true. Nishimura constructed an example of a Noetherian
ring R with geometrically regular formal fibers so that NorR is not open in SpecR.
Theorem

nagequiv
8.20 characterizes Nagata rings in general:

Theorem 8.20.
G
[63, No 24, (7.6.4), (7.7.2)] A Noetherian ring R is a Nagatanagequiv

ring if and only if the following two conditions are satisfied:
(a) The formal fibers of R are geometrically reduced.
(b) For every finite R-algebra S that is a domain NorS is open in SpecS.

Theorem
nagimplies
8.21 stated below is another way to deduce that the examples de-

scribed in Proposition
16.5.18
10.4 and Remark

perfnexc
10.5 are non-Nagata rings.

Theorem 8.21.
M1
[121, Theorem 71] Let (R,m) be a Nagata local domain, letnagimplies

R̂ be the m-adic completion of R, and let P̂ be a minimal prime ideal of R̂. Then
k(P̂ ) = Q(R̂/P̂ ) is separable over the field of fractions Q(R) of R.

Grothendieck defined excellence for a Noetherian local ring as follows:

exceld Definition 8.22. Let A be a Noetherian local ring. Then A is excellent if
(a) The formal fibers of A are geometrically regular, that is, for every prime ideal P
of A and, for every finite purely inseparable field extension L of the field of fractions
k(P ) of A/P , the ring Â⊗A L is regular.
(b) A is universally catenary.

For a non-local Noetherian ring A an additional condition is needed in the
definition of excellence: the singular locus of every finitely generated algebra over
A is closed. This condition is not included in Definition

exceld
8.22; by Corollary

excel2
8.12.2,

the singular locus is closed for a Noetherian local ring that has geometrically regular
formal fibers.

If A is an excellent local ring, then its completion Â inherits many properties
from A. In particular, Theorem

excel8.23
8.23 is proved in

G
[63, No 24,(7.8.3.1), p. 215].

excel8.23 Theorem 8.23. Let (A,m) be an excellent local ring with m-adic completion
Â. Let Q ∈ Spec Â, and let P = Q ∩ A. Then the ring AP is regular (normal,
reduced, Cohen-Macaulay, respectively) if and only if the ring ÂQ is regular (normal,
reduced, Cohen-Macaulay, respectively).

If A is not a local ring, the formal fibers of A are the formal fibers of the local
rings Am, where m is a maximal ideal of A. We say that A has geometrically regular
formal fibers if the local rings Am for all maximal ideals m of A have geometrically
regular formal fibers. If A is a semilocal ring with geometrically regular formal
fibers, then SingA is again closed in SpecA. If A is a non-semilocal ring with
geometrically regular formal fibers then it is possible that SingA is no longer closed
in SpecA; see the example of Nishimura,

Ni1
[142]. Therefore an additional condition

is needed for the singular locus of A and of all algebras of finite type over A to be
closed. See Definition

3.43
3.47.



8.3. HENSELIAN RINGS 111

8.3. Henselian rings
Hensec

Let (R,m) be a local ring. Recall from Definition
Hensel
3.30 that R is Henselian if

Hensel’s Lemma holds for R.
The Henselian property was first observed in algebraic number theory around

1910 for the ring of p-adic integers. Many popular Noetherian local rings fail to be
Henselian; see for example Exercise

excel
8.
nHenselex
4.

In this section we describe an approach to the construction of the Henselization
of the local ring R developed by Raynaud in

Raynaud
[154] and discussed in

R4
[161]. This

approach is different from that used in Nagata’s book
N2
[138] and discussed in Re-

marks
Hensrmks
3.32. Raynaud defines a local ring R to be Henselian if every finite R-algebra

B is a finite product of local rings
Raynaud
[154, Definition 1, p.1]. Raynaud’s approach

uses the concept of an étale morphism as in Definitions
etale
8.24. 6

etale Definitions 8.24. Let (R,m) be a local ring.
(1) Let ϕ : (R,m) → (A, n) be a local homomorphism with A essentially

finite over R; that is A is a localization of an R-algebra that is a finitely
generated R-module. Then A is étale over R if the following condition
holds: for every R-algebra B and ideal N of B with N2 = 0, every
R-algebra homomorphism β : A → B/N has a unique lifting to an R-
algebra homomorphims α : A → B. Thus A is étale over R if for every
commutative diagram of the form below, where the maps from R → A
and R → B are the canonical ring homomorphisms that define A and B
as R-algebras and the map π : B → B/N is the canonical quotient ring
map

R A
φ

B B/N ,

(
etale
8.24.1)

β∃α

π

there exists a unique R-algebra homomorphism α : A→ B that preserves
commutativity of the diagram.

(2) A local ring (A, n) is an étale neighborhood of R if A is étale over R and
R/m ∼= A/n; that is, there is no residue field extension.

Raynaud proves that Henselian local rings are closed under étale neighborhoods.

cletale Theorem 8.25.
Raynaud
[154, Corollary 2, p. 84] Let R be a local Henselian ring.

Then R is closed under étale neighborhoods, that is, for every étale neighborhood
φ : R −→ A, we have that R ∼= A considered as R-algebras.

Structure Theorem
Sten
8.26 is essential for Raynaud’s approach to the construction

of the Henselization.

6David Mumford mentions that the word étale “refers to the appearance of the sea at high
tide under a full moon in certain types of weather”

Mu
[126, p. 344]. Another meaning for étale,

given on dictionary.revers.net, is “slack” and étaler is translated as “spread or display”. A sentence
given there “Il s’est étale de tout son long”—is translated as “He fell flat on his face.”
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Theorem 8.26. (Structure Theorem for étale neighborhoods)
Raynaud
[154, TheoremSten

1, p. 51] Let ϕ : (R,m) −→ (A, n) be a local morphism with A essentially finite over
R. Then A is étale over R if and only if

A ∼= (R[x]/(f))Q

where R[x] is the polynomial ring over R in one variable and
(a) f ∈ R[x] is a monic polynomial.
(b) Q ∈ Spec(R[x]) is a prime ideal with Q ∩R = m.
(c) f ′ /∈ Q, that is, the derivative of f is not in Q.

The proof of the structure theorem involves a form of Zariski’s Main TheoremPeskine
[149],

Ev
[48].

Using the structure theorem Raynaud defines a representative set of étale neigh-
borhoods of R:

Λ = {(f,Q) | f ∈ R[x] monic, Q ∈ Spec(R[x]), f ∈ Q,
f ′ /∈ Q, Q ∩R = m, (R[x]/Q)Q = R/m}.

The set Λ is a subset of the product set R[x]× Spec(R[x]).
Raynaud defines the Henselization of R via a direct limit over the set Λ. Let

λ1 = (f1, Q1) and λ2 = (f2, Q2) be elements of Λ, and let S1 = (R[x]/(f1))Q1 ,
respectively, S2 = (R[x]/(f2))Q2 , denote the corresponding étale neighborhoods.
We define a partial order on Λ by λ1 ≤ λ2 if and only if there is a local R-algebra
morphism τ : S1 −→ S2. In order to define a direct limit over the set Λ two
conditions must be satisfied. First, the set of R-algebra morphisms between S1 and
S2 has to be rather small in order to restrict each choice of R-algebra morphisms
to one for which “it all fits together”. Second, the partially ordered set Λ must be
directed, that is, for every λ1 and λ2 ∈ Λ, there must be a third element λ3 ∈ Λ
with λ1 ≤ λ3 and λ2 ≤ λ3. The following result is what is needed:

Theorem 8.27.
Raynaud
[154, Proposition 2, p. 84] Let λ1, λ2 ∈ Λ with correspondingetaledirect

étale neighborhoods Si = (R[x]/(fi))Qi . Then:
(a) There is at most one R-algebra morphism τ : S1 −→ S2.
(b) There is an element λ3 ∈ Λ with corresponding étale neighborhood S3 that

contains S1 and S2, i.e. λ1 ≤ λ3 and λ2 ≤ λ3.

Theorem
etaledirect
8.27 implies that the set

{(R[x]/(f))Q | (f,Q) ∈ Λ}

is directed in a natural way. Raynaud defines the direct limit of this system to be
the Henselization of R:

Rh = lim−→
λ=(f,Q)∈Λ

(R[x]/(f))Q.

We list several properties of the Henselization:

Hensrks Remarks 8.28. (1) A local ring R is Noetherian if and only if its Hensel-
ization Rh is Noetherian

Raynaud
[154, Chapitre VIII].

(2) If R is a Noetherian local ring, then the natural injection R ↪→ Rh is a
regular map with zero-dimensional fibers

G
[63, No 32, (18.6.9), p. 139].
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(3) The formal fibers of a Noetherian local ring R are geometrically regular,
respectively, geometrically normal, geometrically reduced, if and only if
the formal fibers of Rh are geometrically regular, respectively, geometri-
cally normal, geometrically reduced. Moreover, R is a Nagata ring if and
only if Rh is a Nagata ring. In addition, if R is excellent so is Rh. These
results are in

G
[63, No. 32, (18.7.4), (18.7.2), (18.7.3), and (18.7.6), pp.

143-144]; see also Remark
15.2.55
18.5.

(4) The Henselization Rh of a Noetherian local ring R is in general much
smaller than its completion R̂. The Henselization Rh of R is an algebraic
extension of R whereas the completion R̂ is usually of infinite (uncount-
able) transcendence degree over R, if R is a domain; see Fact

uncalgind
3.8

(5) If R is a Nagata, analytically normal local domain, in particular, if R is an
excellent normal local domain, then its Henselization Rh is the algebraic
closure of R in R̂, that is, every element of Rh is algebraic over R and
every element of R̂ \ Rh is transcendental over R. This result is given in
Nagata’s book

N2
[138, Corollary 44.3]. Let R be the integral closure of R

in R̂ and let m̂ denote the maximal ideal of R̂. Then Rh = Rm̂∩R.

Theorem
compvsintcl2
8.29 is an extension of Remark

compvsintcl
3.23.2 to integral domains of dimension

bigger than one that have geometrically normal formal fibers.

Theorem 8.29.
Raynaud
[154, Corollaire, p. 99] Let R be a Noetherian local domaincompvsintcl2

with geometrically normal formal fibers. Then there is a one-to-one correspondence
between the maximal ideals of the integral closure of R in its field of fractions Q(R)
and the minimal prime ideals of its completion R̂.

Exercises
excel4 (1) Let ϕ : A ↪→ C be a faithfully flat homomorphism of Noetherian rings.

(a) If the fibers of ϕ are regular and for each Q ∈ SpecC the formal fiber over
Q is regular, prove that for each P ∈ SpecA, the formal fiber over P is
regular.

(b) If the fibers of ϕ are geometrically regular and for each Q ∈ SpecC the
formal fiber over Q is geometrically regular, prove that for each P ∈ SpecA,
the formal fiber over P is geometrically regular.

(2) Let A be a Nagata ring and let S ⊂ A be a multiplicatively closed subset of A.
Show that S−1A is a Nagata ring.

(3) Let A ↪→ B be Noetherian rings with B a finite A-module. If B is a Nagata
ring prove that A is also a Nagata ring.

nHenselex (4) Let x be an indeterminate over a field k and let R denote the localized polyno-
mial ring k[x](xk[x]). Show that R is not Henselian.
Suggestion. Consider the polynomial f(y) = y2 + y + x ∈ R[y].

(5) Let (R,m) be a Henselian local integral domain with field of fractions K.
(a) If V is a DVR on K, prove that R ⊆ V .
(b) If A is a Noetherian domain with field of fractions K, prove that R is

contained in the integral closure of A.
Comment. Berger, Kiehl, Kunz and Nastold in

BKKN
[22, Satz 2.3.11, p. 60]

attribute this result to F. K. Schmidt
Sc2
[165]. The result has many interesting
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applications. It is used by Gilmer and Heinzer in
GH2
[57, Example 3.13]. It

is developed by Abhyankar in
Abhy3
[6, (3.10), pp. 121-123]. Abhyankar points

out connections with the concept of root-closed fields and Newton’s binomial
theorem for fractional exponents. With k a field, the field of rational functions
k(x1, . . . , xn) does not determine the polynomial ring k[x1, . . . , xn], however, as
Abhyankar notes in

Abhy3
[6, Section 9.6], the field of fractions k((x1, . . . , xn)) of the

power series ring k[[x1, . . . , xn]] does uniquely determine the power series ring.
We thank Tom Marley for asking us a question that motivated us to include
this exercise.



CHAPTER 9

Height-one prime ideals and weak flatnessflatcon

Let x be a nonzero nonunit of an integral domain R and let R∗ denote the
Noetherian x-adic completion of R. In this chapter, we consider the structure of a
subring A of R∗ of the form A := Q(R)(τ1, τ2, . . . τs) ∩R∗. We assume Setting

setinclconstr
5.1

and the conditions of Inclusion Construction
4.4.1
5.3. Thus τ1, τ2, . . . , τs are elements of

xR∗ that are algebraically independent element over R and every nonzero element
of R[τ1, τ2, . . . , τs] is regular on R∗. In this chapter, R is usually a Krull domain.

If the intersection ring A can be expressed as a directed union B of localized
polynomial extension rings of R as in Definition

appintdef
5.7, then the computation of A is

easier. Recall that τ1, τ2, . . . , τs are called limit-intersecting for A if the ring A is
such a directed union; see Definition

4.2li
5.10.

The main result of Section
7.5fc
9.1 is Weak Flatness Theorem

7.5.5fc
9.9. In this theorem

we give criteria for τ1, τ2, . . . , τs to be limit-intersecting for A. In Section
h1Krull
9.2 with

the setting of extensions of Krull domains, we continue to analyze the properties of
height-one primes considered in Section

7.5fc
9.1. We examine flatness in the setting of

Inclusion Construction
4.4.1
5.3 in Section

16.inc
9.3.

Weak Flatness Theorem
7.5.5fc
9.9 is used in Examples

16.3.10
10.15 to obtain a family of

examples where the Approximation Domain B of Definition
appintdef
5.7 is equal to the

Intersection Domain A of Inclusion Construction
4.4.1
5.3 and is not Noetherian.

9.1. The limit-intersecting condition
7.5fc

In this section we prove Weak Flatness Theorem
7.5.5fc
9.9. This theorem gives con-

ditions for the intersection domain A to be equal to the approximation domain B;
that is, the construction is limit-intersecting. For this purpose, we consider the
following properties of an extension of commutative rings:

7.3.4fc Definitions 9.1. Let ϕ : S ↪→ T be an extension of commutative rings.
wf12 (1) The extension ϕ : S ↪→ T is weakly flat, or T is weakly flat over S, if

every height-one prime ideal P of S with PT 6= T satisfies PT ∩ S = P .
Equivalently, there exists a prime ideal Q of T such that Q ∩ S = P ; see
Exercise

contriffextcontr
11 of Chapter

3tools
2.

h1p12 (2) The extension ϕ : S ↪→ T is height-one preserving, or T is a height-one
preserving extension of S, if, for every height-one prime ideal P of S with
PT 6= T , ht(PT ) = 1; that is, there exists a height-one prime ideal Q of
T with PT ⊆ Q.

Lfd12 (3) For d ∈ N, the extension ϕ : S ↪→ T satisfies LFd (locally flat in height d)
if, for each Q ∈ SpecT with htQ ≤ d, the composite map S → T → TQ
is flat.

115
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16.3.35 Remark 9.2. Let ϕ : S ↪→ T be an extension of commutative rings, and let
Q ∈ SpecT . With P := Q ∩ S, the composite map S → T → TQ factors through
SP , and the map S → TQ is flat if and only if the map SP → TQ is faithfully flat.

6.2.9fp Proposition 9.3. Let ϕ : S ↪→ T be an extension of commutative rings where
S is a Krull domain.

(1) If every nonzero element of S is regular on T and every height-one prime
ideal of S is the contraction of an ideal of T , then S = Q(S) ∩ T .

(2) If S ↪→ T is a birational extension and each height-one prime of S is
contracted from T , then S = T .

(3) If T is a Krull domain and T ∩Q(S) = S, then each height-one prime of
S is the contraction of a height-one prime of T , and the extension S ↪→ T
is height-one preserving and weakly flat.

Proof. Item 1 follows from item 2. For item 2, recall from Remark
Krullrmks
2.12.2

that S = ∩{Sp | p is a height-one prime ideal of S}. We show that T ⊆ Sp, for each
height-one prime ideal of S. Since p is contracted from T , there exists a prime ideal
q of T such that q ∩ S = p; see Exercise

contriffextcontr
11 of Chapter

3tools
2. Then Sp ⊆ Tq and Tq

birationally dominates Sp. Since Sp is a DVR, we have Sp = Tq. Therefore T ⊆ Sp,
for each p. It follows that T = S.

For item 3, since T is a Krull domain, Remark
Krullrmks
2.12.1 implies that

T =
⋂
{Tq | q is a height-one prime ideal of T}.

Hence

S = Q(S) ∩ T =
⋂
{Tq ∩Q(S) | q is a height-one prime ideal of T}.

Since each Tq is a DVR, Remark
3.02.1
2.1 implies that Tq ∩Q(S) is either the field Q(S)

or a DVR birational over S. By Remark
Krullrmks
2.12.2, for each height-one prime p of S,

the localization Sp is a DVR of the form Tq ∩Q(S). It follows that each height-one
prime ideal p of S is contracted from a height-one prime ideal q of T , and that T
is height-one preserving and weakly flat over S. □

Corollary
6.2.14fc
9.4 demonstrates the relevance of the weak flatness property for an

extension of a Krull domain.

6.2.14fc Corollary 9.4. Let ϕ : S ↪→ T be an extension of commutative rings where
S is a Krull domain such that every nonzero element of S is regular on T and
PT 6= T for every height-one prime ideal P of S.

(i) If ϕ : S ↪→ T is weakly flat, then S = Q(S) ∩ T .
(ii) If T is Krull, then T is weakly flat over S ⇐⇒ S = Q(S) ∩ T .
(iii) If T is Krull, the equivalent conditions of item ii imply that ϕ : S ↪→ T is

height-one preserving.

Proof. For item i, the weak flatness condition implies that each height-one
prime ideal of S is contracted from T . Thus S = Q(S) ∩ T , by Proposition

6.2.9fp
9.3.1.

For items ii and iii, apply Proposition
6.2.9fp
9.3.3. □

6.2.9wf Remarks 9.5. Let ϕ : S ↪→ T be an extension of commutative rings.
(a) If S ↪→ T is flat, then S ↪→ T is weakly flat; see

M
[123, Theorem 9.5].
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(b) Let G be a multiplicative system in S consisting of units of T . Then S ↪→
G−1S is flat and every height-one prime ideal of G−1S is the extension of a
height-one prime ideal of S. Thus S ↪→ T is weakly flat ⇐⇒ G−1S ↪→ T
is weakly flat.

6.2.9fc Remarks 9.6. Let S ↪→ T be an extension of Krull domains.
(a) If S ↪→ T is flat, then S ↪→ T is height-one preserving and satisfies PDE;

that is, for every height-one prime ideal Q of T , ht(Q ∩ S) ≤ 1; see
Definition

PDE
2.14 and Bourbaki,

B
[23, Chapitre 7, Proposition 15, page 19].

(b) Let G be a multiplicative system in S consisting of units of T . It follows
as in Remarks

6.2.9wf
9.5.b that:

(i) S ↪→ T is height-one preserving ⇐⇒ G−1S ↪→ T is height-one
preserving.

(ii) S ↪→ T satisfies PDE ⇐⇒ G−1S ↪→ T satisfies PDE.
(c) If each height-one prime ideal of S is the radical of a principal ideal,

in particular, if S is a UFD, then the extension S ↪→ T is height-one
preserving. To see this, let P be a height-one prime of S and suppose that
P is the radical of the principal ideal xS. Then PT 6= T if and only if xT
is a proper principal ideal of T . Every proper principal ideal of a Krull
domain is contained in a height-one prime. Hence if PT 6= T , then PT is
contained in a height-one prime of T .

With these results in hand, we return to the investigation of the structure of the
Intersection Domain A of Inclusion Construction

4.4.1
5.3. Theorem

7.4.5
9.7 gives conditions

that imply the intermediate rings B and A are Krull domains.

7.4.5 Theorem 9.7. Assume the setting and notation of Inclusion Construction
4.4.1
5.3.

In addition assume that R is a Krull domain and R∗ is a normal Noetherian domain.
Then the intermediate rings A and B have the following properties:

alocKr (1) A is a Krull domain.
rwbqapdvr (2) For p ∈ SpecA minimal over xA, let q = p ∩B and a = p ∩R. Then

• p = qA = aA and q = aB.
• Ra ⊆ Bq = Ap, and all three localizations are DVRs.

Bintb1/z (3) B = B[1/x] ∩ Bq1
∩ · · · ∩ Bqr

, where q1, . . . , qr are the prime ideals of B
minimal over xB.

blocKr (4) B is a Krull domain.
zbcapbn (5) xB ∩Bn = (x, τ1n, . . . , τsn)Bn is an ideal of Bn of height s+ 1, for every

n ∈ N.
If R is a UFD and x is a prime element of R, then B is a UFD.

Proof. For property 1, Remark
Krullrmks
2.12.1 implies that A is the intersection of the

Krull domain R∗ with a subfield of Q(R∗), and so A is a Krull domain.
The first part of property

rwbqapdvr
2 follows since R/xR = B/xB = A/xA, from Con-

struction Properties Theorem
11.2.51
5.14.2. Since A is Krull, p has height one and Ap is a

DVR. Since R is a Krull domain and a is a minimal prime of xR, Ra is a DVR and
the maximal ideal of Ra is generated by u ∈ R. It also follows from Theorem

11.2.51
5.14.2

that the maximal ideals of Bq and Ap are principal generated by u. Since Ap is a
DVR,

⋂∞
n=1 u

nAp = (0). It follows that
⋂∞
n=1 u

nBq = (0), and so Bq is a DVR;
see Exercise

locDVR
2 of Chapter

3tools
2. Since Ap has the same field of fractions as Bq, Bq is

birationally dominated by Ap. Thus Bq is the same DVR as Ap.
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For property
Bintb1/z
3, suppose β ∈ B[1/x]∩(Bq1

∩· · ·∩Bqr
) = B[1/x]∩(B\(∪ qi))

−1B.
There exist t ∈ N, a, b, c ∈ B with c /∈ q1 ∪ · · · ∪ qr such that β = a/xt = b/c. If
t = 0, property

Bintb1/z
3 holds.

Therefore suppose that t > 0 and a /∈ xB. Then p1 = q1A . . . , pr = qrA are the
minimal prime ideals of xA in A, by Theorem

11.2.51
5.14.2. Since A is a Krull domain,

A = A[1/x] ∩ Ap1
∩ · · · ∩ Apr

. Hence β ∈ A, and a = xtβ ∈ xA ∩ B = xB, a
contradiction. Thus t = 0 and β = a ∈ B.

For property
blocKr
4, B[1/x] is a localization of B0. Since B0 is a Krull domain,

it follows that B[1/x] is a Krull domain. By property
Bintb1/z
3, B is the intersection of

B[1/x] and the DVR’s Bq1
, . . . , Bqr

, and so B is a Krull domain.
For property

zbcapbn
5, let f ∈ xB ∩Bn. After multiplication by a unit of Bn, we may

assume that f ∈ Un = R[τ1n, . . . , τsn], and hence f has the form

f =
∑

(i)∈Ns

a(i)τ
i1
1n . . . τ

is
sn

with a(i) ∈ R. Since f ∈ xB and every τjn ∈ xB, it follows that the constant term
a(0) of f satisfies a(0) ∈ xB ∩ R ⊆ xR∗ ∩ R = xR, by Theorem

11.2.51
5.14.1. Therefore

a(0) ∈ xR, so that f ∈ (x, τ1n, . . . , τsn)Bn. Furthermore if g ∈ (x, τ1n, . . . , τsn)Bn,
then τin ⊆ xB ∩Bn, and so g ∈ xB ∩Bn. Thus xB ∩Bn = (x, τ1n, . . . , τsn)Bn.

The last statement of Theorem
7.4.5
9.7 holds by Theorem

Bufd
5.24.1. □

Weak Flatness Theorem
7.5.5fc
9.9 asserts that if the base ring R and the ring B are

both Krull domains, and the extension
R[τ1, . . . , τs] ↪→ R∗[1/x]

is weakly flat, then A is equal to B; that is, τ1, . . . , τs are limit-intersecting in the
sense of Definition

4.2li
5.10. If R∗ is a normal Noetherian domain, the converse also

holds.
Observe that, even for the general setting of Inclusion Construction

4.4.1
5.3, weak

flatness of the extension R[τ1, . . . , τs] ↪→ R∗[1/x] holds simultaneously with weak
flatness of several other related extensions, as Proposition

wfforInc
9.8 shows.

wfforInc Proposition 9.8. Assume the setting and notation of Inclusion Construc-
tion

4.4.1
5.3. Let B be the Approximation Domain of Definition

appintdef
5.7. Then the following

statements are equivalent:
(1) The extension U0 := R[τ1, . . . , τs] ↪→ R∗[1/x] is weakly flat.
(2) The extension B ↪→ R∗[1/x] is weakly flat.
(3) The extension B ↪→ R∗ is weakly flat.

If R is a lcoal ring with maximal ideal m, then statements 1-3 are equivalent to
statement 4:

(4) The extension B0 := R[τ1, . . . , τs](m,τ1,...,τs) ↪→ R∗[1/x] is weakly flat.

Proof. For the first part, show statement 3 =⇒ statement 2 =⇒ state-
ment 1 =⇒ statement 3. To see that statement 3 =⇒ statement 2, consider

B
w.f.
↪→ R∗

flat
↪→ R∗[1/x].

Let p be a height-one prime ideal of B with pR∗[1/x] 6= R∗[1/x]. Then pR∗ 6= R∗

and x /∈ p, and so pR∗[1/x] ∩ B = pR∗ ∩ B = p, where the last equality uses
B

w.f.
↪→ R∗. Therefore statement 2 holds.



9.2. HEIGHT-ONE PRIMES IN EXTENSIONS OF KRULL DOMAINS 119

Statement 2 =⇒ statement 1: By Remark
6.2.9wf
9.5.b, the inclusion B

w.f.
↪→ R∗[1/x]

implies B[1/x]
w.f.
↪→ R∗[1/x]. By Construction Properties Theorem

11.2.51
5.14.2, B[1/x] is

a localization of R[τ1, . . . , τs][1/x] = U [1/x] at elements of 1+xU . By Remark
6.2.9wf
9.5.b,

R[τ1, . . . , τs]
w.f.
↪→ R∗[1/x].

To see that statement 1 =⇒ statement 3, let p ∈ SpecB have height one and
suppose pR∗ 6= R∗. If x ∈ p, then Theorem

11.2.51
5.14.3 implies p/xB = pR∗/xR∗, and

so pR∗ ∩B = p in this case.
For the case x /∈ p: First observe that B[1/x] ↪→ R∗[1/x] is weakly flat. To see

this, since U0 = R[τ1, . . . , τs] ↪→ R∗[1/x] is weakly flat by hypothesis, Remark
6.2.9wf
9.5.b

implies U [1/x] = U0[1/x] ↪→ R∗[1/x] is weakly flat. Since B[1/x] is a localization
of U at elements of 1+xU , Remark

6.2.9wf
9.5.b implies that B[1/x] ↪→ R∗[1/x] is weakly

flat, as observed.
Now pR∗[1/x] 6= R∗[1/x] and pB[1/x] ∩B = p. Therefore

pR∗ ∩B ⊆ pR∗[1/x] ∩B[1/x] ∩B = pB[1/x] ∩B = p.

This completes the proof of Proposition
wfforInc
9.8.

By Remark
6.2.9wf
9.5.b, statement 1⇐⇒ statement 4. □

7.5.5fc Weak Flatness Theorem 9.9. Assume Setting
setinclconstr
5.1 and also assume that R

is a Krull domain. Thus x ∈ R is a nonzero nonunit such that the x-adic completion
R∗ of R is Noetherian. Also τ1, . . . , τs ∈ xR∗ are algebraically independent over R,
and every nonzero element of the polynomial ring R[τ1, . . . , τs] is regular on R∗. Let
A = Q(R)(τ1, . . . , τs)∩R∗, as in Construction

4.4.1
5.3, and let B be the Approximation

Domain of Definition
appintdef
5.7.

(1) If B is a Krull domain and R[τ1, . . . , τs] ↪→ R∗[1/x] is weakly flat, then
A = B; that is, τ1, . . . , τs are limit-intersecting as in Definition

4.2li
5.10.

(2) If R∗ is a normal Noetherian domain, then weak flatness of R[τ1, . . . , τs] ↪→
R∗[1/x] is equivalent to A = B.

Proof. For item 1: Since B is a Krull domain and the extension B ↪→ A
is birational, by Proposition

6.2.9fp
9.3.2, it suffices to show that every height-one prime

ideal p of B is contracted from A. If x ∈ p, then by Construction Properties
Theorem

11.2.51
5.14.3, p/xB = pA/xA, and so p is contracted from A.

Let p be a height-one prime ideal of B that does not contain xB. By Propo-
sition

wfforInc
9.8 the extension B ↪→ R∗ is weakly flat, and by Proposition

11.2.52
5.17.1, pR∗ 6=

R∗. Hence there exists a prime ideal a of R∗ with a ∩ B = p. It follows that
(a ∩A) ∩B = p. Therefore every height-one prime ideal of B is is contracted from
A. Thus A = B as desired.

To prove item 2, since R∗ is a normal Noetherian domain, B is a Krull domain,
and so one direction holds.

For the other direction, R∗ is a Krull domain; see Remark
Krullrmks
2.12.1. Since B =

A = Q(B) ∩R∗, Proposition
6.2.9fp
9.3 implies the extension B ↪→ R∗ is weakly flat. □

7.5.5nwf Remark 9.10. In Theorem
7.5.5fc
9.9, the map ψ : B ↪→ R∗ being weakly flat does

not imply that R[τ1, . . . , τs] ↪→ R∗ is weakly flat; see Exercise
nwfex
1.

9.2. Height-one primes in extensions of Krull domains
h1Krull

We observe in Proposition
6.2.10fc
9.11 that a weakly flat extension of Krull domains

is height-one preserving.
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6.2.10fc Proposition 9.11. If ϕ : S ↪→ T be a weakly flat extension of Krull domains.
For every height-one prime ideal P of S with PT 6= T , there exists a height-one
prime ideal Q of T with Q ∩ S = P . Thus ϕ is height-one preserving.

Proof. Let P ∈ SpecS with htP = 1 be such that PT 6= T . By Exercise
contriffextcontr
11

of Chapter
3tools
2, there exists a prime ideal Q′ of T such that Q′ ∩ S = P . Let a be a

nonzero element of P and let Q ⊆ Q′ be a minimal prime divisor of aT . Since T is
a Krull domain, Q has height one. We have a ∈ Q ∩ S. Hence (0) 6= Q ∩ S ⊆ P .
Since htP = 1, we have Q ∩ S = P . □

7.3.6fc Examples 9.12. The height-one preserving condition does not imply weak flat-
ness. We present two examples: Let x and y be variables over a field k.

(1) Let ϕ : S := k[x, y] ↪→ T := k[x, yx ]. Since S is a UFD, the map ϕ is
height-one preserving by Remark

6.2.9fc
9.6. To see that ϕ is not weakly flat, let P = xS.

(2) The second example arises from Inclusion Construction
4.4.1
5.3. Let R :=

k[[x]][y](x,y) and let C = k[[x, y]]. There exists an element τ ∈ n = (x, y)C that is
algebraically independent over Q(R). Fix such an element τ , and let S := R[τ ](m,τ).
Since R is a UFD, the ring S is also a UFD and the local inclusion map ϕ : S ↪→ C
is height-one preserving. There exists a height-one prime ideal P of S such that
P ∩ R = 0. Since the map S ↪→ C is a local map, we have PC 6= C. Because
ϕ is height-one preserving, there exists a height-one prime ideal Q of C such that
PC ⊆ Q. Fix such a prime ideal Q of C. Since C is the m-adic completion R̂ of
R and the generic formal fiber of R is zero-dimensional, dim(C ⊗R Q(R)) = 0; see
Discussion

3.21d
3.29 and Exercise 1 of Chapter

motiv
12. Hence Q∩R 6= 0. We have P ⊆ Q∩S

and P ∩ R = (0). It follows that P is strictly smaller than Q ∩ S, so Q ∩ S has
height greater than one. Therefore the extension ϕ : S ↪→ C is not weakly flat.

Proposition
6.5.1
9.13 describes weakly flat and PDE (pas d’éclatment1) extensions.

6.5.1 Proposition 9.13. Let ϕ : S ↪→ T be an extension of Krull domains.
(1) ϕ is weakly flat ⇐⇒ for every height-one prime ideal P ∈ SpecS such

that PT 6= T there is a height-one prime ideal Q ∈ SpecT with P ⊆ Q∩S
such that the induced map on the localizations

ϕQ : SQ∩S −→ TQ

is faithfully flat.
(2) ϕ satisfies PDE ⇐⇒ for every height-one prime ideal Q ∈ SpecT , the

induced map on the localizations
ϕQ : SQ∩S −→ TQ

is faithfully flat.

Proof. For the proof of item 1, to see ( ⇐= ), we use that ϕQ a ot flat
map implies ϕQ satisfies the Going-down property; see Remark

remflat
2.37.

flgd
10. Hence

ht(Q∩S) = 1, and so P = Q∩S; thus PT ∩S = P . For ( =⇒ ), assume P ∈ SpecS
has height one, PT 6= T , and ϕ is weakly flat. Then Proposition

6.2.10fc
9.11 implies the

existence of Q ∈ SpecT of height one such that Q ∩ S = P . By Remarks
Krullrmks
2.12.1

and
remflat
2.37.2, ϕQ is flat. Since the rings are local the extension is faithfully flat.
For the proof of item 2, ( =⇒ ), let Q ∈ Spec(T ) have height one. Then PDE

implies that P = Q∩S has height at most one, and so SP is a DVR or a field. The

1See Definition
PDE
2.14
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extension is flat by Remarks
remflat2
2.39, and so the extension is faithfully flat. The (⇐= )

direction follows from the fact that a faithfully flat map satisfies the Going-down
property. □

Corollary
6.5.4
9.14 is an immediate consequence of Proposition

6.5.1
9.13:

6.5.4 Corollary 9.14. Let ϕ : S ↪→ T be an extension of Krull domains. Then ϕ
satisfies PDE if and only if ϕ satisfies LF1.

wflatnotPDE Example 9.15. A weakly flat extension of Krull domains ϕ : S ↪→ T need not
satisfy LF1. Let x, y and z be variables over a field k, let S = k[x, y], and let
T = S[z, x/z, y/z]. Then

(1) T [1/z] is a free S-module.
(2) The extension S ↪→ T [1/z] = S[z, 1/z] is faithfully flat.
(3) S = T [1/z] ∩Q(S) = T ∩Q(S); by Proposition

6.2.9fp
9.3.3, ϕ is weakly flat.

(4) Q = zT ∈ SpecT , htQ = 1, and Q ∩ S = (x, y)S =⇒ ht(Q ∩ S) = 2.
(5) S ↪→ TQ is not flat.

We show in Proposition
6.2.11
9.16 that an extension of Krull domains satisfying

both the LF1 condition and the height-one preserving condition is weakly flat.
Example

6.2.13
9.17 shows that LF1 alone does not imply weak flatness.

6.2.11 Proposition 9.16. Let ϕ : S ↪→ T be an extension of Krull domains that is
height-one preserving and satisfies PDE (equivalently, LF1). Then ϕ is weakly flat.

Proof. Let P ∈ SpecS be such that ht(P ) = 1 and PT 6= T . Since S ↪→ T
is height-one preserving, PT is contained in a prime ideal Q of T of height one.
The PDE hypothesis on S ↪→ T implies that Q ∩ S has height one. It follows that
Q ∩ S = P , and so PT ∩ T = P . Thus ϕ is weakly flat. □

Without the assumption that ϕ : S ↪→ T is height-one preserving, it can happen
that ϕ satisfies PDE and yet is not weakly flat.

6.2.13 Example 9.17. For extensions of Krull domains, PDE does not imply weakly
flat. Since PDE and height-one preserving imply weak flatness, this example also
shows that PDE does not imply height-one preserving. Let X,Y, Z,W be indeter-
minates over a field k and define

S := k[x, y, z, w] =
k[X,Y, Z,W ]

(XY − ZW )
and T := S[

x

z
].

Since w = yx
z , the ring T = k[y, z, xz ]. Since Q(T ) has transcendence degree 3

over k, the elements y, z, xz are algebraically independent over k and T = k[y, z, xz ]
is a polynomial ring in three variables over k. Let A = k[X,Y, Z,W ] and let
F = XY − ZW . Then S = A/FA and and the partials of F generate a maximal
ideal of A. It follows that Sp is regular for each nonmaximal prime ideal p of
S; see for example

M
[123, Theorem 30.3]. Since S is Cohen-Macaulay, it follows

from Serre’s Normality Theorem
Serrent
2.9 that S is a normal Noetherian domain. By

Remark
Krullrmks
2.12.1, S is a Krull domain. The ideal P := (y, z)S is a height-one prime

ideal of S because F ∈ (Y, Z)A and P is isomorphic to the height-one prime ideal
(Y, Z)A/FA. Since PT = (y, z)T and w

y = x
z , we have (y, z)T ∩ S = (y, z, x, w)S,

a maximal ideal of S. Thus the extension S ↪→ T is not weakly flat.
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Another way to realize this example is to let r, s, t be indeterminates over the
field k, and let S = k[r, s, rt, st] ↪→ k[r, s, t] = T . Here we set r = y, s = z, rt = w
and st = x. Then P = (r, s)S. We observe that

(
6.2.13
9.17.0)

T ⊆
⋂
{SQ | Q ∈ SpecS , htQ = 1 and Q 6= P }

⊆
∞⋃
n=1

(S :Q(S) P
n) ⊆ S [

1

r
] ∩ S [

1

s
]

⊆ T [
1

r
] ∩ T [

1

s
] ⊆ T.

To see the first inclusion in Equation
6.2.13
9.17.0, let Q be a height-one prime ideal of S

with Q 6= P . Then r /∈ Q or s /∈ Q and so T ⊆ SQ. For the inclusions in the second
line, see Exercise

brewerex
4 at the end of this chapter and

Brewer
[25]. The first inclusion in the

third line is obvious, and the last inclusion follows because r and s are nonassociate
prime elements of the UFD T . It follows that, if F(T ) is the family of essential
valuations for T and F(S) is the family of essential valuation rings for S, then
F(T ) = F(S) \ {SP }; see Remarks

Krullrmks
2.12.2. Therefore every height-one prime ideal

of T lies over a height-one prime ideal of S, and so the extension ϕ : S ↪→ T satisfies
PDE.

9.3. Flatness for Inclusion Construction
4.4.1
5.316.inc

In this section we examine flatness in the setting of Inclusion Construction
4.4.1
5.3.

We use the non-flat locus as in Definition
nfldef
2.40.

7.5.612 Remarks 9.18. Assume the setting of Weak Flatness Theorem
7.5.5fc
9.9. Thus R is

a Krull domain. Let τ = {τ1, . . . , τs}.
(1) Assume thatR∗ is a normal Noetherian domain. Then the extensionR[τ ] ↪→

R∗[1/x] is weakly flat ⇐⇒ A = B. By Proposition
6.2.10fc
9.11 and Proposition

wfforInc
9.8, if

B ↪→ R∗ is weakly flat, then B ↪→ R∗ is height-one preserving. By Theorem
7.5.5fc
9.9.2,

A = B implies B ↪→ R∗ is height-one preserving.
(2) If the ring B is Noetherian, then, by Noetherian Flatness Theorem

11.3.25
6.3,

A = B and R[τ ] ↪→ R∗[1/x] is flat. Since flatness implies weak flatness, we have
R[τ ] ↪→ R∗[1/x] is weakly flat. By Theorem

7.5.5fc
9.9, we also have that B ↪→ R∗[1/x]

and B ↪→ R∗ are weakly flat.
(3) Examples

16.3.10
10.15 describes examples where the constructed rings A and B

are equal, but are not Noetherian. The limit-intersecting property holds for these
examples.

(4) By Remark
wfnpde
22.39, Examples

6.4.8
22.36 and

6.4.10
22.38 yield extensions of Krull do-

mains that are weakly flat but do not satisfy PDE.

16.3.4 Proposition 9.19. Assume the setting of Weak Flatness Theorem
7.5.5fc
9.9, so that

R is a Krull domain. Let α : S := R[τ ] ↪→ R∗[1/x]. Then:
(1) Assume that there exists an ideal L of R∗ such that the non-flat locus

of the extension α is determined by LR∗[1/x]; that is, for every Q∗ of
Spec(R∗[1/x]), LR∗[1/x] ⊆ Q∗ ⇐⇒ αQ∗ : S := R[τ ] ↪→ (R∗[1/x])Q∗ is
not flat. Then ht(LR∗[1/x]) > 1 ⇐⇒ α : S → R∗[1/x] satisfies LF1.

(2) Assume that R∗ is a normal Noetherian domain, that each height-one
prime of R is the radical of a principal ideal, and that α satisfies LF1.
Then B = A.
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Proof. Item 1 follows from the definition of LF1; see Definition
7.3.4fc
9.1.

Lfd12
3.

For item 2, assume R∗ is a normal domain and each height-one prime of R is
the radical of a principal ideal. Proposition

dcgKrullpoly
2.17 and Fact

Krullradprinc
2.19 imply that every

height-one prime ideal of S is the radical of a principal ideal. Then the extension
R ↪→ R∗ is height-one preserving by Remark

6.2.9fc
9.6.c. By Proposition

6.2.11
9.16 , the

extension is weakly flat. Theorem
7.5.5fc
9.9.2 implies that B = A. □

Proposition
16.3.4
9.19 leads to the following questions:

lf1impwf Question 9.20. Assume the setting of Weak Flatness Theorem
7.5.5fc
9.9, and that

both R and R∗ are normal Noetherian domains. If α : S = R[τ ]→ R∗[1/x] satisfies
LF1, then is A = B, or, equivalently, is α necessarily weakly flat?

polyht1p Question 9.21. Assume the setting of Weak Flatness Theorem
7.5.5fc
9.9, and that

both R and R∗ are normal Noetherian domains. Then β : R ↪→ R∗[1/x] is height-
one preserving since it is flat (a composition of a completion map with a local-
ization). Is the local inclusion map α : S := R[τ ](m,τ) ↪→ R∗[1/x] height-one
preserving?

lf1impwfrem Remark 9.22. Assume the setting of Question
lf1impwf
9.20.

(1) If we assume in addition that every height-one prime ideal of R is the
radical of a principal ideal, then the answer to both Question

lf1impwf
9.20 and

polyht1p
9.21

is “Yes”. For Question
lf1impwf
9.20, this follows from Proposition

16.3.4
9.19.2. For

Question
polyht1p
9.21, this follows since the height-one prime ideals of R[τ ] are

also radicals of principal ideals by Proposition
dcgKrullpoly
2.17. By Remark

6.2.9fc
9.6.c, we

have that α : S := R[τ ](m,τ) ↪→ R∗[1/x] is height-one preserving.
(2) If the answer to Question

polyht1p
9.21 is “Yes”, then the answer to Question

lf1impwf
9.20 is

“Yes”, since if α : S = R[τ ]→ R∗[1/x] satisfies LF1 and also is height-one
preserving, then Proposition

6.2.11
9.16 implies that α is weakly flat.

The notation for Diagram
wfdiag
9.23.0 is given in Notation

wfdiag
9.23.

6.2.14fc
9.4.ii

(PT 6=T, ∀h1P ) + WF (PT 6=T, ∀h1P ) + (S=Q(S)∩T ) Flat

WF

7.3.6fc
9.12

6.2.13
9.17

7.5.612
9.18.4

6.2.9fc
9.6.a

6.2.11
9.16

S = Q(S) ∩ T1Contr
6.2.9fp
9.3.1,3

PDE

H1P + PDE

6.2.9fp
9.3.3

H1rp

6.2.9fc
9.6.c

6.2.10fc
9.11

6.5.4
9.14

LF1H1P

Diagram
wfdiag
9.23.0
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wfdiag Notation 9.23. Let S ↪→ T be an extension of Krull domains. Diagram
wfdiag
9.23.0

shows the relationships among the various properties of the extension discussed in
this chapter. We use that S and T Krull domains implies the regularity condition of
Proposition

6.2.9fp
9.3.1 and Corollary

6.2.14fc
9.4; that is, 0 6= s ∈ S =⇒ s is a regular element

of T . For convenience, we abbreviate other properties as follows:
“PT 6= T, ∀h1P” means, “for every height-one prime ideal P of S, PT 6= T ;
“WF”:=“S → T is weakly flat” [Definition

7.3.4fc
9.1.

wf12
1]; “1Contr”:= Every height-

one prime ideal P of S is the contraction of a height-one prime ideal Q of T .”
“Flat”:= “S → T is flat”; “H1rp”:= Every height-one prime ideal of S is the
radical of a principal ideal”; ‘ ‘H1P”:= “height-one preserving” [Definition

7.3.4fc
9.1.

h1p12
2];

“LF1”:=”Locally flat in height one” [Definition
7.3.4fc
9.1.

Lfd12
3]; “PDE”:=“No blowing-up”

[Definition
PDE
2.14]”.

Exercises
nwfex (1) The following construction gives an example for Remark

7.5.5nwf
9.10. LetR = k[x, y](x,y)

and let τ =
∑
i=1 cix

i ∈ xk[[x]] be algebraically independent over k(x), with
each ci ∈ k. Let the Approximation Domain B be a Local Prototype as in
Local Prototype Example

proexample
4.26. Justify the following assertions:

(a) B is Noetherian.
(b) ψ : B ↪→ R∗ is weakly flat.
(c) The extension R[τ ] ↪→ R∗ is not weakly flat.
(d) The extension R[τ ] ↪→ R∗ is never weakly flat.
Suggestion: For the last statement, consider the prime ideal P = xR[τ ].

(2) Let T = k[x, y, z] be a polynomial ring in the 3 variables x, y, z over a field k,
and consider the subring S = k[xy, xz, yz] of T .
(a) Prove that the field extensionQ(T )/Q(S) is algebraic with [Q(T ) : Q(S)] =

2.
(b) Deduce that xy, xz, yz are algebraically independent over k, so S is a

polynomial ring in 3 variables over k.
(c) Prove that the extension S ↪→ T is height-one preserving, but is not weakly

flat.
(d) Prove that T∩Q(S) = S[x2, y2, z2] is a Krull domain that properly contains

S.
(e) Prove that the map S ↪→ T [ 1

xyz ] is flat.
(f) Prove that S[ 1

xyz ] = T [ 1
xyz ]. (Notice that S[ 1

xyz ] is not a localization of S
since xyz is not in Q(S).)

contracted (3) In the case where T is also a Krull domain, give a direct proof using primary
decomposition of the assertion in Corollary

6.2.14fc
9.4 that S = Q(S)∩ T implies T is

weakly flat over S.
Suggestion. Let p be a height-one prime ideal of S and let 0 6= a ∈ p.
Since T is a Krull domain, the principal ideal aT has an irredundant primary
decomposition

aT = Q1 ∩ · · · ∩Qs,

where each Qi is primary for a height-one prime ideal Pi of T .
(b) Show that aS = Q(S) ∩ aT .
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(c) Show that after relabeling there exists an integer t ∈ {1, . . . , s} such
that the ideal Q1 ∩ . . . ∩ Qt ∩ S is the p-primary component of aS. Conclude
that Pi ∩ S = p, for some i.

brewerex (4) Let A be an integral domain and let I be an ideal generated by the nonzero
elements a1, . . . , ar of A. Let F = {P ∈ SpecA | I * P}. For each n ∈ N
define I−n := (A :Q(A) I

n). Prove that

T : =

∞⋃
n=1

I−n =

r⋂
i=1

A
[ 1
ai

]
=
⋂
P∈F

AP .

Comment. Exercise
brewerex
4 is a result proved by Jim Brewer

Brewer
[25, Prop. 1.4 and

Theorem 1.5]. The ring T is called the I-transform of A. Ideal transforms were
introduced by Nagata

N8
[139, pp. 35-50] to study the Zariski problem related to

the Fourteenth Problem of Hilbert. For a nonzero ideal I of a Krull domain A,
the I-transform of A is again a Krull domain.

(5) Let A be an integral domain and let I be a nonzero proper finitely generated
ideal of A. Let T be the I-transform of A as in Exercise

brewerex
4, and let

S = {1 + a | a ∈ I }.
Prove that S is a multiplicatively closed subset of A and A = S−1A ∩ T .

(6) Let (R,m) be a 3-dimensional regular local domain with m = (x, y, z)R, let
p = xR and let V = Rp. Then V is an essential valuation ring for the Krull
domain R, and R/p is a 2-dimensional regular local domain. Let w = x−y2

z and
let T = R[w](y,z,w)R[w].
(a) Prove that T is a 3-dimensional regular local domain that birationally

dominates R and is such that T ⊂ V .
(b) Prove that V is an essential valuation ring for the Krull domain T .
(c) Let q be the height-one prime ideal of T such that Tq = V . Find an element

in T that generates q.
(d) Prove that T/q is a 2-dimensional local domain that birationally dominates

the 2-dimensional regular local domain R/p and that T/q is not regular.





CHAPTER 10

Insider Construction detailsinsidecon

In this chapter we continue the development of Insider Construction begun
in Section

introIns
6.2. Insider Construction

16.1.1
10.7 is a more general construction than the

version given in Section
introIns
6.2. The base ring R is a Noetherian domain that is not

necessarily a polynomial ring over a field.
An Intersection Domain D constructed using Inclusion Construction

4.4.1
5.3 is

called a Noetherian Limit Intersection Domain if the equivalent conditions of Noe-
therian Flatness Theorem

11.3.25
6.3.1 hold. Inside a Noetherian Limit Intersection Do-

main D, it is possible to “iterate” the construction procedure so that inside D there
are two integral domains: an intersection A of a field with an ideal-adic completion
of R and a domain B that is a nested union of localized polynomial rings over R
that “approximates” A. We show that B is Noetherian and equal to A if a certain
map of polynomial rings over R is flat.

In Section
11.4
10.1 we present Prototypes; they are Intersection Domains E ob-

tained using Inclusion Construction
4.4.1
5.3 in the standard Setting

11.4.1set
10.1, where R is a

polynomial ring over a field k, R∗ is the completion of R with respect to the vari-
able x and τ ⊆ xk[[x]]. The Noetherian Flatness Theorem

11.3.25
6.3 holds for Prototypes,

and so E equals the associated Approximation Domain. We show in Prototype
Theorem

11.4.1a
10.2 that Prototypes are localized polynomial rings over DVRs. As such,

they are always excellent if the underlying DVR is excellent.
Prototype Theorem

11.4.1a
10.2 is used in many of our examples . It is vital to the

Insider Construction and the rest of this chapter. Proposition
16.5.18
10.4 domonstrates

the importance of requiring characteristic zero in order to obtain excellence.
In Section

17.22
10.2, we describe background and notation for Insider Construc-

tion
16.1.1
10.7. Theorem

16.3.2
10.9 of Section

16.2n
10.3 gives necessary and sufficient conditions

for the integral domains constructed with Insider Construction
16.1.1
10.7 to be Noether-

ian and equal. We apply the analysis of flatness for polynomial extensions from
Chapter

flatpoly
7 to obtain a general flatness criterion for Insider Construction

16.1.1
10.7. This

yields examples where the constructed domains A and B are equal and are not
Noetherian.

In Section
8.3
10.4 we discuss the preservation of excellence for Insider Construc-

tion
16.1.1
10.7. Assume the Intersection Domain A and the Approximation Domain B

that result from the Insider Construction are equal and Noetherian and the base
ring R is excellent. Theorem

8.3.7
10.17 gives necessary and sufficient conditions for A

to be excellent.
Insider Construction

16.1.1
10.7 is a maneuver for constructing examples. We use it

in Chapters
intclsec
11,

insidepssec
14,

insideps1.5
15, and

insideps2
16.

127
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10.1. Localized polynomial rings over special DVRs
11.4

As stated above, “Prototypes” are intersection domains A obtained using In-
clusion Construction

4.4.1
5.3 with the “standard” Setting

11.4.1set
10.1. The Prototypes that

arise with this setting are polynomial rings over special DVRs that are equal to
their approximation domains.

For convenience, the definitions of the intersection and approximation domains
corresponding to the construction from Section

4.45
5.2 are given again.

11.4.1set Setting 10.1. Let x be an indeterminate over a field k. Let r be a nonnegative
integer and s a positive integer. Assume that τ1, . . . , τs ∈ xk[[x]] are algebraically
independent over k(x) and let y1, . . . , yr be additional indeterminates. We define
the following rings:

(
11.4.1set
10.1.a) R := k[x, y1, . . . , yr], R

∗ = k[y1, . . . , yr][[x]], V = k(x, τ1, . . . , τs)∩k[[x]].

Notice that R∗ is the x-adic completion of R and V is a DVR.
The “Prototype” is described using the Intersection Domain of Inclusion Con-

struction
4.4.1
5.3 and the Approximation Domain of Section

4.45
5.2. Its development is

similar to that of the Local Prototype of Definition
prodef
4.28:

(
11.4.1set
10.1.b) D := k(x, y1, . . . , yr, τ1, . . . τs) ∩R∗, E := (1 + xU)−1U,

where U :=
⋃
Uj∈N0

, each Uj = R[τ1j , . . . τsj ], each τij is the jth endpiece of τi and
each τi ∈ R∗, for 1 ≤ i ≤ s. By Construction Properties Theorem

11.2.51
5.14.

compR*
3, the ring

R∗ is the x-adic completion of each of the rings D,E and U .

11.4.1a Prototype Theorem 10.2. Assume Setting
11.4.1set
10.1. Thus the ring R := k[x, y1, . . . , yr]

and R∗ = k[y1, . . . , yr][[x]]. Let V,D and E be as defined in Equations
11.4.1set
10.1.a

and
11.4.1set
10.1.b. Then:
(1) The canonical map α : R[τ1, . . . τs] ↪→ R∗[1/x] is flat.
(2) D = E is Noetherian of dimension r + 1 and is the localization

(1 + xV [y1, . . . , yr])
−1V [y1, . . . , yr] of the polynomial ring V [y1, . . . , yr]

over the DVR V . Thus D is a regular integral domain.
(3) E is a directed union of localizations of polynomial rings in r + s + 1

variables over k.
(4) If k has characteristic zero, then the ring E = D is excellent.

Proof. The map k[x, τ1, . . . τs] ↪→ k[[x]][1/x] is flat by Remark
remflat
2.37.

iFfl
4 since

k[[x]][1/x] is a field. By Fact
tensorflat
2.38

k[x, τ1, . . . τs]⊗k k[y1, . . . , yr] ↪→ k[[x]][1/x]⊗k k[y1, . . . , yr]

is flat. We also have k[[x]][1/x]⊗k k[y1, . . . , yr] ∼= k[[x]][y1, . . . , yr][1/x] and

k[x, τ1, . . . τs]⊗k k[y1, . . . , yr] ∼= k[x, y1, . . . , yr][τ1, . . . τs].

Hence the natural inclusion map

k[x, y1, . . . , yr][τ1, . . . τs]
β
↪→ k[[x]][y1, . . . , yr][1/x]

is flat. Also k[[x]][y1, . . . , yr] ↪→ k[y1, . . . , yr][[x]] is flat since it is the map taking a
Noetherian ring to an ideal-adic completion; see Remark

3.38.0
3.3.

N*fl
2. Therefore

k[[x]][y1, . . . , yr][1/x]
δ
↪→ k[y1, . . . , yr][[x]][1/x]
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is flat. It follows that the map

k[x, y1, . . . , yr][τ1, . . . τs]
δ◦β
↪→ R∗[1/x] = k[y1, . . . , yr][[x]][1/x]

is flat. Thus the Noetherian Flatness Theorem
11.3.25
6.3 implies E = D and E is Noe-

therian, and so we have proved items 1, 3 and part of item 2.
To see E is the localization described in item 2, we use that V [y1, . . . , yr] ⊆ D

and that x is in the Jacobson radical of D by Construction Properties Theorem
11.2.51
5.14.

Thus every element of 1 + xV [y1, . . . , yr] is invertible in D. Hence
(1 + xV [y1, . . . , yr])

−1V [y1, . . . , yr] ⊆ D.
Since each Un is contained in V [y1, . . . , yr], we have U ⊆ V [y1, . . . , yr]. We also have
E = (1 + xU)−1U , and so E ⊆ (1 + xV [y1, . . . , yr])

−1V [y1, . . . , yr]. This completes
item 2.

For item 4, if k has characteristic zero, then V is excellent by Remark
3.435
3.48;

hence item 4 follows from item 2 since excellence is preserved under localization of a
finitely generated algebra by Remark

3.435
3.48. For more details see

M1
[121, (34.B),(33.G)

and (34.A)],
G
[63, Chap. IV]. □

proicdef Definition 10.3. For integers r and s, indeterminates x, y1, . . . , yr over a field
k, and elements τ1, . . . τs ∈ k[[x]] that are algebraically independent over k(x), we
refer to the ring

D := k(x, y1, . . . , yr, τ1, . . . τs) ∩ k[y1, . . . , yr][[x]]

= (1 + xV [y1, . . . , yr])
−1V [y1, . . . , yr],

where k[x, y1, . . . , yr] and V is the DVR k(x, τ1, . . . , τs)∩k[[x]], as a Prototype. The
ring D depends upon the field k, the integers r and s, and the choice of τ1, . . . τs,
and D is also called an Inclusion Construction Prototype.

We observe in Proposition
16.5.18
10.4 that over a perfect field k of characteristic

p > 0 (so that k = k1/p) a one-dimensional form of the construction in Prototype
Theorem

11.4.1a
10.2 yields a DVR that is not a Nagata ring, defined in Definition

Nag
2.20,

and thus is not excellent; see Remark
3.435
3.48,

M
[123, p. 264],

M1
[121, Theorem 78,

Definition 34.A].

16.5.18 Proposition 10.4. Let k be a perfect field of characteristic p > 0, let the
element τ of xk[[x]] be such that x and τ are algebraically independent over k and
set V := k(x, τ) ∩ k[[x]]. Then V is a DVR for which the integral closure V of
V in the purely inseparable field extension k(x1/p, τ1/p) is not a finitely generated
V -module. Hence V is not a Nagata ring and so is not excellent.

Proof. It is clear that V is a DVR with maximal ideal xV . Since x and τ
are algebraically independent over k, [k(x1/p, τ1/p) : k(x, τ)] = p2. Let W denote
the integral closure of V in the field extension k(x1/p, τ) of degree p over k(x, τ).
Notice that

W = k(x1/p, τ) ∩ k[[x1/p]] and V = k(x1/p, τ1/p) ∩ k[[x1/p]]

are both DVRs having residue field k and maximal ideal generated by x1/p. Thus
V = W + x1/pV . If V were a finitely generated W -module, then by Nakayama’s
Lemma it would follow that W = V . This is impossible because V is not birational
over W . It follows that V is not a finitely generated V -module, and hence V is not
a Nagata ring. □
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perfnexc Remark 10.5. Let V = k(x, τ) ∩ k[[x]], let D be as in Setting
11.4.1set
10.1 with

s = r = 1, and suppose that k is a perfect field with characteristic p > 0.
By Proposition

16.5.18
10.4, the ring V is not excellent. By Prototype Theorem

11.4.1a
10.2.2,

D = (1 + xV [y])−1V [y], and so the ring V is a homomorphic image of D. Since
excellence is preserved by taking homomorphic images, the two-dimensional regu-
lar ring D is not excellent in this situation; see Remark

3.435
3.48. The same argument

applies if we put more variables in place of y, that is, y1, ..., yr, as in Theorem
11.4.1a
10.2.

In general, over a perfect field of characteristic p > 0, the Noetherian regular ring
D = E obtained in Prototype Theorem

11.4.1a
10.2 fails to be excellent.

We give below a localized form of Prototype Theorem
11.4.1a
10.2, with the rings R, D,

and E local. This works out to be the same as our first version of the Local Proto-
type given in Local Prototype Example

proexample
4.26, Proposition

proprop
4.27 and Definition

prodef
4.28,

because of Remark
4.211
5.16.4.

More explicitly, consider two versions of the construction:
∞⋃
j=1

(Uj)mj
= UmU

=

∞⋃
j=1

(U ′j)m′
j
= U ′mU′ , where U =

∞⋃
j=1

Uj , U
′ =

∞⋃
j=1

U ′j ,

Uj =k[x, y1, . . . , yr](x,y1,...,yr)[τ1j , . . . , τsj ], mj = (x, y1, . . . , yr, τ1j , . . . , τsj)Uj ,

U ′j =k[x, y1, . . . , yr, τ1j , . . . , τsj ], m′j = (x, y1, . . . , yr, τ1j , . . . , τsj)U
′
j ,

mU =(x, y1, . . . , yr)U and m′U = (x, y1, . . . , yr)U
′.

Then, with Setting
11.4.1set
10.1, the ring E is a localization of U =

⋃∞
j=1 Uj , where

each Uj = R[{τij}si=1], and E is also a localization of U ′ =
⋃∞
j=1 U

′
j , where each

U ′j = k[x, {ys}rs=1, {τij}si=1]. This simpler second form U ′ of U is used in Chap-
ters

insidepssec
14 and

insideps2
16.

11.4.11ic Local Prototype Theorem 10.6. If we adjust Setting
11.4.1set
10.1 so that the base

ring is the regular local ring R := k[x, y1, . . . , yr](x,y1,...,yr), then, for the Localized
Prototype (Intersection Domain)

D := k(x, y1, . . . , yr, τ1, . . . , τs) ∩ k[y1, . . . , yr](y1,...,yr)[[x]]

of Inclusion Construction
4.4.1
5.3, the conclusions of Prototype Theorem

11.4.1a
10.2 are still

valid; i.e.:
(1) With E = (1 + xU)−1U and V = k(x, τ1, . . . , τs) ∩ k[[x]], we have

D = E = V [y1, . . . , yr](x,y1,...,yr)

is a Noetherian regular local ring, and the extension R[τ1, . . . , τs] →
R∗[1/x] is flat. In addition, E =

⋃∞
j=1(Uj)mj = UmU

=
⋃∞
j=1(U

′
j)m′

j
=

U ′mU′ , where U and U ′ are as defined above.
(2) If k has characteristic zero, then Local Prototype D is excellent.

Proof. The proof of Theorem
11.4.1a
10.2 applies to the localized polynomial rings.

The statements about the rings U and U ′ follow from Remark
4.211
5.16. □

10.2. Describing the construction
17.22

The setting for Insider Construction
16.1.1
10.7 includes Noetherian domains that are

not necessarily local. Thus it generalizes Settings
16.1.1g
6.18 and

16.2.2g
6.21.
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16.1.1 Insider Construction 10.7. Let R be a Noetherian integral domain with
field of fractions Q(R) = K. Let x be a nonzero nonunit of R and let R∗ be the
x-adic completion of R. Let τ1, . . . , τs ∈ xR∗ be algebraically independent over K,
and let τ abbreviate the list τ1, . . . , τs. Assume that K(τ) ⊆ Q(R∗), the total ring
of fractions of R∗, and that

T := R[τ ] = R[τ1, . . . , τs]
ψ
↪→ R∗[1/x]

is flat. Define D := K(τ) ∩ R∗. Since the map ψ is flat, Noetherian Flatness
Theorem

11.3.25
6.3 implies the integral domain D is a Prototype.

We construct “insider” examples inside D as follows: Choose polynomials
f1, . . . , fm in T := R[τ ] that are algebraically independent over K. Assume that
each fi ∈ (τ)T ⊆ xR∗, and abbreviate f1, . . . , fm by f . We have m ≤ n.

Define the Intersection Domain A := K(f) ∩ R∗, as in Inclusion Construc-
tion

4.4.1
5.3, and let B be the approximation domain corresponding to f , as in Sec-

tion
4.45
5.2. We have B ⊆ D. By Construction Properties Theorem

11.2.51
5.14.

Rt1/z
4, the integral

domains D[1/x] and B[1/x] are localizations of R[τ ] and R[f ], respectively,
Set S := R[f ] = R[f1, . . . , fm], let ϕ be the embedding

(
16.1.1
10.7.1) ϕ : S : = R[f ]

φ
↪→ T := R[τ ],

and let ψ be the inclusion map: R[τ ] ↪→ R∗[1/x]. Put α := ψ ◦ ϕ : S → R∗[1/x].
Then we have

R∗[1/x]

R ⊆ S := R[f ] T := R[τ ].
ψ

α:=ψφ(
16.1.1
10.7.2)

φ

Theorem
InsIncThm
6.17 of Chapter

noeflic
6 shows in a special case if ϕx : S ↪→ T [1/x] is flat,

then A is Noetherian and is equal to the approximation domain B. In Section
16.2n
10.3

we show this more generally.
16.111 Remark 10.8. If R is a Noetherian local domain, then R∗ is local and the

intersection domains D and A are also local with A possibly non-Noetherian. By
Construction Properties Theorem

11.2.51
5.14.

localcase
6, the approximation domain B is also local,

and D dominates B.

10.3. The non-flat locus of Insider Construction
16.1.1
10.7

16.2n
Assume the notation of Insider Construction

16.1.1
10.7. 1 Let

(
16.111
10.8.1) F := ∩{P ∈ SpecT |ϕP : S → TP is not flat },

where ϕ : S := R[f ]
φ
↪→ T := R[τ ] is as in Equation

16.1.1
10.7.1. By Remark

16.2.5
7.17.2, the

ideal F defines the non-flat locus of the map ϕ. Two advantages of going inside the
Prototype are:

(1) The non-flat locus of α : T := R[τ ] ↪→ R∗[1/x] is known to be closed.
(2) An investigation of ϕ : S := R[f ] ↪→ T := R[τ ] might give information

concerning flatness for ψ : S ↪→ R∗[1/x].

1For details concerning the approximation domain B, see Section
4.45
5.2.
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Theorem
16.3.2
10.9 relates flatness of the maps α : S ↪→ R∗[1/x] and ϕ : S → T in

Diagram
16.1.1
10.7.2. For q∗ ∈ Spec(R∗[1/x]), consider flatness of the localization ϕq∗∩T

of ϕ :
(
16.111
10.8.2) ϕq∗∩T : S −−−−→ Tq∗∩T

16.3.2 Theorem 10.9. Let R be a Noetherian domain, let x be a nonzero nonunit
of R and let R∗ be the x-adic completion of R. Assume the notation of Insider
Construction

16.1.1
10.7. Let F be an ideal of T such that F defines the non-flat locus of

ϕ : S ↪→ T as in Equation
16.111
10.8.1 above. Then:

(1) For q∗ ∈ Spec(R∗[1/x]), the map αq∗ : S → (R∗[1/x])q∗ is flat if and only
if the map ϕq∗∩T in Equation

16.111
10.8.2 is flat.

(2) FR∗[1/x] defines the non-flat locus of the map α : S → R∗[1/x].
(3) The following are equivalent:

(i) The ring A is Noetherian and A = B.
(ii) The ring B is Noetherian.
(iii) For every maximal q∗ ∈ Spec(R∗[1/x]), the map ϕq∗∩T in Equa-

tion
16.111
10.8.2 is flat.

(iv) FR∗[1/x] = R∗[1/x], where F is the ideal of T given in Equa-
tion

16.111
10.8.1.

(4) The map ϕx : S ↪→ T [1/x] is flat if and only if FT [1/x] = T [1/x].
Moreover, either of these equivalent conditions implies B is Noetherian
and B = A. It then follows that A[1/x] is a localization of S.

(5) If x is in the Jacobson radical of R and the conditions of item 3 or item
4 hold, then dimR = dimA = dimR∗.

Proof. For item 1, we have αq∗ = ψq∗ ◦ ϕq∗∩T : S → Tq∗∩T → (R∗[1/x])q∗ ,
where ψ : T ↪→ R∗[1/x] is as in Diagram

16.1.1
10.7.2. Since the map ψq∗ is faithfully

flat, the composition αq∗ is flat if and only if ϕq∗∩T is flat; see Remarks
remflat
2.37.

flfl
13

and
remflat
2.37.

flff3
15.

For item 2, since T ↪→ R∗[1/x]) is flat, and the non-flat locus of ϕ : S ↪→ T
is defined by the ideal F , Proposition

nflext
2.43 implies that the non-flat locus of α is

closed and defined by the subset F or, equivalently, defined by the ideal FR∗[1/x]
of R∗[1/x].

For item 3, the equivalence of (i) and (ii) is part of Theorem
11.3.25
6.3. The equiv-

alence of (ii) and (iii) follows from item 1 and Theorem
11.3.25
6.3. For the equivalence

of (iii) and (iv), we use FR∗ 6= R∗ ⇐⇒ F ⊆ q∗ ∩ T , for some q∗ maximal in
Spec(R∗[1/x]) ⇐⇒ the map in Equation

16.111
10.8.2 fails to be flat.

The first statement of item 4 follows from the definition of F and the fact that
the non-flat locus of ϕ : S → T is closed. Noetherian Flatness Theorem

11.3.25
6.3 implies

the final statement of item 4.
Item 5 follows by Remark

3.38.0
3.3.

N*Jff
4. □

Corollary
16.3.2c
10.10 gives the standard format in which Theorem

16.3.2
10.9 is usually

applied.

16.3.2c Corollary 10.10. Let k be a field and let x, y = y1, . . . , yr be indeterminates
over k. Let R = k[x, y](x,y) or R = k[x, y], and let R∗ be the x-adic completion
of R. Let τ = τ1, . . . , τs be elements of xk[[x]] that are algebraically independent
over k[x]. Let D = k(x, y, τ) ∩R∗ be the Protoype. Let f = f1, . . . fm ∈ (τ)R[τ ] be
algebraically independent over R. Let A = k(x, y, f)∩R∗ be the Intersection Domain



10.3. THE NON-FLAT LOCUS OF INSIDER CONSTRUCTION
16.1.1
10.7 133

corresponding to the f and let B be the Approximation Domain corresponding to
the set f . Let F be an ideal of T such that F defines the non-flat locus of ϕ : S ↪→ T
as in Equation

16.111
10.8.1 above. Then:

(1) For q∗ ∈ Spec(R∗[1/x]), the map αq∗ : S → (R∗[1/x])q∗ is flat if and only
if the map ϕq∗∩T in Equation

16.111
10.8.2 is flat.

(2) FR∗[1/x] defines the non-flat locus of the map α : S → R∗[1/x].
(3) The following are equivalent:

(i) The ring A is Noetherian and A = B.
(ii) The ring B is Noetherian.
(iii) For every maximal q∗ ∈ Spec(R∗[1/x]), the map ϕq∗∩T in Equa-

tion
16.111
10.8.2 is flat.

(iv) FR∗[1/x] = R∗[1/x], where F is the ideal of T given in Equa-
tion

16.111
10.8.1.

(4) The map ϕx : S ↪→ T [1/x] is flat if and only if FT [1/x] = T [1/x].
Moreover, either of these equivalent conditions implies B is Noetherian
and B = A. It then follows that A[1/x] is a localization of S.

(5) If x is in the Jacobson radical of R and the conditions of item 3 or item
4 hold, then dimR = dimA = dimR∗.

Corollary
16.3.2c2
10.11 demonstrates the power of Local Flatness Theorem

Noeth2
6.13. It

leads to item 8 of Theorem
16.3.9
10.12, and is useful for the analysis of Examples

16.3.10
10.15.

16.3.2c2 Corollary 10.11. Let R be a Noetherian domain, let x be a nonzero nonunit
of R and let R∗ be the x-adic completion of R. Assume the notation of Theorem

16.3.2
10.9.

Then we have:
(1) If ϕ : S → T is flat, then the ring B is Noetherian and B = A.
(2) Let G = (F, x)R∗ ∩ R and let P ∈ SpecB. Then BP is Noetherian
⇐⇒ G * P .

Proof. Item 1 follows from item 4 of Theorem
16.3.2
10.9. For item 2, if x /∈ P ,

then BP is Noetherian by Remark
Noeth2r
6.14. If x ∈ P , apply item 2 of Theorem

16.3.2
10.9

and Local Flatness Theorem
Noeth2
6.13. □

Theorem
16.3.9
10.12 concerns a case where the non-flat locus can be described more

precisely.
16.3.9 Theorem 10.12. Let R be a Noetherian integral domain, let x be a nonzero

nonunit of R and let R∗ be the x-adic completion of R. With the notation of Insider
Construction

16.1.1
10.7, assume m = 1, set f1 = f ∈ (τ)T := (τ)R[τ1, . . . , τs], where f

is a nonconstant polynomial, and let S := R[f ]. Let B and A be the approximation
domain and intersection domain associated to f over R, and let L be the ideal in
R generated by the nonconstant coefficients of f as a polynomial in T . Then:

(1) The ideal LT defines the non-flat locus of ϕ : S ↪→ T .
(2) The ideal LR∗[1/x] defines the non-flat locus of α : S ↪→ R∗[1/x].
(3) The ideal LR∗[1/x] defines the non-flat locus of β : B ↪→ R∗[1/x].
(4) The following are equivalent:

(a) B is Noetherian.
(b) B is Noetherian and B = A.
(c) The extension α : S ↪→ R∗[1/x] is flat.
(d) For each Q∗ ∈ Spec(R∗[1/x]), we have LR∗[1/x]Q∗ = R∗[1/x]Q∗ .
(e) For each Q∗ ∈ Spec(R∗[1/x]), we have LRq = Rq, where q = Q∗∩R.
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(5) If htLR∗[1/x] = d, then the map α : S ↪→ R∗[1/x] satisfies LFd−1, but
not LFd, as defined in Definition

7.3.4fc
9.1.

Lfd12
3.

(6) ϕx : S ↪→ T [1/x] is flat ⇐⇒ LT [1/x] = T [1/x]
⇐⇒ LR[1/x] = R[1/x] ⇐⇒ LR∗[1/x] = R∗[1/x].

(7) The equivalent conditions in item 6 imply the insider approximation do-
main B is Noetherian and is equal to the insider intersection domain
A.

(8) Let G = (L, x)R∗ ∩ R and let P ∈ SpecB. Then BP is Noetherian
⇐⇒ G * P .

Proof. Item 1 is Corollary
16.3.7c
7.29, and item 2 is Theorem

16.3.2
10.9.2.

By Proposition
nflR=B
5.23, the non-flat loci for the two maps α and β are the same.

Thus item 2 implies item 3.
For item 4, (a), (b) and (c) are equivalent by Noetherian Flatness Theorem

11.3.25
6.3.

By item 2, (c) and (d) are equivalent. Since L is an ideal of R, (d) is equivalent to
(e); that is L * Q∗ ⇐⇒ L * Q∗ ∩R = q.

For item 5, assume that ht(LR∗[1/x]) = d. Let Q∗ ∈ Spec(R∗[1/x]). The map
αQ∗ : S ↪→ (R∗[1/x])Q∗ is flat ⇐⇒ L * Q∗ by item 1. Thus αQ∗ is flat for
every Q∗ with htQ∗ < d, and so α satisfies LFd−1. On the other hand, there exists
Q∗ ∈ Spec(R∗[1/x]) such that L ⊆ Q∗ and htQ∗ = d. By item 1, the map αQ∗ is
not flat. Thus α does not satisfy LFd.

For item 6, item 1 states that LT defines the non-flat locus of the map ϕ :
S ↪→ T . Thus S ↪→ T [1/x] is flat ⇐⇒ LT [1/x] = T [1/x]. Since L is an ideal of
R, and T [1/x] is a polynomial ring over R[1/x], we have LT [1/x] = T [1/x] ⇐⇒
LR[1/x] = R[1/x]. This also holds if and only if LR∗[1/x] = R∗[1/x], by items 1
and 2 and Theorem

16.3.2
10.9.1.

If S ↪→ T [1/x] is flat, then Theorem
16.3.2
10.9.4 implies that B is Noetherian and

B = A. Thus item 7 holds.
Item 8 follows from Corollary

16.3.2c2
10.11.2. □

Corollary
16.3.9c
10.13 is a restatement of Theorem

16.3.9
10.12 using the standard setting

for Prototype Examples.

16.3.9c Corollary 10.13. Let k be a field and let x, y = y1, . . . , yr be indeterminates
over k. Let R = k[x, y](x,y) or R = k[x, y], and let R∗ be the x-adic completion of R.
Let τ = τ1, . . . , τs be elements of xk[[x]] that are algebraically independent over k[x].
Let D = k(x, y, τ)∩R∗ be the Protoype. Let f ∈ (τ)R[τ ] be algebraically independent
over R. Let A = k(x, y, f)∩R∗ be the Intersection Domain corresponding to f and
let B be the Approximation Domain corresponding to f . Let F be an ideal of T
such that F defines the non-flat locus of ϕ : S ↪→ T as in Equation

16.111
10.8.1 above.

Let B and A be the Approximation Domain and Intersection Domain associated to
f over R, and let L be the ideal in R generated by the nonconstant coefficients of
f as a polynomial in T . Then:

(1) The ideal LT defines the non-flat locus of ϕ : S ↪→ T .
(2) The ideal LR∗[1/x] defines the non-flat locus of α : S ↪→ R∗[1/x].
(3) The ideal LR∗[1/x] defines the non-flat locus of β : B ↪→ R∗[1/x].
(4) The following are equivalent:

(a) B is Noetherian.
(b) B is Noetherian and B = A.
(c) The extension α : S ↪→ R∗[1/x] is flat.
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(d) For each Q∗ ∈ Spec(R∗[1/x]), we have LR∗[1/x]Q∗ = R∗[1/x]Q∗ .
(e) For each Q∗ ∈ Spec(R∗[1/x]), we have LRq = Rq, where q = Q∗∩R.

(5) If htLR∗[1/x] = d, then the map α : S ↪→ R∗[1/x] satisfies LFd−1, but
not LFd, as defined in Definition

7.3.4fc
9.1.

Lfd12
3.

(6) ϕx : S ↪→ T [1/x] is flat ⇐⇒ LT [1/x] = T [1/x]
⇐⇒ LR[1/x] = R[1/x] ⇐⇒ LR∗[1/x] = R∗[1/x].

(7) The equivalent conditions in item 6 imply the insider approximation do-
main B is Noetherian and is equal to the insider intersection domain
A.

(8) Let G = (L, x)R∗ ∩ R and let P ∈ SpecB. Then BP is Noetherian
⇐⇒ G * P .

Example
16.3.9e
10.14 illustrates that in Theorem

16.3.9
10.12 the map ϕx : S ↪→ T [1/x]

may fail to be flat even though the map α : S ↪→ R∗[1/x] is flat.

16.3.9e Example 10.14. Let R = k[x], where x is an indeterminate over a field k. Let
τ ∈ xk[[x]] be such that x and τ are algebraically independent over k. Let T = R[τ ],
let f = (1− x)τ , and let S = R[f ]. The ideal L of R generated by the nonconstant
coefficients of f is L = (1 − x)R. The map ϕx : S ↪→ T [1/x] is not flat, but the
map α : S ↪→ R∗[1/x] is flat since R∗[1/x] is a field.

Examples
16.3.10
10.15 generalizes Example

16.1nn
6.24.

16.3.10 Examples 10.15. Let d ∈ N be greater than or equal to 2, and let x, y1, . . . , yd
be indeterminates over a field k. Let R be either

(1) The polynomial ring R := k[x, y1, . . . , yd] with x-adic completion R∗ =
k[y1, . . . , yd][[x]], or

(2) The localized polynomial ring R := k[x, y1, . . . , yd](x,y1,...,yd) with x-adic
completion R∗ = k[y1, . . . , yd](y1,...,yd)k[y1,...,yd][[x]].

Let f := y1τ1 + · · ·+ ydτd, where τ1, . . . , τd ∈ xk[[x]] are algebraically independent
over k(x). Let S := R[f ] and let T := R[τ1, . . . , τd]. Regard f as a polynomial in
τ1, . . . , τd over R. By Theorem

16.3.9
10.12.5, the map ϕx : S ↪→ T [1/x] satisfies LFd−1,

but fails to satisfy LFd because the ideal L = (y1, . . . , yd)R[1/x] of nonconstant
coefficients of f has height d. Since d ≥ 2, the map ϕx : S ↪→ T [1/x] satisfies LF1.
Since S is a UFD, Proposition

16.3.4
9.19 implies A = B. Since ϕx does not satisfy LFd,

the map ϕx is not flat and thus B is not Noetherian by Theorem
16.3.2
10.9.3.

Let P ∈ SpecB. By Theorem
16.3.9
10.12, we have (y1, . . . , yd, x) * P if and only if

BP is Noetherian. Thus BP is Noetherian for every nonmaximal prime ideal of B.

Theorem
Infl
10.16 demonstrates that it is often the case that every nonzero ideal

in R[1/x] defines the non-flat locus of an insider construction.

Infl Theorem 10.16. Let R be a Noetherian domain with field of fractions K, and
let D = K(τ1, . . . , τs)∩R∗ be a Prototype, as in Insider Construction

16.1.1
10.7. Let I be

a nonzero ideal of R[1/x] and let L := I ∩R. If the radical of L is the radical of an
ideal L′ generated by d ≤ n elements, then there exists an approximation domain
B such that:

(1) LR∗[1/x] defines the non-flat locus of the inclusion map B ↪→ R∗[1/x].
(2) For P ∈ SpecB, the ring BP is Noetherian ⇐⇒ ((L, x)R∗ ∩R) * P .
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Proof. Let L′ = (a1, . . . , ad)R, and define f := a1τ1 + · · · + adτd. Let B de-
note the approximation domain associated to f , as in Construction

16.1.1
10.7. By Theo-

rem
16.3.9
10.12.2, L′R∗[1/x] defines the non-flat locus of ψ : S = R[f ] ↪→ R∗[1/x], and so

item 1 holds. The second item of Theorem
Infl
10.16 follows from Theorem

16.3.9
10.12.8. □

10.4. Preserving excellence with the Insider Construction
8.3

Theorem
8.3.7
10.17 describes conditions for Insider Construction

16.1.1
10.7 to preserve

excellence.

8.3.7 Theorem 10.17. Let (R,m) be an excellent normal local domain with field of
fractions K. Let x be a nonzero element of m and let R∗ denote the x-adic com-
pletion of R. Assume the s elements τ1, . . . , τs ∈ xR∗ are algebraically independent
over K, that T := R[τ1, . . . , τs] −→ R∗[1/x] is flat, and D := K(τ1, . . . , τs)∩R∗.
Let f1, . . . , fm ∈ T := R[τ ], considered as polynomials in the τi with coefficients
in R. Assume f1, . . . , fm are algebraically independent over K; thus m ≤ s. Let
S := R[f1, . . . , fm] and ϕ : S ↪→ T , and let J be the Jacobian ideal of ϕ as in
Definition

16.2.5
7.17.1. Define A := K(f1, . . . , fm)∩R∗, and define B to be the Approxi-

mation Domain corresponding to f as in Construction
16.1.1
10.7. If D is excellent, then

the following are equivalent:
(a) The ring B is excellent.
(b) JR∗[1/x] = R∗[1/x].
(c) α : S → R∗[1/x] is a regular morphism.

Moreover, if either of the following equivalent conditions holds, then B is excellent:
(b′) JT [1/x] = T [1/x].
(c′) ϕx : S → T [1/x] is a regular morphism.

Proof. That conditions (b′) and (c′) are equivalent follows from Theorem
16.2.7
7.19.1.

Since T is a subring of R∗ and J is an ideal of T , condition (b′) implies condition
(b). For the other implications, consider the embeddings:

B
Φ−−−−→ D

Ψ−−−−→ R∗
Γ−−−−→ R̂.

By Theorem
11.2.51
5.14.

Rt1/z
4, we have B[1/x] is a localization of S, and D[1/x] is a localiza-

tion of T . Thus, for Q ∈ SpecR∗ with x /∈ Q, we have
(
8.3.7
10.17.1)

αQ : S −−−−→ SQ∩S = BQ∩B
Φ′

−−−−→ DQ∩D = TQ∩T
Ψ′

−−−−→ R∗Q.

(a)=⇒(b): Since B,D and R∗ are all excellent with the same completion R̂,M
[123, Theorem 32.1] implies Φ is regular. Let Q ∈ Spec(R∗) with x /∈ Q. The
map Φ′ : BQ∩B ↪→ DQ∩D is also regular. It follows from Equation

8.3.7
10.17.1 that

ϕQ∩T : S ↪→ TQ∩T is regular. Thus J 6⊆ Q ∩ T . Since J is an ideal of T , we have
J ⊆ Q ∩ T ⇐⇒ J ⊆ Q. We conclude that JR∗[1/x] = R∗[1/x].

(b) ⇐⇒ (c): We show for every Q ∈ SpecR∗ with x /∈ Q that
(∗) J * Q ∩ T ⇐⇒ αQ is regular.

If J * Q∩T , then αQ is a composition of regular maps as shown in Equation
8.3.7
10.17.1.

If αQ is regular, then Ψ′ faithfully flat implies S ↪→ TQ∩T is regular
M
[123, Theo-

rem 32.1 (ii)]. Thus J * Q ∩ T .
(b)=⇒(a) By Theorems

16.3.2
10.9.3 and

16.2.7
7.19.2, the ring B is Noetherian with x-adic

completion R∗. Therefore the completion of B with respect to the powers of its
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maximal ideal is R̂. Therefore B is formally equidimensional. Hence by Ratliff’s
Equidimension Theorem

ratliff
3.25, B is universally catenary.

To show B is excellent, it remains to show that B is a G-ring. Consider the
morphisms

B
Φ−−−−→ D and B

Γ◦Ψ◦Φ−−−−→ R̂.

Since B and D are Noetherian, R̂ is faithfully flat over both B and D. Hence
the map Φ is faithfully flat by Remark

remflat
2.37.

tran4
14. A straightforward argument using

Definition
3.42
3.45 of G-ring shows that B is a G-ring if the map Φ is regular in the

sense of Definition
3.41
3.41; see

M
[123, Theorem 32.2].

To see that Φ is regular, let P ∈ Spec(B). If x ∈ P , then we use that
B/xB = R∗/xR∗ = R/xR = D/xD

from Construction Properties Theorem
11.2.51
5.14.

Rmodzn
2. The ring R̂⊗B k(P ) is geometrically

regular over k(P ) = BP /PBP , since R is excellent.
If x /∈ P , we show that the ring D⊗BL is regular, for every finite field extension

L of k(P ). Let W be a prime ideal in D⊗BL and let W be the preimage in D of W .
Then W ∩B = P . By the faithful flatness of R∗ over D, there exists Q ∈ Spec(R∗)
such that Q∩D =W . Then P =W ∩B = Q∩B. Thus x /∈ Q. Since JR∗Q = R∗Q,
we have J * Q. Hence the morphism Φ′ in Equation

8.3.7
10.17.1, is regular. Therefore

Φ is a regular morphism and B is excellent. □
8.3.7c Corollary 10.18. Let k be a field of characteristic zero, let x, y = {y1, . . . , yr}

be indeterminates over k and let D be the Local Protoype D := k(x, y, τ) ∩ R∗ of
Theorem

11.4.11ic
10.6, where the base ring R = k[x, y](x,y), R∗ is the x-adic completion

of R, and τ = τ1, . . . , τs are elements of xk[[x]] that are algebraically independent
over k(x). Assume that f = {f1, . . . , fm} ⊆ (τ)T := (τ)R[τ ] are algebraically
independent over k(x, y). The fi are considered as polynomials in the τi with
coefficients in R; thus m ≤ s. Let S := R[f ], let ϕ : S ↪→ T , and let J be the
Jacobian ideal of ϕ as in Definition

16.2.5
7.17.1. Define B to be the Approximation

Domain associated to f and A = k(x, y, f) ∩ R∗. The following are equivalent:
(a) The ring B is excellent.
(b) JR∗[1/x] = R∗[1/x].
(c) ϕx : S → T [1/x] is a regular morphism.

Proof. Apply Theorem
8.3.7
10.17. □

In relation to Corollary
8.3.7c
10.18, we consider the historical examples of Nagata

and Christel discussed in Chapters
fex
4 and

noeflic
6.

8.3.8 Remark 10.19. (1) For the example of Nagata described in Example
4.3.1
4.15 and

in Proposition
16.1n
6.19, we have R = k[x, y](x,y), R∗ = k[y][[x]](x,y), r = s = m = 1, and

k is a field of characteristic zero. Let τ = τ1, let T := R[τ ], and let D be the Local
Prototype D = k(x, y, τ) ∩ R∗. Let f = f1 = (y + τ)2 and let A = k(x, yf) ∩ R∗.
The Jacobian ideal J of the inclusion map ϕ : S := R[f ]→ T = R[τ ] is the ideal of
T generated by ∂(y2 + 2yτ + τ2)/∂τ) = 2y + 2τ . We see that JR∗[1/x] 6= R∗[1/x].
Thus, by Proposition

16.1n
6.19 and Corollary

8.3.7c
10.18, the approximation domain B = A

is not excellent, and the map ϕx is not regular.
(2) For Christel’s example described in Examples

4.3.3
4.17 and

16.1r
6.23, we have k

a field of characteristic zero, R := k[x, y, z](x,y,z), r = s = 2, and m = 1. The
elements σ and τ ∈ xk[[x]] are algebraically independent over k(x), and we have
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f := (y+σ)(z+τ). The Jacobian ideal J of the inclusion map ϕ : S := R[f ]→ T =
R[σ, τ ] is the ideal of T generated by x+ τ and y + σ. Again JR∗[1/x] 6= R∗[1/x].
Thus, by Example

16.1r
6.23 and Corollary

8.3.7c
10.18, the approximation domain B = A is

not excellent, and the map ϕx is not regular.

Examples
8.3.7ce
10.20 illustrates other applications of Corollary

8.3.7c
10.18.

8.3.7ce Examples 10.20. As in Corollary
8.3.7c
10.18, let k be a field of characteristic zero,

and let D be the Local Protoype D := k(x, y, z, σ, τ) ∩ R∗ of Local Prototype
Theorem

11.4.11ic
10.6, where the base ring R = k[x, y, z](x,y,z), the ring R∗ is the x-adic

completion of R, and σ, τ are elements of xk[[x]] that are algebraically independent
over k(x). The ring D is a three-dimensional regular local domain that is a directed
union of five-dimensional regular local domains by Theorem

11.4.11ic
10.6.

With this setting we consider two intersection domains A := k(x, y, z, f, g)∩R∗
formed from pairs of elements f and g ∈ (σ, τ)T := (σ, τ)R[σ, τ ] that are alge-
braically independent over k(x, y, z). By Construction Properties Theorem

11.2.51
5.14.4,

the rings D and A have x-adic completion R∗. Let S := R[f, g], let ϕ : S ↪→ T , and
let J be the Jacobian ideal of ϕ as in Definition

16.2.5
7.17.1.

(1) Let f = (y − σ)2, g = (z − τ)2, and A = k(x, y, z, f, g) ∩ R∗.
Since T = R[σ, τ ] is a free module over S with {1, σ, τ, στ} as a free basis, the
map ϕ : S → T is flat. By Corollary

16.3.2c2
10.11.1, A is Noetherian and is equal to its

approximation domain. It follows that A is a 3-dimensional regular local domain.
Since the field k has characteristic zero, the Jacobian ideal of the map ϕ is

J = (σ − y)(τ − z)T , and JR∗[1/x] 6= R∗[1/x]. Hence by Corollary
8.3.7c
10.18, the ring

A is not excellent.
(2) Let f = σ2 + xτ, g = τ2 + xσ, and A = k(x, y, z, f, g) ∩ R∗. The

Jacobian ideal of the map ϕ : S ↪→ T is J = (4στ −x2)T , and JR∗[1/x] = R∗[1/x].
Hence by Corollary

8.3.7c
10.18, the ring B = A is excellent. However, JT [1/x] 6= T [1/x].

Thus it may happen that B is excellent, but conditions (b′) and (c′) of Theo-
rem

8.3.7
10.17 do not hold.



CHAPTER 11

Integral closure under extension to the completion
intclsec

This chapter relates to the general question:

CompProplQues Question 11.1. What properties of ideals of a Noetherian local ring (A, n) are
preserved under extension to the n-adic completion Â?

Our focus here is the integral closure property; see Definition
18.2.0
11.2.4.

Using Insider Construction
16.1.1
10.7 of Chapter

insidecon
10, we present in Example

18.3.1
11.9 a

height-two prime ideal P of a 3-dimensional regular local domain such that the
extension PÂ of P to the n-adic completion Â of A is not integrally closed. The
ring A in Example

18.3.1
11.9 is a nested union of 5-dimensional regular local domains.

More generally, we use this same technique to establish, for each integer d ≥ 3
and each integer h with 2 ≤ h ≤ d − 1, the existence of a d-dimensional regular
local domain (A, n) having a prime ideal P of height h with the property that the
extension PÂ is not integrally closed, where Â is the n-adic completion of A. A
regular local domain having a prime ideal with this property is necessarily not a
Nagata ring and is not excellent; see item 7 of Remark

18.2.1
11.8.

Section
18.2
11.1 contains conditions in order that integrally closed ideals of a ring

R extend to integrally closed ideals of R′, where R′ is an R-algebra. In particular,
we consider conditions for integrally closed ideals of a Noetherian local ring A to
extend to integrally closed ideals of the completion Â of A.

11.1. Integral closure under ring extension
18.2

The concept of “integrality over an ideal” is related to “integrality over a ring”,
defined in Section

3.02
2.1. For properties of integral closure of ideals, rings and modules

we refer to the book of Swanson and Huneke
SH
[176].

18.2.0 Definitions and Remarks 11.2. Let I be an ideal of a ring R.
(1) An element r ∈ R is integral over I if there exists a monic polynomial

f(x) = xn +
∑n
i=1 aix

n−i such that f(r) = 0 and such that ai ∈ Ii for
each i with 1 ≤ i ≤ n.

(2) The integral closure I of I is the set of elements of R integral over I; the
set I is an ideal.

(3) The integral closure of I is equal to I
SH
[176, Corollary 1.3.1].

(4) If I = I, then I is said to be integrally closed.
(5) The ideal I is said to be normal if In is integrally closed for every n ≥ 1.
(6) If J is an ideal contained in I and JIn−1 = In for some integer n ≥ 1,

then J is said to be a reduction of I.

139
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18.2.01 Remarks 11.3. Let I be an ideal of a ring R.
(1) An element r ∈ R is integral over I if and only if I is a reduction of

the ideal L = (I, r)R. To see this equivalence, observe that for a monic
polynomial f(x) as in Definition

18.2.0
11.2.1, we have

f(r) = 0 ⇐⇒ rn = −
n∑
i=1

air
n−i ∈ ILn−1 ⇐⇒ Ln = ILn−1.

(2) An ideal is integrally closed if and only if it is not a reduction of a properly
bigger ideal.

(3) A prime ideal is always integrally closed. More generally, a radical ideal
is always integrally closed. This is Exercise

radint
1.

(4) Let a, b be elements in a Noetherian ring R and let I := (a2, b2)R. The
element ab is integral over I. If a, b form a regular sequence, then ab 6∈ I
and thus I is not integrally closed; see Exercise

regseq
2. More generally, if h ≥ 2

and a1, . . . , ah form a regular sequence in R and I := (ah1 , . . . , a
h
h)R, then

I is not integrally closed.

The Rees Algebra is relevant to the discussion of integral closure.

ReesA Definition and Remarks 11.4. Let I be an ideal of a ring R, and let t be a
variable over R.

(1) The Rees algebra of I is the subring of R[t] defined as

R[It] := {
n∑
i=0

ait
i | n ∈ N ; ai ∈ Ii } =

⊕
n≥0

Intn,

where I0 = R.
(2) An element a ∈ R is integral over I if and only if at ∈ R[t] is integral over

the subring R[It].
(3) If R is a normal domain, then I is a normal ideal of R if and only if the

Rees algebra R[It] is a normal domain; see Swanson and Huneke
SH
[176,

Prop. 5.2.1, p.95].

Our work in this chapter is motivated by the following questions:

18.2.02 Questions 11.5.
(1) Craig Huneke: “Does there exist an analytically unramified Noetherian lo-

cal ring (A, n) that has an integrally closed ideal I for which the extension
IÂ to the n-adic completion Â is not integrally closed?”

(2) Sam Huckaba: “If there is such an example, can the ideal of the example
be chosen to be a normal ideal?” See Definition

18.2.0
11.2.6.

Related to Question
18.2.02
11.5.1, we present in Theorem

18.3.3
11.11 a 3-dimensional reg-

ular local domain A having a height-two prime ideal I = P = (f, g)A such that IÂ
is not integrally closed. Thus the answer to Question

18.2.02
11.5.1 is “yes”. This example

also shows that the answer to Question
18.2.02
11.5.2 is again “yes”. Since f, g form a

regular sequence and A is Cohen-Macaulay, the powers Pn of P have no embedded
associated primes and therefore are P -primary

M1
[121, (16.F), p. 112],

M
[123, Ex.

17.4, p. 139]. Since the powers of the maximal ideal of a regular local domain are
integrally closed, the powers of P are integrally closed, that is, P is a normal ideal.
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Thus, by Remarks
18.2.01
11.3.6, the Rees algebra A[Pt] = A[ft, gt] is a normal domain

while the Rees algebra Â[ft, gt] is not normal. We observe in Remarks
18.2.1
11.8 that

this implies that A fails to have geometrically normal formal fibers.

Remarks 11.6. Without the assumption that A is analytically unramified,
there exist examples even in dimension one where an integrally closed ideal of a
Noetherian local domain A fails to extend to an integrally closed ideal in Â. If A is
reduced but analytically ramified, then the zero ideal of A is integrally closed, but
its extension to Â is not integrally closed.

Examples of reduced analytically ramified Noetherian local rings have been
known for a long time. By Remark

3.38.4
3.19.5, the examples of Akizuki and Schmidt

mentioned in Classical Examples
Ceg
1.4 of Chapter

intro
1 are analytically ramified Noe-

therian local domains. Another example due to Nagata is given in
N2
[138, Example

3, pp. 205-207]. (See also
N2
[138, (32.2), p. 114], and Remarks

4.3.2
4.16.2.)

Let R be a commutative ring and let R′ be an R-algebra. In Remark
18.2.1
11.8

we list cases where extensions to R′ of integrally closed ideals of R are again inte-
grally closed. In this connection we use the following definition as in Lipman

L
[112,

page 799].

18.2.10 Definition 11.7. An R-algebra. R′ is said to be quasi-normal over R if R′ is
flat over R and the condition NR,R′ holds:

(NR,R′): If C is any R-algebra, and D is a C-algebra in which C is integrally
closed1, then also C ⊗R R′ is integrally closed in D ⊗R R′.

If condition NR,R′ holds, we also say the map R→ R′ is quasi-normal.

18.2.1 Remarks 11.8. Let R be a commutative ring and let R′ be an R-algebra.
(1) By a result of Lipman

L
[112, Lemma 2.4], if R′ satisfies (NR,R′) and I is

an integrally closed ideal of R, then IR′ is integrally closed in R′.
regqn (2) A regular homomorphism of Noetherian rings is normal by Remark

reghomnormal
3.42,

and a normal homomorphism of Noetherian rings is quasi-normal
G
[63,

IV,(6.14.5)]. Hence a regular homomorphism of Noetherian rings is quasi-
normal.

flatregintcl (3) Assume that R and R′ are Noetherian rings and that R′ is a flat R-
algebra. Let I be an integrally closed ideal of R. The flatness of R′ over
R implies every P ′ ∈ Ass(R′/IR′) contracts in R to some P ∈ Ass(R/I)M
[123, Theorem 23.2]. Thus by the previous item, if the map R → R′P ′ is
normal or regular for each P ′ ∈ Ass(R′/IR′), then IR′ is integrally closed.

princidintcl (4) Principal ideals of an integrally closed domain are integrally closed. This
is Exercise

intclxI
3.i of this chapter.

ffintcl (5) If I is an ideal of the Noetherian local domain A and IÂ is integrally
closed, then faithful flatness of the extension A ↪→ Â implies that I is
integrally closed.

normprincintcl (6) In general, integral closedness of ideals is a local condition. If R′ is an R-
algebra that is a normal ring in the sense that for every prime ideal P ′ of
R′, the local ring R′P ′ is an integrally closed domain, then the extension

1Let h : C → D be the structural map defining D as a C-algebra. Then “C is integrally
closed in D” means the subring h(C) of D is integrally closed in D.
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to R′ of every principal ideal of R is integrally closed by item 4. In
particular, if (A, n) is an analytically normal Noetherian local domain,
then every principal ideal of A extends to an integrally closed ideal of Â.

primintcl (7) Let (A, n) be a Noetherian local ring and let Â be the n-adic completion
of A. Since A/q ∼= Â/qÂ for every n-primary ideal q of A, the n-primary
ideals of A are in one-to-one inclusion preserving correspondence with
the n̂-primary ideals of Â. It follows that an n-primary ideal I of A is a
reduction of a properly larger ideal of A if and only if IÂ is a reduction
of a properly larger ideal of Â. Therefore an n-primary ideal I of A is
integrally closed if and only if IÂ is integrally closed.

2dimintclexts (8) If R is an integrally closed domain, then xI = xI, for every ideal I and
element x of R; see Exercise

intclxI
3.ii of this chapter. If (A, n) is analytically

normal and also a UFD, then every height-one prime ideal of A extends
to an integrally closed ideal of Â by item

princidintcl
4. In particular if A is a regular

local domain, then A is a UFD by Remark
regnormal
2.10.2, and so PÂ is integrally

closed for every height-one prime ideal P of A.
2dimint2 (9) If (A, n) is a 2-dimensional local UFD, then every nonprincipal integrally

closed ideal of A has the form xI, where I is an n-primary integrally closed
ideal and x ∈ A; see Exercise

2dufdxI
4. In particular, this is the case if (A, n) is

a 2-dimensional regular local domain. It follows from items
primintcl
7 and

2dimintclexts
8 that

every integrally closed ideal of A extends to an integrally closed ideal of
Â in the case where A is a 2-dimensional regular local domain.

exccompintclexts (10) If (A, n) is an excellent local ring, then the map A ↪→ Â is quasi-normal
by

G
[63, (7.4.6) and (6.14.5)], and in this case every integrally closed ideal

of A extends to an integrally closed ideal of Â. If (A, n) is a Nagata local
ring, then for each prime ideal P of A, the ideal PÂ is reduced, and hence
integrally closed

N2
[138, Theorem 36.4].

intclextshens (11) Let (A, n) be a Noetherian local domain and let Ah denote the Henseliza-
tion of A. Every integrally closed ideal of A extends to an integrally
closed ideal of Ah. This follows because Ah is a filtered direct limit of
étale A-algebras; see Lipman

L
[112, (i), (iii), (vii) and (ix), pp. 800-801].

Since the map from A to its completion Â factors through Ah, every inte-
grally closed ideal of A extends to an integrally closed ideal of Â if every
integrally closed ideal of Ah extends to an integrally closed ideal of Â.

11.2. Extending ideals to the completion
18.3

We present an example of a height-two prime ideal I = (f, g)A of the 3-
dimensional RLR (A, n) such that the extension IÂ to the n-adic completion is
not integrally closed. We use Example

8.3.7ce
10.20 and results from Chapters

constrincl
5,

noeflic
6, andinsidecon

10 to justify that IÂ is not integrally closed.
In Example

18.3.1
11.9 we review the setting and basic description of the ring A of

Example
8.3.7ce
10.20.1.

18.3.1 Example 11.9. In the notation of Example
8.3.7ce
10.20.1, k is a field of characteristic

zero, x, y and z are indeterminates over k, and the base ring R := k[x, y, z](x,y,z).
The x-adic completion of R is R∗ = k[y, z](y,z)[[x]], and σ, τ are elements of xk[[x]]
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that are algebraically independent over k(x). As in Local Prototype Theorem
11.4.11ic
10.6,

the Local Protoype D := k(x, y, z, σ, τ) ∩ R∗ is a three-dimensional regular local
domain and a directed union of five-dimensional regular local domains.

With f = (y−σ)2 and g = (z− τ)2, we define A = k(x, y, z, f, g) ∩ R∗. By
Example

8.3.7ce
10.20.1, the ring A is Noetherian, A is equal to its approximation domain,

A is a 3-dimensional regular local domain, and A is not a Nagata ring.
The following commutative diagram, where all the labeled maps are the natural

inclusions and B is as in Equation
18.3.2
11.10.1, displays the situation of Example

18.3.1
11.9:

B = A = R∗ ∩Q(S) γ1−−−−→ D = R∗ ∩Q(T ) γ2−−−−→ R∗ = A∗

δ1

x δ2

x ψ

x
S = R[f, g]

φ−−−−→ T = R[σ, τ ] T

Commutative Diagram
18.3.1
11.9.1 for Example

18.3.1
11.9.

In order to better understand the structure of A, we recall some of the details
of the approximation domain B associated to f and g.

18.3.2 Approximation Technique 11.10. With k, x, y, z, f, g, R and R∗ as in Ex-
ample

18.3.1
11.9,

f = y2 +

∞∑
j=1

bjx
j , g = z2 +

∞∑
j=1

cjx
j ,

where bj ∈ k[y] and cj ∈ k[z]. The rth endpieces for f and g are the sequences
{fr}∞r=1, {gr}∞r=1 of elements in R∗ defined for each r ≥ 1 by:

fr :=

∞∑
j=r+1

bjx
j

xr
and gr :=

∞∑
j=r+1

cjx
j

xr
.

Then f = y2 + xb1 + xf1 = y2 + xb1 + x2b2 + x2f2 = . . . and similar equations hold
for g. Thus we have:

(
18.3.2
11.10.0) f = y2+xb1+x

2b2+. . . x
tbt+x

tft; g = y2+xc1+x
2c2+. . . x

tct+x
tgt,

for each t ≥ 1.
For each integer r ≥ 1, we define:

(
18.3.2
11.10.1)

Ur := k[x, y, z, fr, gr], mr := (x, y, z, fr, gr)Ur,

Br := (Ur)mr
and B :=

∞⋃
r=1

Br.

The ring B is the Approximation Domain associated to f and g, as in Definition
appintdef
5.7.

18.3.3 Theorem 11.11. With the notation of Example
18.3.1
11.9 and Approximation Tech-

nique
18.3.2
11.10, let P = (f, g)A. Then

(1) The ring A = B is a 3-dimensional regular local domain that has x-adic
completion A∗ = R∗ = k[y, z](y,z)[[x]]. Moreover A is a nested union of
five-dimensional regular local domains.

(2) The ideal P is a height-two prime ideal of A.
(3) The ideal PA∗ is not integrally closed in A∗.
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(4) The completion Â of A is R̂ = k[[x, y, z]] and PÂ is not integrally closed.

Proof. Item 1 follows from Example
18.3.1
11.9 and Theorem

16.3.2
10.9, parts 3 and 4.

For item 2, it suffices to observe that P has height two and that, for each
positive integer r, Pr := (f, g)Ur is a prime ideal of Ur. We have f = y2+xb1+xf1
and g = z2+xc1+xg1. It is clear that (f, g)k[x, y, z, f, g] is a height-two prime ideal.
Since U1 = k[x, y, z, f1, g1] is a polynomial ring over k in the variables x, y, z, f1, g1,
we see that

P1U1[1/x] = (xb1 + xf1 + y2, xc1 + xg1 + z2)U1[1/x]

is a height-two prime ideal of U1[1/x]. Indeed, setting f = g = 0 is equivalent
to setting f1 = −b1 − y2/x and g1 = −c1 − z2/x. Therefore the residue class ring
(U1/P1)[1/x] is isomorphic to the integral domain k[x, y, z][1/x]. Since U1 is Cohen-
Macaulay and f, g form a regular sequence, and since (x, f, g)U1 = (x, y2, z2)U1 is
an ideal of height three, we see that x is in no associated prime ideal of (f, g)U1

(see, for example
M
[123, Theorem 17.6]). Therefore P1 = (f, g)U1 is a height-two

prime ideal, and so the same holds for P1B1.
For r > 1, by Equation

18.3.2
11.10.0, there exist elements ur ∈ k[x, y] and vr ∈ k[x, z]

such that f = xrfr + urx + y2 and g = xrgr + vrx + z2. An argument similar to
that given above shows that Pr = (f, g)Ur is a height-two prime ideal of Ur. Since
U is the nested union of the Ur we have that (f, g)U is a height-two prime ideal of
U . Since B is a localization of U we see that (f, g)B is a height-two prime ideal of
B = A.

For items 3 and 4, R∗ = B∗ = A∗ by Example
8.3.7ce
10.20 and it follows that Â =

k[[x, y, z]]. To see that PA∗ = (f, g)A∗ and PÂ = (f, g)Â are not integrally closed,
observe that ξ := (y − σ)(z − τ) is integral over PA∗ and PÂ since ξ2 = fg ∈ P 2.
On the other hand, y − σ = u and z − τ = v form a regular sequence in A∗ and Â.
Since P = (u2, v2)A, an easy computation shows that uv /∈ PA∗ = (u2, v2)A∗; see
Exercise

regseq
2. Since PA∗ = PÂ ∩A∗, this completes the proof. □

In Example
18.3.4
11.13, we generalize the technique of Example

18.3.1
11.9 to obtain RLRs

A with dimA = n+1 such that A has a prime ideal P with htP = r, where r may
be chosen to be any integer in the set {2, . . . , n}, and PÂ is not integrally closed.
The examples are complete intersection prime ideals P , that is, htP = r and P is
generated by r elements. We use the following interesting result of Shiro Goto that
characterizes integrally closed complete intersection ideals of a Noetherian ring.

goto Theorem 11.12 (Goto
Goto
[60, Theorem 1.1]). Let I be a proper ideal in a Noe-

therian ring A such that ht I = r and I is generated by r elements. Then the
following conditions are equivalent:

(1) I is integrally closed.
(2) In is integrally closed for all n ∈ N.
(3) For every p ∈ Ass(A/I), the local ring Ap is regular and the length of the

module (IAp + p2Ap)/p
2Ap is at least r − 1.

When this is the case, Ass(A/I) = Min(A/I) and I is generated by a regular
sequence.

18.3.4 Example 11.13. For each integer n ≥ 2, and every integer r with 2 ≤ r ≤ n,
there exists a regular local domain A with dimA = n + 1 having a prime ideal P
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with htP = r such that the extension of P to the completion of A is not integrally
closed.

To see this, let k be a field of characteristic zero and, for an integer n ≥ 2,
let x, y1, . . . , yn be indeterminates over k. Let r be an integer with 2 ≤ r ≤
n, and let τ1, . . . , τr ∈ xk[[x]] be algebraically independent over k(x). Let R :=
k[x, y1, . . . , yn](x,y1,...,yn). Then R is an RLR with dimR = n + 1 =: d. For each i
with 1 ≤ i ≤r, define fi = (yi − τi)r, and set ui = yi − τi. The rings

S := R[f1, . . . , fr] and T := R[τ1, . . . , τr] = R[u1, . . . , ur].

are polynomial rings in r variables over R, and T is a finite free integral extension
of S. The set

{ue11 · u
e2
2 · . . . · uerr | 0 ≤ ei ≤ r − 1}

is a free module basis for T as an S-module. Therefore the map S ↪→ T [1/x]
is flat. Let R∗ denote the x-adic completion of R, and define D to be the Lo-
cal Prototype D := k(x, y1, . . . , yn, τ1, . . . , τh) ∩ R∗ of Theorem

11.4.11ic
10.6. Let A :=

k(x, y1, . . . , yn, f1, . . . , fh) ∩ R∗. By Construction Properties Theorem
11.2.51
5.14.4, the

rings D and A have x-adic completion R∗. Since the map S ↪→ T is flat, Theo-
rem

16.3.2
10.9 implies that the ring A is a d-dimensional regular local ring and is equal

to its approximation domain B; thus A is a directed union of (d + h)-dimensional
regular local domains.

The situation for Example
18.3.4
11.13 can be displayed in a commutative diagram

similar to Diagram
18.3.1
11.9.1, where R,B,A,R∗, S, T are adjusted to fit Example

18.3.4
11.13.

Thus the bottom line of the diagram for Example
18.3.4
11.13 is

(
18.3.4
11.13.1) S = R[f1, . . . , fr]

φ−−−−→ T = R[τ1, . . . , τr] T

Since the field k has characteristic zero and r ≥ 2, the Jacobian ideal of the
map ϕ : S ↪→ T has radical

√
(J) = Πri=1(yi − τi)T , and JR∗[1/x] 6= R∗[1/x]. By

Corollary
8.3.7c
10.18, the ring A is not excellent. Let P := (f1, . . . , fr)A; an argument

similar to that given in Theorem
18.3.3
11.11 shows that P is a prime ideal of A of height

r. Therefore P is an integrally closed complete intersection ideal of A. Since each
fi is an r-th power in A∗ and Â, Theorem

goto
11.12 implies that PA∗ and PÂ are not

integrally closed.
It can also be seen directly that PA∗ and PÂ are not integrally closed. We

have yi − τi = ui ∈ A∗. Let ξ =
∏r
i=1 ui. Then ξr = f1 · · · fr ∈ P r implies ξ

is integral over PA∗ and PÂ. Since u1, . . . , uh are a regular sequence in A∗ and
Â, it follows that ξ 6∈ PÂ; see for example the thesis of Taylor

Ta
[179, Theorem 1].

Therefore the extended ideals PA∗ and PÂ are not integrally closed.

11.3. Comments and Questions

In connection with Theorem
18.3.3
11.11 it is natural to ask the following question.

18.4.1 Question 11.14. For P and A as in Theorem
18.3.3
11.11, is P the only prime ideal

of A that does not extend to an integrally closed ideal of Â?

Com Comments 11.15. In relation to Example
18.3.1
11.9 and to Question

18.4.1
11.14, observe

the following, refering to Diagram
18.3.1
11.9.1 for Example

18.3.1
11.9:
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(1) Theorem
16.3.2
10.9 implies that A[1/x] is a localization of S and D[1/x] is a

localization of T . By Prototype Theorem
11.4.11ic
10.6 of Chapter

insidecon
10, D is excel-

lent. Notice, however, that A is not excellent since there exists a prime
ideal P of A such that PÂ is not integrally closed by Remark

18.2.1
11.8.

exccompintclexts
10. The

excellence of D implies the map γ2 : D → A∗ is regular
G
[63, (7.8.3 v)].

Thus, for each Q∗ ∈ SpecA∗ with x /∈ Q∗, the map ψQ∗ : T → A∗Q∗ is
regular. It follows that ψx : T → A∗[1/x] is regular.

(2) Let Q∗ ∈ SpecA∗ be such that x /∈ Q∗ and let q′ = Q∗ ∩ T . Assume that
ϕq′ : S → Tq′ is regular. By item 1 and

M
[123, Theorem 32.1], the map

S → A∗Q∗ is regular. Thus (γ2 ◦ γ1)Q∗ : A→ A∗Q∗ is regular.
(3) Let I be an ideal of A. Since D and A∗ are excellent and both have

completion Â, Remark
18.2.1
11.8.

exccompintclexts
10 shows that the ideals ID, IA∗ and IÂ are

either all integrally closed or all fail to be integrally closed.
(4) In this setting, the Jacobian ideal of ϕ : S ↪→ T gives information about

the smoothness and regularity of ϕ by Theorems
16.2.65
7.12 and

16.2.7
7.19.1. The

Jacobian ideal of ϕ : S := k[x, y, z, f, g] ↪→ T := k[x, y, z, σ, τ ] is the ideal
of T generated by the determinant of the matrix

J :=

(
∂f
∂σ

∂g
∂σ

∂f
∂τ

∂g
∂τ

)
.

Since the characteristic of the field k is zero, this ideal is (y− σ)(z− τ)T .
In Proposition

18.4.3
11.16, we relate the behavior of integrally closed ideals in the

extension ϕ : S → T to the behavior of integrally closed ideals in the extension
γ2 ◦ γ1 : A→ A∗.

18.4.3 Proposition 11.16. With the setting of Theorem
18.3.3
11.11, let I be an integrally

closed ideal of A such that x 6∈ Q for each Q ∈ Ass(A/I). Let L = I ∩ S. If
LT is integrally closed, respectively a radical ideal, then IA∗ is integrally closed,
respectively a radical ideal.

Proof. Since the map A→ A∗ is flat, Remark
18.2.1
11.8.

flatregintcl
3 implies that x is not in

any associated prime ideal of IA∗. Therefore IA∗ is contracted from A∗[1/x] and it
suffices to show IA∗[1/x] is integrally closed (resp. a radical ideal). Our hypothesis
implies I = IA[1/x] ∩A. By Comment

Com
11.15.1, the ring A[1/x] is a localization of

S. Thus every ideal of A[1/x] is the extension of its contraction to S. It follows
that IA[1/x] = LA[1/x]. Thus IA∗[1/x] = LA∗[1/x].

By Comment
Com
11.15.1, the map T → A∗[1/x] is regular. If LT is integrally

closed, then Remark
18.2.1
11.8.

flatregintcl
3 implies that LA∗[1/x] is integrally closed. If LT is a

radical ideal, then the zero ideal of T
JT is integrally closed. The regularity of the

map T
JT →

A∗[1/x]
JA∗[1/x] implies that the zero ideal of A∗[1/x]

LA∗[1/x] is integrally closed. Since
the integral closure of the zero ideal is the nilradical, it follows that LA∗[1/x] is a
radical ideal. □

11.16ch11 Proposition 11.17. With the setting of Theorem
18.3.3
11.11 and Comment

Com
11.15,

let Q ∈ SpecA be such that QA∗ (or equivalently QÂ) is not integrally closed. Then
(1) Q has height two and x 6∈ Q.
(2) There exists a minimal prime ideal Q∗ of QA∗ such that with q′ = Q∗∩T ,

the map ϕq′ : S → Tq′ is not regular.
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(3) Q contains f = (y − σ)2 or g = (z − τ)2.
(4) Q is contained in n2, where n is the maximal ideal of A.

Proof. We have dimA = 3, the maximal ideal of A extends to the maximal
ideal of A∗, and principal ideals of A∗ are integrally closed by Remark

18.2.1
11.8.

2dimintclexts
8.

Thus the height of Q is two. By Construction Properties Theorem
11.2.51
5.14, we have

A∗/xA∗ = A/xA = R/xR. Hence x 6∈ Q. This proves item 1.
By Remark

18.2.1
11.8.

flatregintcl
3, there exists a minimal prime ideal Q∗ of QA∗ such that

(γ2 ◦ γ1)Q∗ : A→ A∗Q∗ is not regular. Thus item 2 follows from Comment
Com
11.15.2.

For item 3, let Q∗ and q′ be as in item 2. Since (γ2 ◦ γ1)Q∗ is not regular it is
not essentially smooth

G
[63, 6.8.1]. By Theorem

16.2.7
7.19.1, (y − σ)(z − τ) ∈ q′. Hence

f = (y − σ)2 or g = (z − τ)2 is in q′ and thus in Q. This proves item 3.
For item 4, suppose w ∈ Q is a regular parameter for A; that is w ∈ n \ n2.

Then A/wA and A∗/wA∗ are two-dimensional regular local domains, A/wA is a
UFD, and ht(Q/wA) = 1. By Remark

18.2.1
11.8.

2dimintclexts
8, QA∗/wA∗ is integrally closed, but

this implies that QA∗ is integrally closed, a contradiction to the hypothesis that
QA∗ is not integrally closed. This proves item 4. □

Question 11.18. In the setting of Theorem
18.3.3
11.11 and Comment

Com
11.15, let

Q ∈ SpecA with x /∈ Q and let q = Q∩S. If QA∗ is integrally closed, does it follow
that qT is integrally closed?

11.18ch11 Question 11.19. In the setting of Theorem
18.3.3
11.11 and Comment

Com
11.15, if a

prime ideal Q of A contains f or g, but not both, does it follow that QA∗ is
integrally closed?

If the prime ideal Q in Question
11.18ch11
11.19 contains a regular parameter of A, then

QA∗ is integrally closed by Proposition
11.16ch11
11.17.4.

In Example
18.3.1
11.9, the three-dimensional regular local domain A contains height-

one prime ideals P such that Â/P Â is not reduced. This motivates us to ask:
Question 11.20. Let (A, n) be a three-dimensional regular local domain and

let Â denote the n-adic completion of A. If for each height-one prime ideal P of A,
the extension PÂ is a radical ideal, i.e., the ring Â/P Â is reduced, does it follow
that QÂ is integrally closed for each Q ∈ SpecA?

Remark 11.21. A problem analogous to that considered here in the sense that
it also deals with the behavior of ideals under extension to completion is addressed
by Loepp and Rotthaus in

LR
[115]. They construct nonexcellent Noetherian local

domains to demonstrate that tight closure need not commute with completion.

Exercises
radint (1) Let I be a radical ideal of a ring R. Prove that I is an integrally closed ideal

of R.
regseq (2) Let u, v be a regular sequence in a commutative ring R. Prove that

uv /∈ (u2, v2)R.
Suggestion: Use that if a, b are in R and au = bv, then b ∈ uR.

intclxI (3) Let R be an integrally closed domain.
(i) Prove that every principal ideal in R is integrally closed.
(ii) Let 0 6= x ∈ R and let I be an ideal of R. Prove that xI = xI.
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Suggestion: Show that if a ∈ xI, then a/x is in R.
2dufdxI (4) (i) Let A be a UFD. Prove that every ideal of A has the form xI, where x ∈ A

and I is an ideal of A that is not contained in any proper principal ideal of
A.

(ii) Let (A, n) be a two-dimensional local UFD. Prove that every non-principal
integrally closed ideal of A has the form xI, where x ∈ A and I is an
n-primary integrally closed ideal of A.



CHAPTER 12

Iterative examples May 28, 2020 (pmotiv)motiv

This chapter contains a family of examples of subrings of the power series ring
k[[x, y]], where k is a field and x and y are indeterminates. Certain values of the
parameters that occur in the construction yield an example of a 3-dimensional
local Krull domain (B, n) such that B is not Noetherian, n = (x, y)B is 2-generated
and the n-adic completion B̂ of B is a two-dimensional regular local domain; see
Example

4.7.13
12.7. The examples constructed are iterative in the sense that they arise

from applying the inclusion construction twice, first using an x-adic completion and
then using a y-adic completion; see Remarks

iternotrem
12.9.

Let R be the localized polynomial ring R := k[x, y](x,y). If σ, τ ∈ R̂ = k[[x, y]]
are algebraically independent over R, then the polynomial ring R[t1, t2] in two
variables t1, t2 over R, can be identified with a subring of R̂ by means of an R-
algebra isomorphism mapping t1 → σ and t2 → τ . The structure of the local
domain A = k(x, y, σ, τ) ∩ R̂ depends on the residual behavior of σ and τ with
respect to prime ideals of R̂. Theorem

4.2.11t
12.3 illustrates this in the special case where

σ ∈ k[[x]] and τ ∈ k[[y]]; Example
4.1.4
4.11 is the specific case: k = Q, σ = ex, τ = ey.

4.4.1icr Remark 12.1. In examining properties of subrings of the formal power se-
ries ring k[[x, y]] over the field k, we use that the subfields k((x)) and k((y)) of
the field Q(k[[x, y]]) are linearly disjoint over k as defined for example in

ZSI
[193,

page 109]. It follows that if α1, . . . , αn ∈ k[[x]] are algebraically independent over
k(x) and β1, . . . , βm ∈ k[[y]] are algebraically independent over k(y), then the ele-
ments α1, . . . , αn, β1, . . . , βm are algebraically independent over k(x, y).

12.1. Iterative examples and their properties4.7

The following notation is used for the examples. The remarks are used in the
proof of Theorem

4.2.11t
12.3.

4.7.n Notation and Remarks 12.2. Let k be a field, let x and y be indeterminates
over k, and let

σ :=

∞∑
i=1

aix
i ∈ xk[[x]] and τ :=

∞∑
i=1

biy
i ∈ yk[[y]]

be formal power series that are algebraically independent over the fields k(x) and
k(y), respectively. Let R := k[x, y](x,y), and let σn, τn be the nth endpieces of σ, τ
defined as in Equation

4.2.3
5.41, for n ∈ N0. Define the following rings:

149
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(
4.7.n
12.2.0)

Cn := k[x, σn](x,σn), C := k(x, σ) ∩ k[[x]] = ∪∞n=1Cn;

Dn := k[y, τn](y,τn), D := k(y, τ) ∩ k[[y]] = ∪∞n=1Dn;

Un := k[x, y, σn, τn], U : = ∪∞n=1Un;

Bn := k[x, y, σn, τn](x,y,σn,τn)
B : = ∪∞n=1Bn;

A := k(x, y, σ, τ) ∩ k[[x, y]].
To explain the equalities, observe:
(i) Since k[[x, y]] is the (x, y)-adic completion of the Noetherian ring R, Re-

mark
3.38.0
3.3.4 implies that k[[x, y]] is faithfully flat over R. By Remark

remflat
2.37.

ffid
7,

(x, y)nk[[x, y]] ∩ R = (x, y)nR,

for each n ∈ N0. Endpiece Recursion Relation
EndRecRel
5.5 implies the inclusions

Cn ⊂ Cn+1, Dn ⊂ Dn+1, and Bn ⊂ Bn+1.

For each of these inclusions, the larger local ring birationally dominates the smaller;
the local rings Cn, Dn, Bn are all dominated by k[[x, y]] = R̂.

(ii) (x, y)B ∩ Bn = (x, y, σn, τn)Bn, for each n ∈ N0: To see this, let h ∈
(x, y, σn, τn)Un. By Equation

EndRecRel
5.5,

σn = −xan+1 + xσn+1 and τn = −ybn+1 + yτn+1.

Hence h ∈ (x, y)Un+1∩Un ⊆ (x, y)U ∩Un. Since (x, y, σn, τn)Un is a maximal ideal
of Un and is contained in (x, y)U , a proper ideal of U , it follows that

(x, y)U ∩ Un = (x, y, σn, τn)Un.

Thus (x, y)B ∩Bn = (x, y, σn, τn)B, for each n ∈ N0.
(iii) Un[ 1

xy ] = U [ 1
xy ], for each n ∈ N0: By Equation

4.2.3
5.4.2,

σn+1 ∈ Un[
1

x
] ⊆ Un[

1

xy
] and τn+1 ∈ Un[

1

y
] ⊆ Un[

1

xy
].

Hence Un+1 ⊆ Un[ 1
xy ], U ⊆ Un[

1
xy ], and Un[

1
xy ] = U [ 1

xy ], for each n ∈ N.
(iv) By Remark

3.02.1
2.1, the rings C and D are rank-one discrete valuation domains;

as in Remark
dvrunique
4.20 they are the asserted directed unions. The rings Bn are four-

dimensional regular local domains that are localized polynomial rings over the field
k. Thus the approximation domain B is the directed union of a chain of four-
dimensional regular local rings, with each ring birational over the previous ring.

Theorem
4.2.11t
12.3 gives other properties of the rings A and B.

4.2.11t Theorem 12.3. Assume Notation
4.7.n
12.2. Then the ring A is a two-dimensional

regular local domain that birationally dominates the ring B; A has maximal ideal
(x, y)A and completion Â = k[[x, y]]. Moreover:

(1) The rings U and B are UFDs, and B = U(x,y).
(2) B is a local Krull domain with maximal ideal n = (x, y)B.
(3) B is Hausdorff in the topology defined by the powers of n.
(4) The n-adic completion B̂ of B is canonically isomorphic to k[[x, y]].
(5) The dimension of B is either 2 or 3.
(6) The following statements are equivalent:

(a) B = A.
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(b) B is a two-dimensional regular local domain.
(c) dimB = 2.
(d) B is Noetherian.
(e) In the n-adic topology every finitely generated ideal of B is closed.
(f) In the n-adic topology every principal ideal of B is closed.

The proof of the asserted properties of the ring A of Theorem
4.2.11t
12.3 uses the

following consequence of the useful result of Valabrega given in Theorem
4.1.2
4.9.

4.2.2 Proposition 12.4. With notation as in Theorem
4.2.11t
12.3, let C = k(x, σ)∩ k[[x]]

and let L be the field of fractions of C[y, τ ]. Then the ring A = L ∩ C[[y]] is a
two-dimensional regular local domain with maximal ideal (x, y)A and completion
Â = k[[x, y]].

Proof. The ring C is a rank-one discrete valuation domain with completion
k[[x]], and the field k(x, y, σ, τ) = L is an intermediate field between the fields of
fractions of the rings C[y] and C[[y]]. By Theorem

4.1.2
4.9, A = L ∩ C[[y]] is a regular

local domain with completion k[[x, y]]. □
Proof. Now prove Theorem

4.2.11t
12.3. The assertions about A follow from Propo-

sition
4.2.2
12.4. Also U0 = k[x, y, σ, τ ] ⊆ Un ⊆ U ⊆ B ⊆ A, for each n ∈ N0. Let Q(A)

denote the field of fractions of A and Q(U0), the field of fractions of U0. Then
Q(A) ⊆ k(x, y, σ, τ) = Q(U0), and the extensions U0 ⊆ Un ⊆ U ⊆ B ⊆ A are
birational. By Remark

4.7.n
12.2.ii above, (x, y)U ∩ Un = (x, y, σn, τn)Un. Thus (x, y)U

is a maximal ideal of U , and B = U(x,y) is local with maximal ideal n = (x, y)B.
Since B and A are both dominated by k[[x, y]], the ring A dominates B.

For item 1, to see that U and B are UFDs, Equation
4.7.n
12.2.0 and Remark

4.7.n
12.2.iii

imply U0[
1
xy ] = U [ 1

xy ]. Thus the ring U [ 1
xy ] is a UFD and a Krull domain. For each

n ∈ N, the principal ideals xUn and yUn are prime ideals in the polynomial ring
Un. Therefore xU and yU are principal prime ideals of U . Moreover UxU = BxB
and UyU = ByB are DVRs, since

∩n∈NxnU = ∩n∈N(xnk[x, y, σ, τ ]) ⊆ ∩n∈Nxn(k[[x, y]]) = 0,

and similarly for yU ; see Exercise
locDVR
2 of Chapter

3tools
2.

Since x is a unit of UyU , it follows that UyU = U [1/x](yU [1/x]); see Exercise
locloc
1

of this chapter. By Fact
Intdomint
2.28 with D = U [1/x] and c = y,

(
4.2.2
12.4.0) U [1/x] = U [

1

xy
] ∩ U [1/x](yU [1/x]) = U [

1

xy
] ∩ UyU ,

By the previous paragraph, UyU is a DVR and U [ 1
xy ] is a Krull domain. It follows

from Equation
4.2.2
12.4.0, Definition

Krull
2.11 and Remarks

Krullrmks
2.12 that U [1/x] is a Krull

domain, By Nagata’s Theorem
krullufd
2.27, U [1/x] is a UFD. Fact

Intdomint
2.28, with D = U and

c = x, implies U = U [ 1x ] ∩ UxU . As above, U is a Krull domain. By Nagata’s
Theorem

krullufd
2.27 again, U is a UFD. Since B is a localization of U , the ring B is a

UFD. This completes the proof of items 1 and 2.
For item 3, since B is dominated by k[[x, y]], the intersection

⋂∞
n=1 n

n = (0).
Thus B is Hausdorff in the topology defined by the powers of n

Nor
[145, Proposition

4, page 381], as in Definitions
3.1.1
3.1. For item 4, consider the local injective maps

R ↪→ B ↪→ R̂; then mnB = nn, mnR̂ = m̂n and m̂n ∩ R = mn, for each positive
integer n. Since the natural map R/mn → R̂/mnR̂ = R̂/m̂n is an isomorphism, the
map R/mn → B/mnB = B/nn is injective and the map B/nn → R̂/nnR̂ = R̂/m̂n
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is surjective. Since B/nn is a finite length R-module, it follows that, for each n ∈ N,
the length of R/mn is the same as the length of R/nn, and

R/mn ∼= B/nn ∼= R̂/m̂n.

Hence B̂ = R̂ = k[[x, y]].
For item 5, notice that B is a birational extension of the three-dimensional

Noetherian domain C[y, τ ]. The dimension of B is at most 3 by Cohen’s Theo-
rem

cohenextensions
2.26; also see

M
[123, Theorem 15.5]. The elements x and y are in the maximal

ideal n of Bn for each n ∈ N. If dimB = 1, then the local UFD B = BxB is a DVR,
and Remark

3.38.0
3.3.4 implies

1 = dimB = dim B̂ = dim(k[[x, y]]) = 2,

a contradiction. Hence dimB ≥ 2.
For item 6, Proposition

4.2.2
12.4 implies A is a two-dimensional RLR. Thus (a) =⇒

(b). Clearly (b) =⇒ (c). By items 1 and 2, B is a local UFD with maximal
ideal n = (x, y)B. Hence every prime ideal of B is finitely generated. Cohen’s
Theorem

3.2.1
2.25 yields that (c) =⇒ (d). By Remark

3.38.0
3.3.4, the completion of

the Noetherian local ring B is a faithfully flat extension. Remark
remflat
2.37.

ffid
7 implies

(d) =⇒ (e). It is clear that (e) =⇒ (f). To complete the proof of Theorem
4.2.11t
12.3,

it suffices to show that (f) =⇒ (a). Since A birationally dominates B, the ring
B = A if and only if bA ∩ B = bB for every element b ∈ n; see Exercise

princcontr
2.ii of

Chapter
fex
4. The principal ideal bB is closed in the n-adic topology on B if and only

if bB = bB̂ ∩ B. Also B̂ = Â and bA = bÂ ∩ A, for every b ∈ B. Thus (f) implies,
for every b ∈ B,

bB = bB̂ ∩B = bÂ ∩B = bÂ ∩A ∩B = bA ∩B,
and so B = A. This completes the proof of Theorem

4.2.11t
12.3. □

2Ex7.2 Remark 12.5. With σ, τ and B as in Notation
4.7.n
12.2, items 5 and 6 of Theo-

rem
4.2.11t
12.3 establish that either the approximation domain B has dimension two and

is Noetherian or B has dimension three and is not Noetherian. In the remainder of
this chapter we establish the existence of both types for B, and illustrate the effect
of the choice of σ and τ on the resulting approximation domain B;

bothpossible Theorem 12.6. With σ, τ and B as in Notation
4.7.n
12.2, either the ring B is

non-Noetherian and strictly smaller than A := k(x, y, σ, τ) ∩ k[[x, y]], or B = A.
Both cases are possible.

Proof. By construction, B ⊆ A. Thus one of these two cases occurs by
(a) ⇐⇒ (d) of Theorem

4.2.11t
12.3(6). The first case is established in Example

4.7.13
12.7 and

the second case in Example
7.6.10.1
12.21. □

4.7.13 Example 12.7. With Notation
4.7.n
12.2, let τ ∈ k[[y]] be defined to be σ(y), that

is, set bi := ai, for every i ∈ N. We then have that θ := σ−τ
x−y ∈ A. To see this, write

σ − τ = a1(x− y) + a2(x
2 − y2) + · · ·+ an(x

n − yn) + · · · ,
and so θ = σ−τ

x−y ∈ k[[x, y]] ∩ k(x, y, σ, τ) = A. As a specific example, one may take
k := Q and set σ := ex − 1 and τ := ey − 1.

Claim
4.7.13.1
12.8 below and Theorem

4.2.11t
12.3 above together imply that, if τ = σ(y),

then the approximation domain B is non-Noetherian and strictly contained in the
corresponding intersection domain A.
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4.7.13.1 Claim 12.8. The element θ is not in B, and so B ( A.
Proof. If θ is an element of B, then

σ − τ ∈ (x− y)B ∩ U = (x− y)U.
As above, U0 = k[x, y, σ, τ ] and

U =
⋃
n∈N

Un ⊆ U0[
1

xy
] ⊂ (U0)(x−y)U0

,

where the last inclusion is because xy 6∈ (x− y)U0. Thus θ ∈ B implies that
σ − τ ∈ ((x− y)U0)(x−y)U0

∩ U0 = (x− y)U0,

but this contradicts the fact that x, y, σ, τ are algebraically independent over k, and
U0 is a polynomial ring over k in x, y, σ, τ . □

In contrast to Example
4.7.13
12.7, a Krull domain that birationally dominates a two-

dimensional Noetherian local domain is Noetherian; see Exercise
BObirdom
14 in Chapter

3tools
2.

In Remarks
iternotrem
12.9 we justify using the words “Iterative Example” in the title of

this chapter to describe the construction of the rings B and A of Notation
4.7.n
12.2.

iternotrem Remarks 12.9. Assume Notation
4.7.n
12.2. ThusR = k[x, y](x,y); Cn = k[x, σn](x,σn);

C = k(x, σ) ∩ k[[x]] = ∪∞n=1Cn; Bn = k[x, y, σn, τn](x,y,σn,τn)
; B = ∪∞n=1Bn;

and A = k(x, y, σ, τ) ∩ k[[x, y]].
(1) The rings B and A may be obtained by “iterating” Inclusion Construc-

tion
4.4.1
5.3 and the approximation in Section

4.45
5.2. To see this, define a ring T associated

with A and B:

Tn : = k[x, y, σn](x,y,σn) = Cn[y](x,y,σn), T :=

∞⋃
n=1

Tn.

The ring T is a Local Prototype, and so T = k[y](y)[[x]] ∩ k(x, y, σ) = C[y](x,y),
a two-dimensional regular local domain, as in Local Prototype Theorem

11.4.11ic
10.6. If

char k = 0, then T is excellent. The ring T is the result of one iteration of the
construction, using the power series σ ∈ xk[[x]] in the x-adic completion of R.

For each positive integer n, Bn ⊂ T [τn](x,y,τn) ⊂ B. Hence by definition
B =

⋃∞
n=1 T [τn](x,y,τn). Thus, as in Construction Properties Theorem

11.2.51
5.14.6, B

is the approximation domain obtained using the power series τ and applying the
construction with T as the base ring.

(2) Remark
iternotrem
12.9.1 yields alternate proofs of parts of Theorem

4.2.11t
12.3. By The-

orem
Bufd
5.24 and its proof, T , U and B are UFDs and items 1 and 2 hold. By

Construction Properties Theorem
11.2.51
5.14, item 4 holds. Moreover part d of item 6

implies part a, by Noetherian Flatness Theorem
11.3.25
6.3.

(3) In addition, item 1 justifies our use of the results of Chapters
constrincl
5,

noeflic
6 and

insidecon
10

in the remainder of this chapter to show there exist σ and τ such that A = B.
iternotdis Discussion 12.10. As stated in Remark

2Ex7.2
12.5, the ring B may be Noetherian

for certain choices of σ and τ . To obtain an example of a triple σ, τ and B fitting
Notation

4.7.n
12.2 where B is Noetherian, we first establish in Example

7.6.10.1
12.21 below

with k = Q that the elements σ := ex − 1 and τ := e(e
y−1) − 1 give an example

where B = A. By Proposition
resalgnoe
12.14, the critical property of τ used to prove B

is Noetherian and A = B is that, for T = C[y](x,y), the image of τ in R̂/Q is
algebraically independent over T/(Q ∩ T ), for each height-one prime ideal Q of
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R̂ = Q[[x, y]] such that Q ∩ T 6= (0) and xy 6∈ Q. We use Noetherian Flatness
Theorem

11.3.25
6.3 to prove Proposition

resalgnoe
12.14. In order to show that the property of

Proposition
resalgnoe
12.14 holds for τ = e(e

y−1) − 1 in the proof of Theorem
7.6.1.1
12.18, we use

results of Ax that yield generalizations of Schanuel’s conjectures regarding algebraic
relations satisfied by exponential functions

Ax
[19, Corollary 1, p. 253].

4.7.14 Remark 12.11. In Notation
4.7.n
12.2, It seems natural to consider the ring com-

positum Ĉ[D̂] of Ĉ = k[[x]] and D̂ = k[[y]]. We outline in Exercise
Kunzcompos
5 of this chapter

a proof due to Kunz that the subring Ĉ[D̂] of k[[x, y]] is not Noetherian.

12.2. Residual algebraic independence

The iterative examples of Section
4.7
12.1 lead us to consider in this section “resid-

ual algebraic independence”, the critical property of an extension of Krull domains
R ↪→ S from Discussion

iternotdis
12.10. 1

7.6.1.0r Definition 12.12. Let R ↪→ S denote an extension of Krull domains. An
element ν ∈ S is residually algebraically independent with respect to S over R if ν is
algebraically independent over R and, for every height-one prime ideal Q of S such
that Q∩R 6= 0, the image of ν in S/Q is algebraically independent over R/(Q∩R).

7.6.1r Remark 12.13. If (R,m) is a regular local domain, or more generally an ana-
lytically normal Noetherian local domain, it is natural to consider the extension of
Krull domains R ↪→ R̂, where R̂ is the m-adic completion of R, and to ask about
the existence of an element ν ∈ R̂ that is residually algebraically independent with
respect to R̂ over R. If the dimension of R is at least two and R has countable
cardinality, for example, if R = Q[x, y](x,y), then a cardinality argument implies
the existence of an element ν ∈ R̂ that is residually algebraically independent with
respect to R̂ over R.2

If ν ∈ m̂ is residually algebraically independent with respect to R̂ over R, then
the intersection domain A = R̂∩Q(R[ν]) is the localized polynomial ring R[ν](m,ν).3

Therefore A is Noetherian and the completion Â of A is a formal power series ring
in one variable over R̂. As in Exercise

compRSinj
6 of Chapter

ptools2
3, the local inclusion maps

R ↪→ A ↪→ R̂ determine a surjective map of Â onto R̂. Since dim Â > dim R̂, this
surjective map has a nonzero kernel. Hence A is not a a subspace of R̂; that is, the
topology on A determined by the powers of the maximal ideal of A is not the same
as the subspace topology on A defined by intersecting the powers of the maximal
ideal of R̂ with A.

The existence of an element ν that is almost residually algebraically indepen-
dent is important in completing the proof of the iterative examples of Section

4.7
12.1,

as is shown in Proposition
resalgnoe
12.14 and Theorem

7.6.1.1
12.18. The proofs of these results

use Noetherian Flatness Theorem
11.3.25
6.3 of Chapter

noeflic
6. The proof of Proposition

resalgnoe
12.14

shows that with the notation of Remarks
iternotrem
12.9 the existence of ν fits Inclusion Con-

struction
4.4.1
5.3 and the approximation procedure of Section

4.45
5.2. Thus Theorem

11.3.25
6.3

implies that the intersection domain equals the approximation domain and is Noe-
therian provided a certain extension is flat.

1The residually algebraically independent property is analyzed in more depth in Chapter
idwisec
22.

We use results from Chapter
idwisec
22 to verify Example

4.7.13
12.7.

2This existence is proved in Theorems
6.3.9
22.20 and

6.4.4
22.30.

3This statement is proved in Propositions
6.3.4
22.15 and Theorem

6.4.4
22.30.
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resalgnoe Proposition 12.14. With Notation
4.7.n
12.2, let T = C[y](x,y)C[y]. Thus T is a

two-dimensional regular local domain with completion T̂ = k[[x, y]] = R̂. If the
image of τ in C[[y]]/Q is algebraically independent over T/(Q∩T ) for each height-
one prime ideal Q of C[[y]] such that Q∩T 6= (0) and xy 6∈ Q, then B is Noetherian
and B = A.

Proof. As observed in Remark
iternotrem
12.9, B is obtained from T by Inclusion Con-

struction
4.4.1
5.3, and so Noetherian Flatness Theorem

11.3.25
6.3 applies. Thus, in order to

show that B is Noetherian and B = A, it suffices to show that the map
φy : T [τ ] −→ C[[y]][1/y]

is flat; see Definition
flat
2.36. By Remark

remflat
2.37.

floc
1, flatness is a local property. Hence it

suffices to show for each prime ideal Q of C[[y]] with y 6∈ Q that the induced map
φQ : T [τ ]Q∩T [τ ] −→ C[[y]]Q is flat. If ht(Q ∩ T [τ ]) ≤ 1, then T [τ ]Q∩T [τ ] is either
a field or a DVR. The integral domain C[[y]]Q is torsionfree over T [τ ]Q∩T [τ ], since
r ∈ T [τ ]Q∩T [τ ], w ∈ C[[y]]Q with rw = 0 =⇒ r = 0 or w = 0. If T [τ ]Q∩T [τ ] is
a field, then C[[y]]Q is free and hence flat. If T [τ ]Q∩T [τ ] is a DVR, Remark

remflat2
2.39.

tfPID
3

implies φQ is flat.
Therefore it suffices to show that ht(Q∩T [τ ]) ≤ 1. This is clear for Q = xC[[y]].

On the other hand, if xy 6∈ Q, then by hypothesis, the image τ̄ of τ in C[[y]]/Q is
algebraically independent over T/(Q ∩ T ). Let α and β be the maps shown

T

Q ∩ T
[τ̄ ] =

T [τ ]

(Q ∩ T )T [τ ]
α→ T [τ ]

Q ∩ T [τ ]
β
↪→ C[[y]]

Q
,

where α is surjective and the composition β ◦ α is injective. Then C[[y]] is the
y-adic completion of T , and so is faithfully flat over T . Thus ht(Q ∩ T ) ≤ 1. If
ht(Q∩T [τ ]) = 2, then the image of τ in T [τ ]/(Q∩T [τ ]) is algebraic over T/(Q∩T ),
a contradiction. Therefore ht(Q∩T [τ ]) ≤ 1. Thus B is Noetherian and B = A. □

7.6.1s Remarks 12.15. (1) To establish the existence of examples applicable to Propo-
sition

resalgnoe
12.14, take k to be the field Q of rational numbers. Thus R := Q[x, y](x,y) is

the localized polynomial ring, and the completion of R with respect to its maximal
ideal m := (x, y)R is R̂ := Q[[x, y]], the formal power series ring in the variables x
and y. Let σ := ex − 1 ∈ Q[[x]], and C := Q[[x]] ∩Q(x, σ). Thus C is an excellent
DVR 4 with maximal ideal xC, and T := C[y](x,y)C[y] is an excellent countable
two-dimensional regular local ring with maximal ideal (x, y)T and with (y)−adic
completion C[[y]]. The UFD C[[y]] has maximal ideal n = (x, y).

(2) Theorem
7.6.1t
12.16 below shows that there exists τ ∈ C[[y]] such that the image

τ̄ of τ in C[[y]]/Q is transcendental over T/(Q ∩ T ), for each height-one prime Q
of C[[y]] with Q ∩ T 6= (0) and y 6∈ Q. The proof is elementary and uses that
T is countable. In contrast, for Example

4.7.13
12.7, with σ = ex − 1, τ = ey − 1 and

Q = (x− y)C[[y]], the element τ̄ is not transcendental over T/(Q ∩ T ).
(3) If there exists an element τ ∈ Q[[y]] such that the image of τ in C[[y]]/Q is

transcendental over T/(Q∩T ), for each height-one primeQ of C[[y]] withQ∩T 6= (0)
and y 6∈ Q, then Proposition

resalgnoe
12.14 implies B is Noetherian and B = A, for this

choice of σ ∈ Q[[x]] and for τ ∈ Q[[y]], as in Theorem
4.2.11t
12.3. More generally, if

there exists an element τ ∈ C[[y]] such that (a) the image of τ in C[[y]]/xC[[y]] =

4Every Dedekind domain of characteristic zero is excellent
M1
[121, (34.B)]. See also Re-

mark
3.435
3.48.
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(C/xC)[[y]] is transcendental over T/(xT ) = (C/xC)[[y]], and (b) the image of τ
in C[[y]]/Q is transcendental over T/(Q∩T ), for each height-one prime Q of C[[y]]
with Q ∩ T 6= (0) and y 6∈ Q, then Proposition

resalgnoe
12.14 implies B is Noetherian and

B = A, for this choice of σ ∈ Q[[x]].

7.6.1t Theorem 12.16. Let C be an excellent countable rank-one DVR with maximal
ideal xC and let y be an indeterminate over C. Let T = C[y](x,y)C[y]. Then there
exists an element τ ∈ C[[y]] for which the image of τ in C[[y]]/Q is transcendental
over T/(Q∩ T ), for every height-one prime ideal Q of C[[y]] such that Q∩ T 6= (0)
and y /∈ Q. Moreover τ is transcendental over T .

Proof. Since C is a DVR, C is a UFD, and so are T = C[y](x,y)C[y] and
C[[y]]. Hence every height-one prime ideal Qi of T is principal and is generated by
an irreducible polynomial of C[y], say fi(y). There are countably many of these
prime ideals.

Let U be the countable set of all height-one prime ideals of C[[y]] that are
generated by some irreducible factor in C[[y]] of some irreducible polynomial f(y)
of C[y] other than y; that is, yC[[y]] is not included in U . Let {Pi}∞i=1 be an
enumeration of the prime ideals of U . Let n := (x, y)C[[y]] denote the maximal
ideal of C[[y]].

uncntblcosets Claim 12.17. For each i ∈ N, there are uncountably many distinct cosets in
((P1 ∩ · · · ∩ Pi−1 ∩ yi+1C[[y]]) + Pi)/Pi.

Proof. Since y /∈ Pi, the image of y in the one-dimensional local domain
C[[y]]/Pi generates an ideal primary for the maximal ideal. Also C[[y]]/Pi is a
finite C[[y]]-module. Since C[[y]] is (y)-adically complete it follows that C[[y]]/Pi
is a (y)-adically complete local domain

M
[123, Theorem 8.7]. Hence, if we let H

denote a subset of C[[y]] that is a complete set of distinct coset representatives of
C[[y]]/Pi, then H is uncountable.

Let ai be an element of P1∩· · ·∩Pi−1∩yi+1C[[y]] that is not in Pi. Then the set
aiH := {aiβ | β ∈ H} represents an uncountable set of distinct coset representatives
of C[[y]]/Pi, since, if aiβ and aiγ are in the same coset of Pi and β, γ ∈ H, then

aiβ − aiγ ∈ Pi =⇒ β − γ ∈ Pi =⇒ β = γ,

Thus there are uncountably many distinct cosets of C[[y]]/Pi of the form aiβ +Pi,
where β ranges over H, as desired for Claim

uncntblcosets
12.17. □

To return to the proof of Theorem
7.6.1t
12.16, use that

((P1 ∩ · · · ∩ Pi−1 ∩ yi+1C[[y]]) + Pi)/Pi

is uncountable for each i: Choose f1 ∈ y2C[[y]] so that the image of y − f1 in
C[[y]]/P1 is not algebraic over T/(P1 ∩ T ); this is possible since C[[y]]/Pi is un-
countable, and so some cosets are transcendental over the countable set T/(P1∩T ).
Then the element y − f1 /∈ P1, and f1 /∈ P1, since y ∈ T .

Choose f2 ∈ P1 ∩ y3C[[y]] so that the image of y − f1 − f2 in C[[y]]/P2 is not
algebraic over T/(P2 ∩ T ). Note that f2 ∈ P1 implies the image of y − f1 − f2 is
the same as the image of y − f1 in C[[y]]/P1 and so it is not algebraic over P1.

Successively by induction, for each positive integer n, we choose fn so that

fn ∈ P1 ∩ P2 ∩ · · · ∩ Pn−1 ∩ yn+1C[[y]]
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and so that the image of y−f1−...−fn in C[[y]]/Pn is transcendental over T/(T∩Pi)
for each i with 1 ≤ i ≤ n. Then we have a Cauchy sequence {f1 + · · ·+ fn}∞n=1 in
C[[y]] with respect to the (yC[[y]])-adic topology, and so it converges to an element
a ∈ y2C[[y]]. Now

y − a = (y − f1 − . . . − fn)− (fn+1 + . . . ),

where the image of (y−f1− . . . −fn) in C[[y]]/Pn is transcendental over T/(Pn∩T )
and fi ∈ yC[[y]] for all 1 ≤ i ≤ n and (fn+1 + . . . ) ∈ ∩ni=1Pi ∩ yC[[y]]. Therefore
the image of y− a in C[[y]]/Pn is transcendental over T/(Pn ∩ T ), for every n ∈ N,
and we have y − a ∈ yC[[y]], as desired.

For the “Moreover” statement, suppose that τ − a is a root of a polynomial
f(z) with coefficients in T . For each prime ideal Q such that the image of τ is
transcendental over T/(T ∩Q), the coefficients of f(z) must all be in T ∩Q. Since
this is true for infinitely many height-one primes T ∩ Q, and the intersection of
infinitely many height-one primes in a Noetherian domain is zero, f(z) is the 0
polynomial, and so τ is transcendental over T . □

Theorem
7.6.1.1
12.18 yields explicit examples for which B is Noetherian and B = A

in Theorem
4.2.11t
12.3.

7.6.1.1 Theorem 12.18. Let x and y be indeterminates over Q, the field of rational
numbers. Then:

(1) There exist elements σ ∈ xQ[[x]] and τ ∈ yQ[[y]] such that the following
two conditions are satisfied:
(i) σ is algebraically independent over Q(x) and τ is algebraically inde-

pendent over Q(y).
(ii) trdegQ Q(y, τ, {∂

nτ
∂yn }n∈N) > r := trdegQ Q(x, σ, {∂

nσ
∂xn }n∈N), where

{∂
nτ
∂yn }n∈N is the set of partial derivatives of τ with respect to y and
{∂

nσ
∂xn }n∈N is the set of partial derivatives of σ with respect to x.

(2) If σ ∈ xQ[[x]] and τ ∈ yQ[[y]] satisfy conditions i and ii and T = C[y](x,y),
where C = Q(x, σ) ∩ Q[[x]], as in Notation

4.7.n
12.2 and Remark

iternotrem
12.9, then

the image of τ in C[[y]]/Q is algebraically independent over T/(Q ∩ T ),
for every height-one prime ideal Q of C[[y]] such that Q ∩ T 6= (0) and
xy 6∈ Q.

(3) If σ ∈ xQ[[x]] and τ ∈ yQ[[y]] satisfy conditions i and ii, then the ring
B of Theorem

4.2.11t
12.3 defined for this choice of σ and τ is Noetherian and

B = A.

Proof. For item 1, to establish the existence of elements σ and τ satisfying
properties (i) and (ii) of Theorem

7.6.1.1
12.18, let σ = ex − 1 ∈ Q[[x]] and choose for

τ a hypertranscendental element in Q[[y]]. A power series τ =
∑∞
i=0 biy

i ∈ Q[[y]]

is called hypertranscendental over Q[y] if the set of partial derivatives {∂nτ
∂yn }n∈N is

infinite and algebraically independent over Q(y). Two examples of hypertranscen-
dental elements are the Gamma function and the Riemann Zeta function. (The
exponential function is, of course, far from being hypertranscendental.) Thus there
exist elements σ, τ that satisfy conditions (i) and (ii) of Theorem

7.6.1.1
12.18.

Another way to obtain such elements is to set σ = ex − 1 and τ = e(e
y−1) − 1.

In this case, conditions i and ii of Theorem
7.6.1.1
12.18 follow from

Ax
[19, Conjecture Σ, p.

252], a generalization of Schanuel’s conjectures, which is established in Ax’s paper
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Ax
[19, Corollary 1, p. 253]. To see that conditions i and ii hold, it is convenient to
restate Conjecture Σ of

Ax
[19] with different letters for the power series; let y be a

variable, and use only one or two power series s, t ∈ C[[y]]. Thus Conjecture Σ
states that, if s and t are elements of C[[y]] that are Q-linearly independent, then

(
7.6.1.1
12.18.0)

trdegQ(Q(s, es)) ≥ 1 + rank
[
∂s
∂y

]
.

trdegQ(Q(s, t, es, et)) ≥ 2 + rank
[
∂s
∂y

∂t
∂y

]
.

Since the rank of the matrix
[
∂y
∂y

]
is 1, trdegQ(Q(y, ey)) ≥ 2, by Equation

7.6.1.1
12.18.0.

By switching the variable to x, trdegQ(Q(x, ex)) ≥ 2. Thus σ = ex − 1 satisfies
condition i.

Since just two transcendental elements generate the field Q(x, ex) over Q, we
have trdegQ(Q(x, ex)) = 2. Furthermore ∂nσ/∂xn = ex for every n ∈ N, and so

trdegQ(Q(x, σ, {∂
nσ)

∂xn
}n∈N)) = 2;

that is, for r as in condition ii with this σ, it follows that r = 2.
The rank of the matrix

[
∂y
∂y

∂(ey−1)
∂y

]
is 1, and so

trdegQ(Q(y, ey, e(e
y−1))) = trdegQ(Q(y, ey − 1, ey, e(e

y−1))) ≥ 3,

by Equation
7.6.1.1
12.18.0 with s = y and t = ey − 1.

For τ , taking the partial with respect to y yields

∂τ/∂y = ∂(e(e
y−1) − 1)/∂y = e(e

y−1) · ey =⇒

trdegQ(Q(y, τ, {∂
nτ

∂yn
}n∈N)) ≥ trdegQ(Q(y, ey, e(e

y−1))) > 2,

by the computation above, and so conditions i and ii both hold for τ . Thus item 1
is proved.

Item 3 follows from item 2 by Proposition
resalgnoe
12.14.

For item 2, observe that the ring T = C[y](x,y) is an overring of R = Q[x, y](x,y)

and a subring of R̂, and T has completion T̂ = R̂:

R = Q[x, y](x,y) −→ T = C[y](x,y) −→ R̂ = T̂ = Q[[x, y]].

The relationships among these rings are shown in Diagram
7.6.1.1
12.18.a.

R̂ = Q[[x, y]]

T := C[y](x,y)

R := Q[x, y](x,y)

C := Q(x, σ) ∩Q[[x]]

= ∪ Q[x, σn](x,σn)
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Diagram
7.6.1.1
12.18.a.The rings of the example

Let P̂ be a height-one prime ideal of R̂, let bars (for example, x̄), denote images
in R̂ = R̂/P̂ and set P := P̂ ∩ R and P1 := P̂ ∩ T . Assume that P1 6= 0 and that
xy 6∈ P̂ .

In the following commutative diagram, identify Q[[x]] with Q[[x̄]], identify Q[[y]]
with Q[[ȳ]], etc.

Q[[y]] R̂ = R̂/P̂ Q[[x]]
ψy ψx

T = T/P1

ϕy ϕxQ[y](y) R = R/P Q[x](x)

All maps in the diagram are injective and R̂ is finite over both of the rings
Q[[x]] and Q[[y]]. There are two cases: (i) P 6= (0), and (ii) P = (0); in each case
we show that T ⊆ Q(x̄, σ̄)a, the algebraic closure of Q(x̄, σ̄).

Case i: P = R ∩ P̂ 6= (0). Since trdegQQ(R) = 1, the ring R is algebraic over
Q[x](x), Thus ȳ is algebraic over Q[x](x), and so T ⊆ Q(x̄, σ̄)a.

Case ii: P = R ∩ P̂ = P1 ∩ R = (0). Then P1 ∩ C = (0); otherwise P1 ∩ C = xC,
since xC is the unique maximal ideal of the DVR C, and this would contradict
P1∩R = (0). The integral domain T is a UFD since C is. Therefore the height-one
prime ideal P1 of T is generated by an element f(y), which may be chosen in C[y].
Since P1 ∩ C = (0), we have deg f(y) ≥ 1, where deg refers to the degree in y.
Therefore f̄(ȳ) = 0 in T . Since the field of fractions of C is Q(x, σ), ȳ is algebraic
over the field Q(x̄, σ̄). Hence T is contained in Q(x̄, σ̄)a.

Let L denote the field of fractions of R̂. Consider Q(y, τ, {∂
nτ
∂yn }n∈N) and

Q(x, σ, {∂
nσ
∂xn }n∈N) as subfields of L, where

trdegQQ(y, τ,

{
∂nτ

∂yn

}
n∈N

)a > trdegQQ(x, σ,

{
∂nσ

∂xn

}
n∈N

)a.

Let d denote the partial derivative map ∂
∂x on Q((x)). Since the extension L of

Q((x)) is finite and separable, d extends uniquely to a derivation d̂ : L→ L,
ZSI
[193,

Corollary 2, p. 124]. Let H denote the algebraic closure (shown in Picture
7.6.5.4
12.19.1

by a small upper a) in L of the field Q(x, σ, {∂
nσ
∂xn }n∈N). Let p̂(x, y) ∈ Q[[x, y]] be

a prime element generating P̂ . Claim
7.6.5.4
12.19 asserts that the images of H and R̂

under d̂ are inside H and (1/p′)R̂, respectively, as shown in Picture
7.6.5.4
12.19.1.
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L := Q(R̂)
d̂

L

R̂ := Q[[x, y]]
d̂ 1

p′(ȳ)
R̂

Q[[x̄]] ∼= Q[[x]]
d := ∂

∂x Q[[x̄]]

H
d̂

H :=
(
Q(x, σ, {∂

nσ
∂xn }∞n=1)

)a ∩ L
Q[x, σ, {∂

nσ
∂xn }∞n=1]

d
Q[x, σ, {∂

nσ
∂xn }∞n=1]

Q
1Q Q

Picture
7.6.5.4
12.19.1. The image of subrings of L via the extension d̂ of d := ∂

∂x .

7.6.5.4 Claim 12.19. With the notation above:
(i) d̂(H) ⊆ H.
(ii) There exists a polynomial p(x, y) ∈ Q[[x]][y] with pQ[[x, y]] = P̂ and p(ȳ) = 0.
(iii) d̂(ȳ) 6= 0 and p′(ȳ)d̂(ȳ) ∈ R̂, where p′(y) := ∂p(x,y)

∂y .
(iv) For every element λ ∈ R̂, we have p′(ȳ)d̂(λ) ∈ R̂, and so d̂(R̂) ⊆ (1/p′(ȳ))R̂.

Proof. For item i, since d maps Q(x, σ, {∂
nσ
∂xn }n∈N) into itself, d̂(H) ⊆ H.

For item ii, the elements x and y are not contained in P̂ , and the element
p̂(x, y) ∈ Q[[x, y]] generates P̂ and is regular in y as a power series in Q[[x, y]]
(in the sense of Zariski-Samuel

ZSII
[194, p.145]); that is, p̂(0, y) 6= 0. Thus by

ZSII
[194,

Corollary 1, p.145] the element p̂(x, y) can be written as:

p̂(x, y) = ε(x, y)(yn + cn−1(x)y
n−1 + . . .+ c0(x)),

where ε(x, y) is a unit of Q[[x, y]] and each ci(x) ∈ Q[[x]]. Hence P̂ is also generated
by

p(x, y) = p(y) := ε−1p̂ = yn + cn−1y
n−1 + · · ·+ c0,

and the ci ∈ Q[[x]]. Since p(y) is the minimal polynomial of ȳ over the field Q((x)),
it follows that 0 = p(ȳ) := ȳn + cn−1ȳ

n−1 + · · ·+ c1ȳ + c0.
For item iii, observe that

p′(y) = nyn−1 + cn−1(n− 1)yn−2 + · · ·+ c1,
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and p′(ȳ) 6= 0 by minimality. Now
0 = d̂(p(ȳ)) = d̂(ȳn + cn−1ȳ

n−1 + · · ·+ c1ȳ + c0)

= nȳn−1d̂(ȳ) + cn−1(n− 1)ȳn−2d̂(ȳ) + d(cn−1)ȳ
n−1 + · · ·

+ c1d̂(ȳ) + d(c1)ȳ + d(c0)

= d̂(ȳ)(nȳn−1 + cn−1(n− 1)ȳn−2 + · · ·+ c1)+

+ d(cn−1)ȳ
n−1 + · · ·+ d(c1)ȳ + d(c0)

= d̂(ȳ)(p′(ȳ)) +

n−1∑
i=0

d(ci)ȳ
i

=⇒ d̂(ȳ)(p′(ȳ)) =−
( n−1∑
i=0

d(ci)ȳ
i
)

and d̂(ȳ) =
−1
p′(ȳ)

n−1∑
i=0

d(ci)ȳ
i.

In particular, p′(ȳ)d̂(ȳ) ∈ R̂. If d(ci) = 0 for every i, then ci ∈ Q for every i; this
would imply that p(x, y) ∈ Q[[y]] and either c0 = 0 or c0 is a unit of Q. If c0 = 0,
p(x, y) could not be a minimal polynomial for ȳ, a contradiction. If c0 is a unit,
then p(y) is a unit of Q[[y]], and so P̂ contains a unit, another contradiction. Thus
d̂(ȳ) 6= 0, as desired for item iii.

For item iv, observe that every element λ ∈ R̂ has the form:
λ = en−1(x)ȳ

n−1 + · · ·+ e1(x)ȳ + e0(x), where ei(x) ∈ Q[[x]].

Therefore:

d̂(λ) = d̂(ȳ)
[
(n− 1)en−1(x)ȳ

n−2 + · · ·+ e1(x)
]
+

n−1∑
i=0

d(ei(x))ȳ
i.

The sum expression on the right is in R̂ and, as established above, p′(ȳ)d̂(ȳ) ∈ R̂,
and so p′(ȳ)d̂(λ) ∈ R̂. □

The next claim shows that every power series γ ∈ Q[[y]] has an expression for
d̂(γ̄) in terms of the image in R̂ of the partial derivative ∂γ

∂y of γ with respect to y.

7.6.6.6 Claim 12.20. If γ ∈ Q[[y]], then d̂(γ̄) = d̂(ȳ)
(
∂γ
∂y

)
.

Proof. For every m ∈ N, the series γ =
∑m
i=0 biy

i + ym+1γm, where each
bi ∈ Q and each γm ∈ Q[[y]] is an mth endpiece of γ, as in Equation

4.2.3
5.4.1. Therefore

d̂(γ̄) = d̂(ȳ) ·
( m∑
i=1

ibiȳ
i−1)+ d̂(ȳ)(m+ 1)ȳmγ̄m + ȳm+1d̂(γ̄m).

Thus, for the polynomial p(x, y) ∈ Q[[x]][y] of Claim
7.6.5.4
12.19,

(
7.6.6.6
12.20.0) p′(ȳ)d̂(γ̄) = p′(ȳ)d̂(ȳ)·

m∑
i=1

ibiȳ
i−1+ȳm[p′(ȳ)d̂(ȳ)(m+1)γ̄m+ȳp′(ȳ)d̂(γ̄m)].

Since γ =
∑∞
i=0 biy

i with bi ∈ Q,

(
7.6.6.6
12.20.1)

(
∂γ

∂y

)
=

m∑
i=1

ibiȳ
i−1 + ȳm

∞∑
i=m+1

ibiȳ
i−m−1.
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Multiply Equation
7.6.6.6
12.20.1 by p′(ȳ)d̂(ȳ) to obtain

(
7.6.6.6
12.20.2) p′(ȳ)d̂(ȳ)

(
∂γ

∂y

)
= p′(ȳ)d̂(ȳ)

m∑
i=1

ibiȳ
i−1 + p′(ȳ)d̂(ȳ)ȳm

∞∑
i=m+1

ibiȳ
i−m−1.

Then subtracting Equation
7.6.6.6
12.20.2 from Equation

7.6.6.6
12.20.0 for p′(ȳ)d̂(γ̄) yields

p′(ȳ)d̂(γ̄)− p′(ȳ)d̂(ȳ)
(
∂γ

∂y

)
∈ ȳm(R̂),

for every m ∈ N. Therefore p′(ȳ)d̂(γ̄) − p′(ȳ)d̂(ȳ)
(
∂γ
∂y

)
∈ ∩ym(R̂) = 0, by Krull’s

Intersection Theorem
3.2.01
2.22. Thus d̂(γ) = d̂(ȳ)

(
∂γ
∂y

)
, since p′(ȳ) 6= 0 and R̂ is an

integral domain. That is, Claim
7.6.6.6
12.20 holds. □

Completion of proof of Theorem
7.6.1.1
12.18. From above, in either case i or case ii,

T ⊆ H, where H is the algebraic closure of the field Q(x̄T, {∂nσ̄
∂x̄n }n∈N) in L. Then

τ̄ 6∈ H if and only if τ̄ is transcendental over H. By hypothesis, the transcendence
degree of H/Q is r. If τ̄ were in H, then Claim

7.6.6.6
12.20 implies ∂nτ

∂yn ∈ H, for all
n ∈ N, since d̂(H) ⊆ H, and then the field Q(y, τ, {∂

nτ
∂yn }n∈N) is contained in H, a

contradiction to our hypothesis that trdegQ Q(y, τ, {∂
nτ
∂yn }n∈N) > r. Therefore the

image of τ in R̂/Q is algebraically independent over T/(Q∩T ), for each height-one
prime ideal Q of R̂ such that Q∩ T 6= (0) and xy 6∈ Q. This completes the proof of
Theorem

7.6.1.1
12.18. □

As mentioned in Discussion
iternotdis
12.10 and the second paragraph of the proof of

Theorem
7.6.1.1
12.18, Ax’s results in

Ax
[19] together with the arguments of the proof imply

that the elements σ = ex − 1 ∈ Q[[x]] and τ = e(e
y−1) − 1 ∈ Q[[y]] satisfy the

conditions of Theorem
7.6.1.1
12.18. Thus we have the following example:

7.6.10.1 Example 12.21. For σ = ex − 1 ∈ Q[[x]] and τ = e(e
y−1) − 1 ∈ Q[[y]] in

Theorem
4.2.11t
12.3, the ring B is Noetherian and B = A.

This completes the proof of Theorem
bothpossible
12.6.

Exercises
locloc (1) Let P be a prime ideal in a commutative ring U , and let S be a nonempty

multiplicatively closed subset of U \ P . Prove:
(a) For every s ∈ S and u ∈ U , the element u ∈ P ⇐⇒ u/s ∈ PS−1U .
(b) UP = (S−1U)(PS−1U); that is, (U \ P )−1U = (S−1U)(PS−1U).

(2) Let x and y be indeterminates over a field k and let R be the two-dimensional
RLR obtained by localizing the mixed power series-polynomial ring k[[x]][y] at
the maximal ideal (x, y)k[[x]][y].
(i) For each height-one prime ideal P of R different from xR, prove that R/P

is a one-dimensional complete local domain.
(ii) For each nonzero prime ideal Q of R̂ = k[[x, y]] prove that Q ∩ R 6= (0).

Conclude that the generic formal fiber of R is zero-dimensional.
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Suggestion. For part (ii), use Theorem
3.38.1
3.16. For more information about

the dimension of the formal fibers, see the articles of Matsumura and RotthausM1.5
[122] and

R3.5
[159].

(3) Let x and y be indeterminates over a field k and let R = k[x, y](x,y). As
in Remark

7.6.1r
12.13, assume that ν ∈ m̂ is residually algebraically independent

with respect to R̂ = k[[x, y]] over R. Thus A = R̂ ∩ Q(R[ν]) is the localized
polynomial ring R[ν](m,ν). Let n = (m, ν)A denote the maximal ideal of A.
Give a direct proof that A is not a subspace of R̂.
Suggestion. Since ν ∈ m̂ is a power series in R̂ = k[[x, y]], for each positive
integer n, there exists a polynomial fn ∈ k[x, y] such that ν−fn ∈ m̂n. Since A
is a 3-dimensional regular local ring with n = (x, y, ν)A, the element ν−fn /∈ n2.
Hence for each positive integer n, the ideal m̂n ∩A is not contained in n2.

luroth (4) Let x and y be indeterminates over a field k and let f ∈ k[x, y] be a nonconstant
polynomial.
(i) If the subfield k(f) of k(x, y) is relatively algebraically closed in the exten-

sion field k(x, y), prove that there are only finitely many constants c ∈ k
such that the polynomial f − c is reducible in k[x, y]

(ii) If A is a k-subalgebra of k[x, y] with dimA = 1, prove that A is finitely
generated as a k-algebra and the integral closure of A is a polynomial ring
in one variable over k.

(iii) If the field k(f) is not relatively algebraically closed in k(x, y), prove that
the polynomial f − c is reducible in k[x, y] for every constant c ∈ k.

Comment. For item i of Exercise
luroth
4, see the paper of Abhyankar, Heinzer and

Sathaye
AHS
[9]. Items ii and iii of Exercise

luroth
4 relate to a ring-theoretic version

of a famous result of Lüroth about subfields of transcendence degree one of a
purely transcendental field extension; see the paper of Abhyankar, Eakin and
Heinzer

AEH
[7], and the paper of Igusa

Igusa
[101].

Kunzcompos (5) (Kunz) Let L/k be a field extension with L having infinite transcendence degree
over k. Prove that the ring L ⊗k L is not Noetherian. Deduce that the ring
k[[x]]⊗k k[[x]], which has k((x))⊗k k((x)) as a localization, is not Noetherian.
Suggestion. Let {xλ}λ∈Λ be a transcendence basis for L/k and consider the
subfield F = k({xλ}) of L. The ring L ⊗k L is faithfully flat over its subring
F ⊗k F , and if F ⊗k F is not Noetherian, then L⊗kL is not Noetherian. Hence
it suffices to show that F ⊗k F is not Noetherian. The module of differentials
Ω1
F/k is known to be infinite dimensional as a vector space over F

Kunz
[109, 5.4],

and Ω1
F/k
∼= I/I2, where I is the kernel of the map F ⊗k F → F , defined by

sending a⊗ b 7→ ab. Thus the ideal I of F ⊗k F is not finitely generated.





CHAPTER 13

Approximating discrete valuation rings by regular
local rings (appdvrsec) May 26 2020appdvrsec

Let k be a field of characteristic zero and let (V, n) be a rank-one discrete
valuation domain (DVR) containing k and having residue field V/n ∼= k. If the
field of fractions L of V has finite transcendence degree s over k, we prove that,
for every positive integer d ≤ s, the ring V can be realized as a directed union of
regular local rings that are d-dimensional k-subalgebras of V . This construction
uses an adaptation of Inclusion Construction

4.4.1
5.3.

13.1. Local quadratic transforms and local uniformization

The concepts of local quadratic transforms and local uniformization are rele-
vant to this chapter.

12.1.0 Definitions 13.1. Let (R,m) be a Noetherian local domain and let (V, n) be
a valuation domain that birationally dominates R.

(1) The first local quadratic transform of (R,m) along (V, n) is the ring
R1 = R[m/a]m1

,

where a ∈ m is such that mV = aV and m1 := n ∩ R[m/a]. If R = V ,
then R = R1. The ring R1 is also called the dilatation of R by the ideal
m along V

N2
[138, page 141].

(2) More generally, if I ⊆ m is a nonzero ideal of R, the dilatation of R by
I along V is the ring R[I/a]m1

= R1, where a ∈ I is such that IV = aV
and m1 = n ∩ R[I/a]; moreover, R1 is uniquely determined by R, V and
the ideal I

N2
[138, page 141].

(3) For each positive integer i, the (i + 1)st local quadratic transform Ri+1

of R along V is defined inductively: Ri+1 is the first local quadratic
transform of Ri along V .

12.1.1 Remarks 13.2. Let (R,m) be a regular local ring and let (V, n) be a valua-
tion domain that birationally dominates R. Let {Ri}i∈N be the sequence of local
quadratic transforms of R along V , defined in Definition

12.1.0
13.1.3.

(1) It is well known that the local quadratic transform R1 of R along V is
again a regular local ring

N2
[138, 38.1].

(2) With the notation of Definition
12.1.0
13.1.3, we have the following relationship

among iterated local quadratic transforms:
Ri+j = (Ri)j for all i, j ≥ 0.

Associated with the set {Ri}i∈N, it is natural to consider the subring
R∞ :=

⋃∞
i=1Ri of V .

165
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(3) If dimR = 2, then R∞ =
⋃∞
n=1Rn = V , by a classical result of Zariski

and Abhyankar
Abhy
[3, Lemma 12].

(4) For dimR ≥ 3 and certain V , the union
⋃∞
n=1Rn is strictly smaller than

V ; see Shannon
Shan
[171, 4.13]. In

Gra
[61, Theorem 13], Granja gives necessary

and sufficient conditions in order that R∞ = V . Shannon proves in many
cases that V is a directed union of iterated monoidal transforms of R,
where a monoidal transform of R is a dilatation of R by a prime ideal P
for which the residue class ring R/P is regular

Shan
[171, (4.5), page 308].

(5) Assume that R ⊆ S ⊆ V , where S is a regular local ring birationally
dominating R and V is a valuation domain birationally dominating S.
Using monoidal transforms, Cutkosky shows in

C1
[39] and

C2
[40] that there

exists an iterated local monoidal transform T of S along V such that T is
also an iterated local monoidal transform of R.

If V is a DVR that birationally dominates a regular local ring, the following
useful result is proved by Zariski

Z2
[192, pages 27-28] and Abhyankar

Abhy
[3, page 336].

For a related result, see Remark
dvrunique
4.20.

12.1.15 Proposition 13.3. Let (V, n) be a DVR that birationally dominates a regular
local ring (R,m), and let Rn be the nth local quadratic transform of R along V .
Then:

(1) R∞ =
⋃∞
n=1Rn = V .

(2) If V is essentially finitely generated over R, then Rn = V for some positive
integer n, and thus Rn+i = Rn for all i ≥ 0.

Proof. A nonzero element η of V has the form η = b/c, where b, c ∈ R. If
(b, c)V = V , then b/c ∈ V implies cV = V . Since V dominates R, it follows that
cR = R, so b/c ∈ R in this case. If η = b/c, with b, c ∈ R and (b, c)V = nn, we
prove by induction on n that η ∈ Rn. The case where n = 0 is done.

Assume β/γ ∈ Sj , for every j with 0 ≤ j < n, every regular local domain (S, p)
birationally dominated by V and every nonzero element β/γ ∈ V with β, γ ∈ S and
(β, γ)V = nj , where Sj is the j-th iterated local quadratic transform of S along V .
Suppose β, γ ∈ S, β/γ ∈ V and (β, γ)V = nn. Let S1 = S[p/a]p1

, where a ∈ p
is such that pV = aV and p1 := n ∩ S[p/a]; that is, S1 is the first local quadratic
transform of S along V . Then β1 := β/a and γ1 := γ/a are in S1. Thus a ∈ n
implies (β1, γ1)V = nj , where 0 ≤ j < n, and so by induction

β/γ = β1/γ1 ∈ (S1)j = Sj+1 ⊆ Sn.
This completes the proof of statement 1 of Proposition

12.1.15
13.3.

Statement 2 follows from
Abhy0
[2, Proposition 3, p. 336]. There exists an integer n

such that the finite number of “essential” generators for V are contained in Rn. □

12.1.16 Definition 13.4. Let (R,m) be a Noetherian local domain that is essentially
finitely generated over a field k and let (V, n) be a valuation domain that birationally
dominates R. In algebraic terms, local uniformization of R along V asserts the
existence of a regular local domain extension S of R such that S is essentially
finitely generated over R and S is dominated by V .

If R is a regular local ring and P is a prime ideal of R, embedded local uni-
formization of R along V asserts the existence of a regular local domain extension
S of R such that S is essentially finitely generated over R and is dominated by V ,
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and has the property that there exists a prime ideal Q of S with Q ∩ R = P such
that the residue class ring S/Q is a regular local ring.

12.1.17 Discussion 13.5. The classical approach for obtaining embedded local uni-
formization, introduced by Zariski in the 1940’s

Z1
[190], uses local quadratic trans-

forms of R along V . Let (R,m) be a s-dimensional regular local ring. If (V, n)
is a DVR that birationally dominates R and V/n is algebraic over R/m, then by
Proposition

12.1.15
13.3 the classical method of taking local quadratic transforms of R

along V gives a representation for V as a directed union R∞ =
⋃
n∈NRn = V ,

where each Rn is an iterated local quadratic transform of R. For each n, Rn is
essentially finitely generated over R, and the dimension formula

M
[123, page 119]

implies that dimRn = dimR = s. If s > 1, the DVR V is an infinite directed
union of s-dimensional RLRs. We prove in Theorem

12.1.2
13.6 that certain DVRs can be

represented as a directed union of regular local domains of dimension d for every
positive integer d less than or equal to s = dimR.

13.2. Expressing a DVR as a directed union of regular local rings

Theorem
12.1.2
13.6 is the main result of this chapter:

12.1.2 Theorem 13.6. Let k be a field of characteristic zero and let (V, n) be a DVR
containing k with V/n = k. Assume that the field of fractions L of V has finite
transcendence degree s over k. Let d be an integer with 1 ≤ d ≤ s. Then:

(1) If L is finitely generated over k, then V is a countable union
⋃∞
n=1 Cn,

where, for each n ∈ N,
(a) Cn is a d-dimensional regular local k-subalgebra of V ,
(b) Cn+1 dominates Cn, and
(c) V dominates Cn.

(2) If L is not finitely generated over k, then there exists an index set Γ and
a nested family {C(α)

n : n ∈ N, α ∈ Γ} such that
(a) V is the directed union of the C(α)

n ,
(b) Every C(α)

n is a d-dimensional regular local k-subalgebras of V ,
(c) Every C(α)

n has field of fractions L,
(d) V dominates each C(α)

n .

The proof of Theorem
12.1.2
13.6 is given after the proof of Theorem

12.2.1
13.11. Corol-

lary
12.1.3
13.7 follows from Theorem

12.1.2
13.6.

12.1.3 Corollary 13.7. Let k be a field of characteristic zero and let (R,m) be a
local domain essentially of finite type over k with coefficient field k ∼= R/m and field
of fractions L. Let s = trdegk(L), and let (V, n) be a DVR birationally dominating
R with V/n = k. Then, for every integer d with 1 ≤ d ≤ s, there exists a sequence
of d-dimensional regular local k-subalgebras Cn of V such that

(1) V =
⋃∞
n=1 Cn,

(2) For each n, Cn+1 dominates Cn, and V dominates Cn.
(3) Cn dominates R, for all sufficiently large n.

12.1.4 Discussion 13.8. (1) If L/k is finitely generated of transcendence degree s,
then the fact that V is a directed union of s-dimensional regular local rings follows
from classical theorems of Zariski. The local uniformization theorem of Zariski
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Z1
[190] implies the existence of a regular local domain (R,m) containing the field k
such that V birationally dominates R. Since k is a coefficient field for V , we have

• k ↪→ V ↠ V/n ∼= k, and k is relatively algebraically closed in L.
• R/m = k, since V dominates R.
• Every iterated local quadratic transform of R along V has dimension s.

By Proposition
12.1.15
13.3, V is a directed union of s-dimensional RLRs.

(2) If d = 1, Theorem
12.1.2
13.6 is trivially true by taking each Cn = V . If L/k is

finitely generated of transcendence degree s = 2, then item 1 implies Theorem
12.1.2
13.6

is saying nothing new.
(3) If s > 2, then the classical local uniformization theorem says nothing about

expressing V as a directed union of d-dimensional RLRs, where 2 ≤ d ≤ s − 1. If
(S, p) is a Noetherian local domain containing k and birationally dominated by V
with dimS = d < s, then S/p = k, and S does not satisfy the dimension formula.
It follows that S is not essentially finitely generated over k

M
[123, page 119].

Remark
12.2.0
13.9 and Notation

12.2.05
13.10 are used in the proof of Theorem

12.1.2
13.6.

12.2.0 Remark 13.9. With the notation of Theorem
12.1.2
13.6, let y ∈ n be such that

yV = n. Then the n-adic completion V̂ of V is k[[y]], and we have

k[y](y) ⊆ V ⊆ k[[y]].

Then V = L ∩ k[[y]], since V ↪→ k[[y]] is flat. Since the transcendence degree of L
over k(y) is s−1, there are s−1 elements σ1, . . . , σs−d, τ1, . . . , τd−1 ∈ yV such that
L is algebraic over F := k(y, σ1, . . . , σs−d, τ1, . . . , τd−1).

12.2.05 Notation 13.10. To continue the terminology of Remark
12.2.0
13.9, let

K := k(y, σ1, . . . , σs−d) and R := K ∩ V = K ∩ k[[y]].
F : := k(y, σ1, . . . , σs−d, τ1, . . . , τd−1).

Thus R is a DVR and the (y)-adic completion of R is R∗ = k[[y]]. Then the
ring B0 := R[τ1, . . . , τd−1](y,τ1,...,τd−1) is a d-dimensional regular local ring and
V0 := F ∩ V is a DVR that birationally dominates B0 and has y-adic completion
V̂0 = k[[y]]. The following diagram displays these integral domains:

k
⊆−−−−→ K

⊆−−−−→ F F
⊆−−−−→ L = Q(V )

∥
x ∪|

x ∪|
x ∪|

x ∪|
x

k
⊆−−−−→ R := K ∩ V ⊆−−−−→ B0

⊆−−−−→ V0 := F ∩ V ⊆−−−−→ V ,

where Q(V ) denotes the field of fractions of V . The elements τ1, . . . , τd−1 ∈ yR∗
are regular elements of R∗ that are algebraically independent over K. As in No-
tation

4.2.3
5.4, represent each of the τi by a power series expansion in y; these repre-

sentations yield for each positive integer n the nth-endpieces τin and corresponding
nth-localized polynomial ring Bn. For 1 ≤ i ≤ d − 1, for each n ∈ N, and for
τi :=

∑∞
j=1 rijy

j , where the rij ∈ R, set:
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(
12.2.05
13.10.1)

τin :=

∞∑
j=n+1

rijy
j−n, Bn := R[τ1n, . . . , τd−1,n](m,τ1n,...,τd−1,n)

B :=

∞⋃
n=0

Bn = lim−→Bn, A := K(τ1, . . . , τd−1) ∩R∗ = F ∩R∗ = V0.

Recall that A birationally dominates B. By Proposition
4.5.22
5.9, the definition of Bn is

independent of the representations of the τi. Also V0 = F ∩ k[[y]] implies τin ∈ V0.
It follows that, for each n ∈ N, Bn = R[τ1n, . . . , τd−1,n](y,τ1n,...,τd−1,n) is the first
quadratic transform of Bn−1 along V0.

Here V0 = B = A, since B0 ↪→ k[[y]][1/y] is flat.

The proof of Theorem
12.1.2
13.6 uses Noetherian Flatness Theorem

11.3.25
6.3 of Chapternoeflic

6 and also Theorem
12.2.1
13.11:

12.2.1 Theorem 13.11. Assume Notation
12.2.05
13.10, and for each positive integer n, let

Bhn denote the Henselization of Bn. Then
⋃∞
n=1B

h
n = V h0 = V h.

Proof. Since R∗[1/y] is a field, it is flat as an R[τ1, . . . , τd−1]-module. By
Theorem

11.3.25
6.3, V0 =

⋃∞
n=1Bn. An alternate way to justify this description of V0 is

to use Proposition
12.1.15
13.3, where the ring R is B0, V is V0, and each Rn = Bn. Then

V0 −→
alg

V −→ k[[y]],

where V0 and V are DVRs of characteristic zero having completion k[[y]]. Since V0
and V are excellent, their Henselizations V h0 and V h are the set of elements of k[[y]]
algebraic over V0 or V

N2
[138, (44.3)]. Thus V h0 = V h and V is a directed union of

étale extensions of V0; see Definition
etale
8.24.

The ring C :=
⋃
Bhn is Henselian and contains V0, so V h0 = V h ⊆ C. Moreover,

the inclusion map V0 → C =
⋃
Bhn extends to a map V h

σ→ C =
⋃
Bhn. On

the other hand, the maps Bn → V extend to maps: Bhn → V h yielding a map
ρ : C → V h with σρ = 1C , and ρσ = 1V h . Thus

⋃∞
n=1B

h
n = V h. □

The proofs of the two statements of Theorem
12.1.2
13.6 are presented separately.

Proof of statement 1 of Theorem
12.1.2
13.6.

Proof. Assume that L/k is a finitely generated field extension. Since L is
algebraic over F , it follows that L is finite algebraic over F . Since

⋃∞
n=1B

h
n = V h,

we have
⋃∞
n=1Q(Bhn) = Q(V h) and L ⊆ Q(V h). Since L/F is finite algebraic,

L ⊆ Q(Bhn) for all sufficiently large n. By relabeling, we may assume L ⊆ Q(Bhn)
for all n. Let Cn := Bhn ∩ L. Since Bn is a regular local ring, Cn is a regular local
ring with Chn = Bhn

R3.7
[160, (1.3)].

Observe that for every n, Cn+1 dominates Cn and V dominates Cn. Also⋃∞
n=1 Cn = V . Indeed, since Bn+1 dominates Bn, we have Bhn+1 dominates Bhn and

hence Cn+1 = Bhn+1∩L dominates Cn = Bhn∩L. Since Cn = Bhn∩L ⊆ V h∩L = V ,
it follows that V dominates Cn and V0 ⊆

⋃∞
n=1 Cn ⊆ V . Since V birationally

dominates
⋃∞
n=1 Cn, it suffices to show that

⋃∞
n=1 Cn is a DVR.

But by the same argument as before,
⋃∞
n=1 C

h
n = (

⋃∞
n=1 Cn)

h = V h. This
shows that

⋃∞
n=1 Cn is a DVR, and therefore

⋃∞
n=1 Cn = V . This completes the

proof of statement 1 of Theorem
12.1.2
13.6. □
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12.2.2 Remark 13.12. An alternate approach to the definition of Cn is as follows.
Since V is a directed union of étale extensions of V0 andQ(V ) = L is finite algebraic
over Q(V0) = F , V is étale over V0 and therefore V = V0[θ] = V0[X]/(f(X)), where
f(X) is a monic polynomial such that f(θ) = 0 and f ′(θ) is a unit of V . Let B′n
denote the integral closure of Bn in L and let Cn = (B′n)(n∩B′

n)
. Since ∪∞n=1Bn = V0,

it follows that ∪∞n=1Cn = V . Moreover, for all sufficiently large n, f(X) ∈ Bn[X]
and f ′(θ) is a unit of Cn. Therefore Cn is a regular local ring for all sufficiently
large n

N2
[138, (38.6)]. As we note in Remark

12.2.3
13.13 below, this allows us to deduce a

version of Theorem
12.1.2
13.6 also in the case where k has characteristic p > 0 provided

the field F can be chosen so that L/F is separable.

Proof of statement 2 of Theorem
12.1.2
13.6.

Proof. If L is not finitely generated over k, we choose a nested family of fields
Lα, with α ∈ Γ, such that

(1) F ⊆ Lα, for all α.
(2) Lα is finite algebraic over F .
(3) ∪α∈ΓLα = L.

The rings Vα = Lα ∩V are DVRs with
⋃
α∈Γ Vα = V and V hα = V h, since V0 ⊆ Vα,

for each α ∈ Γ.
As above,

∞⋃
n=1

Bhn = V h,

∞⋃
n=1

Q(Bhn) = Q(V h), L ⊆ Q(V h).

Thus we see that for each α ∈ Γ, there is an nα ∈ N such that Lα ⊆ Q(Bhn) for all
n ≥ nα.

Set C(α)
n := Lα ∩ Bhn, for each n ≥ nα. Then Vα = ∪∞n=nα

C
(α)
n and Vα bira-

tionally dominates C(α)
n . Hence

V =
⋃

α∈Γ,n≥nα

C(α)
n .

This completes the proof of Theorem
12.1.2
13.6. □

12.2.3 Remark 13.13. If the characteristic of k is p > 0 then the Henselization V h0 of
V0 = F ∩ k[[y]] may not equal the Henselization V h of V = L ∩ k[[y]], because the
algebraic field extension L/F may not be separable. But in the case where L/F is
separable algebraic, the fact that the DVRs V and V0 have the same completion
implies that V is a directed union of étale extensions of V0 (see, for example,

AH
[8,

Theorem 2.7]). Therefore in the case where L/F is separable algebraic, V is a
directed union of regular local rings of dimension d.

Thus, for a local domain (R,m) essentially of finite type over a field k of char-
acteristic p > 0, a result analogous to Corollary

12.1.3
13.7 is true provided there exists

a subfield F of L such that F is purely transcendental over k, L/F is separable
algebraic, and F contains a generator for the maximal ideal of V .

In characteristic p > 0, with V excellent and the extension separable, the ring
V0 need not be excellent (see for example Proposition

16.5.18
10.4 or

HRS
[72, (3.3) an d (3.4)]).
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13.3. Approximating other rank-one valuation rings12.4

A useful method for constructing rank-one valuation rings is to use generalized
power series rings as in

ZSII
[194, page 101].

12.4.1 Definition 13.14. Let k be a field and let e0 < e1 < · · · be real numbers such
that limn→∞ en =∞. For a variable t and elements ai ∈ k, consider the generalized
power series expansion

z(t) := a0t
e0 + a1t

e1 + · · ·+ ant
en + · · ·

The generalized power series ring k{t} is the set of all generalized power series
expansions z(t) with the usual addition and multiplication extended to exponents
in R.1

12.4.2 Remarks 13.15. Assume the notation of Definition
12.4.1
13.14. Then:

(1) The generalized power series ring k{t} is a field.
(2) The field k{t} admits a valuation v of rank one defined by setting v(z(t))

to be the order of the generalized power series z(t). Thus v(z(t)) = e0 if
a0 is a nonzero element of k.

(3) The valuation ring V of v is the set of generalized power series of non-
negative order together with zero. The value group of v is the additive
group of real numbers.

(4) If x1, . . . , xr are variables over k, then every k-algebra isomorphism of
the polynomial ring k[x1, . . . , xr] into k{t} determines a valuation ring of
rank one on the field k(x1, . . . , xr). Moreover, every such valuation ring
has residue field k.

(5) Thus if z1(t), . . . , zr(t) ∈ k{t} are algebraically independent over k, then
the k-algebra isomorphism defined by mapping xi 7→ zi(t) determines a
valuation on the field k(x1, . . . , xr) of rank one. MacLane and Schilling
prove in

MS
[117] a result that implies for a field k of characteristic zero the

existence of a vaulation on k(x1, . . . , xr) of rank one with any preassigned
value group of rational rank less than r. In particular, if r ≥ 2, then every
additive subgroup of the group of rational numbers is the value group of
a suitable valuation on the field of rational functions in r variables over k.

(6) As a specific example, let k be a field of characteristic zero and consider
the k-algebra isomorphism of the polynomial ring k[x, y] into k{t} defined
by mappping x 7→ t and y 7→

∑∞
n=1 t

e1+···+en , where ei = 1/i for each
positive integer i. The result of MacLane and Schilling

MS
[117] mentioned

above implies that the value group of the valuation ring V defined by this
embedding is the group of all rational numbers.

Exercises
(1) Let (R,m) be a two-dimensional regular local ring with m = (x, y)R and let

a ∈ R \m. Define:

S := R
[y
x

]
= R

[m
x

]
, n :=

(
x,
y

x
− a
)
S and R1 := Sn =

(
R
[y
x

])
n
.

1The power series z(t) with finite support are also generalized power series.
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Thus R1 is a first local quadratic transform of R. Prove that there exists a
maximal ideal n′ of the ring S′ := R

[
x
y

]
such that R1 = S′n′ , and describe

generators for n′.
Suggestion: Notice that y

x is a unit of R1.
(2) Let (R,m) be a two-dimensional regular local ring with m = (x, y)R. Define:

S := R

[
x

y

]
= R

[
m

y

]
, n :=

(
y,
x

y

)
S and R1 := Sn =

(
R

[
x

y

])
n

,

and define P = (x2 − y3)R.
(a) Prove that R/P is a one-dimensional local domain that is not regular.
(b) Prove that there exists a prime ideal Q of R1 such that Q ∩ R = P and

R1/Q is a DVR and hence is regular.
Comment: This is an example of embedded local uniformization.



CHAPTER 14

Non-Noetherian examples of dimension 3insidepssec

In this chapter we use Insider Construction
16.1.1
10.7 of Section

17.22
10.2 to construct

examples where the Approximation Domain B is local and non-Noetherian, but is
very close to being Noetherian. The localizations of B at all nonmaximal prime
ideals are Noetherian, and most prime ideals of B are finitely generated. Sometimes
just one prime ideal is not finitely generated.

In Section
pinsps2
14.1 we describe, for each positive integer m, a three-dimensional

local unique factorization domain B such that the maximal ideal of B is two-
generated, B has precisely m prime ideals of height two, each prime ideal of B of
height two is not finitely generated and all the other prime ideals of B are finitely
generated. In Section

2casespec
14.2 we give more details about a specific case where there

is precisely one nonfinitely generated prime ideal. We describe the prime spectrum
obtained in the case where there are exactly two nonfinitely generated prime ideal.
John David develops a similar construction in

David
[41].

In Chapters
insideps1.5
15 and

insideps2
16 we present generalizations of these examples to higher

dimensions.

14.1. A family of examples in dimension 3
pinsps2
16.5.1 Examples 14.1. For each positive integer m, we construct an example of a

non-Noetherian local integral domain (B,mB) such that:
(1) dimB = 3.
(2) The ring B is a UFD that is not catenary, as defined in Definition

3.20
3.24.

cat3
3.

(3) The maximal ideal mB of B is generated by two elements.
(4) The mB-adic completion of B is a two-dimensional regular local domain.
(5) For every non-maximal prime ideal P of B, the ring BP is Noetherian.
(6) The ring B has precisely m prime ideals of height two.
(7) Every prime ideal of B of height two is not finitely generated; all other

prime ideals of B are finitely generated.

To establish the existence of the examples in Examples
16.5.1
14.1, we use the follow-

ing notation:

16.5.1n Notation 14.2. Let k be a field, let x and y be indeterminates over k, and set

R : = k[x, y](x,y), mR = (x, y)R, K := k(x, y) and R∗ : = k[y](y)[[x]].

The power series ring R∗ is the xR-adic completion of R. Let τ ∈ xk[[x]] be
transcendental over k(x). Let

D := k(x, y, τ) ∩ k[y](y)[[x]] = K(τ) ∩ R∗

be the Local Prototype of Example
proexample
4.26 and Definition

prodef
4.28.

173
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For each integer i with 1 ≤ i ≤ m, let pi ∈ mR\xR be such that p1R∗, . . . , pmR∗
are m distinct prime ideals. For example, if each pi ∈ mR \ (m2

R ∪ xR), then each
piR

∗ is a prime ideal in R∗. In particular one could take pi = y−xi. Let e1, . . . , em
be positive integers and set p := pe11 · p

e2
2 · · · pemm . We set f := pτ and consider the

injective R-algebra homomorphism

ϕ : S := R[f ] ↪→ R[τ ] =: T.

In this construction the polynomial rings S and T have the same field of fractions
K(f) = K(τ). Hence the two Intersection Domains of Inclusion Construction

4.4.1
5.3,

the one associated to f and the one associated to τ , are equal:

(
16.5.1n
14.2.0) D = K(τ) ∩ R∗ := K(f) ∩ R∗ = A.

By Valabrega’s Theorem
4.1.2
4.9 or by Local Prototype Theorem

11.4.11ic
10.6.1, D is a two-

dimensional regular local domain with maximal ideal mD = (x, y)D and the mD-
adic completion of D is k[[x, y]].

Let τ := c1x+ c2x
2 + · · ·+ cix

i + · · · ∈ xk[[x]], where the ci ∈ k, and define for
each n ∈ N0 the “nth endpiece” τn of τ by

(
16.5.1n
14.2.a) τn :=

∞∑
i=n+1

cix
i−n =

τ −
∑n
i=1 cix

i

xn
.

As in Endpiece Recursion Relation
EndRecRel
5.5.1, we have the following equation relating

the nth and (n+ 1)st endpieces τn and τn+1:

(
16.5.1n
14.2.b) τn = cn+1x + xτn+1.

For each n ∈ N, set fn := pτn, and define Un, Bn, Vn and Dn as in Equation
16.5.1n
14.2.c:

(
16.5.1n
14.2.c)

Un := k[x, y, fn], Bn := (Un)(x,y,fn) = k[x, y, fn](x,y,fn)

Vn := k[x, y, τn], Dn := (Vn)(x,y,τn) = k[x, y, τn](x,y,τn).

Then each Un ⊆ Vn, the rings Un and Vn are three-dimensional polynomial rings
over R, and the rings Bn and Dn are three-dimensional localized polynomial rings.
Let U,B and V be the nested union approximation domains below, by Remarks

4.211
5.16.3.

Then:

(
16.5.1n
14.2.d) U :=

∞⋃
n=0

Un ⊆ V :=

∞⋃
n=0

Vn; B :=

∞⋃
n=0

Bn ⊆
∞⋃
n=0

Dn = D.

The last equality follows from Proposition
proprop
4.27, since D is a Local Prototype. By

Local Prototype Theorem
11.4.11ic
10.6.1, we have D = C[y](x,y), where C = k(x, τ)∩ k[[x]]

is a DVR.

In Theorem
16.5.2
14.3 we establish the properties asserted in Examples

16.5.1
14.1 and

other properties of the ring B.

16.5.2 Theorem 14.3. As in Notation
16.5.1n
14.2, let R : = k[x, y](x,y), where k is a

field, and x and y are indeterminates. Set R∗ = k[y](y)[[x]], let τ ∈ xk[[x]] be
transcendental over k(x), and, for each integer i with 1 ≤ i ≤ m, let pi ∈ R \ xR
be such that p1R∗, . . . , pmR∗ are m distinct prime ideals. Set p := pe11 · · · pemm and
f := pτ , and let the approximation domain B and the Local Prototype domain D be
defined as in Notation

16.5.1n
14.2. Set Qi := piR

∗ ∩B, for each i with 1 ≤ i ≤ m. Then:
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(1) The ring B is a three-dimensional non-Noetherian local UFD with max-
imal ideal mB = (x, y)B, and the mB-adic completion of B is the two-
dimensional regular local ring k[[x, y]].

(2) The rings B[1/x] and BP , for each nonmaximal prime ideal P of B, are
regular Noetherian UFDs, and the ring B/xB is a DVR.

(3) The ring D is a two-dimensional regular local domain with maximal ideal
mD := (x, y)D, and D is a nested union

⋃∞
i=1R[τn](x,y,τn) of localized

polynomial rings. The ring D is excellent if the field k has characteristic
zero. If k is a perfect field of positive characteristic, thenD is not excellent.

(4) The ideal mD is the only prime ideal of D lying over mB.
(5) L = pR∗[1/x] defines the non-flat locus of the map

β : B ↪→ R∗[1/x].

(6) The ring B has exactly m height-two prime ideals, namely Q1, . . . , Qm.
(7) For each i ∈ {1, . . . ,m}, the ideal Qi = (pi, {fn}∞n=1)B, and Qi is not

finitely generated. The Qi are the only nonfinitely generated prime ideals
of B.

(8) The ring B has saturated chains of prime ideals from (0) to mB of length
two and of length three, and hence is not catenary.

Proof. For item 1, Proposition
nudimhgt
5.19 implies dimB ≤ 3. By Proposition

11.2.52
5.17.

Bloc
5,

B is local with maximal ideal mB = (x, y)B; xB and piB are prime ideals; and, by
Construction Properties Theorem

11.2.51
5.14.

compR*
3, the (x)-adic completion of B is equal to

R∗, the (x)-adic completion of R. Thus the mB-adic completion of B is k[[x, y]].
Since each Qi =

⋃∞
i=1Qin, where Qin = piR

∗ ∩ Bn, each Qi is a prime ideal of B
with pi, f ∈ Qi and x /∈ Qi. Since piB =

⋃
piBn, we have f /∈ piB. Thus

(0) ( piB ( Qi ( (x, y)B.

This chain of prime ideals of length at least three yields that dimB = 3 and that
the height of each Qi is 2.

The prime ideal piR∗[1/x] has height one, whereas piR∗[1/x] ∩ S = (pi, f)S
has height two. Since flat extensions satisfy the going-down property, by Re-
mark

remflat
2.37.

flgd
10, the map S = R[f ] → R∗[1/x] is not flat. Therefore Noetherian

Flatness Theorem
11.3.25
6.3 implies that the ring B is not Noetherian. By Theorem

Bufd
5.24,

B is a UFD, and so item 1 holds.
For item 2, by Construction Properties Theorem

11.2.51
5.14.

Rmodzn
2, B/xB = R/xR, and

so B/xB is a DVR. By Theorem
Bufd
5.24, B[1/x] is a regular Noetherian UFD. If

x ∈ P and P is nonmaximal, then, again by Theorem
11.2.51
5.14.

Rmodzn
2, P = xB and so BP

is a DVR and a regular Noetherian UFD. If x 6∈ P , the ring BP is a localization of
B[1/x] and so is a regular Noetherian UFD. Thus item 2 holds.

The first statements in item 3 concerning D are justified above using Local
Prototype Theorem

11.4.11ic
10.6.1. If the field k has characteristic zero, then D is also

excellent by Theorem
11.4.11ic
10.6.2. If the field k is perfect with positive characteristic,

then the ring D is not excellent by Remark‘
perfnexc
10.5. This completes the proof of item 3.

By Theorem
11.2.51
5.14.

Rmodzn
2, D/xD = B/xB = R/xR, and so mD = (x, y)D, a height-

two prime ideal of D, is the unique prime ideal of D lying over the height-three
prime ideal mB = (x, y)B of B. Thus item 4 holds.

For item 5, Theorem
16.3.9
10.12.2 implies L = pR∗[1/x], the ideal generated by the

nonconstant coefficients of f , defines the non-flat locus of the map β : B ↪→ R∗[1/x].
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For item 6, observe that x is not in any non-maximal height-two prime ideal of
B. There are m distinct prime ideals Qi with 1 ≤ i ≤ m, since there are m distinct
prime ideals of form piR

∗, and pi /∈ pjR∗, if 1 ≤ i < j ≤ m.
To complete the proof of item 6, let P be a nonzero prime ideal of B with

x 6∈ P and htP > 1. We show that P = Qi, for some i with 1 ≤ i ≤ m. By
Proposition

11.2.52
5.17.

ztIR*
3, we have xn 6∈ PR∗ for each n ∈ N. Thus ht(PR∗) ≤ 1. By

Proposition
11.2.52
5.17.

znpna
4, choose P ′ a height one prime ideal of R∗ with x /∈ P ′ such that

PR∗ ⊆ P ′. Then P ⊆ P ′ ∩B ( mB implies that P = P ′ ∩B = P ′R∗[1/x] ∩B.
If p /∈ P , then pR∗[1/x] * P ′R∗[1/x]. By item 5,

βP ′R∗[1/x] : B ↪→ R∗[1/x]P ′R∗[1/x]

is flat. We have that P = P ′R∗[1/x] ∩ B, and so BP ↪→ R∗[1/x]P ′R∗[1/x] is faith-
fully flat. Since ht(P ′R∗[1/x]) = 1, flatness implies that P also has height one, a
contradiction to htP > 1. Thus the proof of item 6 is complete for p /∈ P .

If p ∈ P , then pi ∈ P for some i, and this implies piR∗ is a height-one prime
ideal contained in PR∗. By the above paragraph, ht(PR∗) ≤ 1, and so piR∗ = PR∗.
Hence piB ⊆ P ⊆ Qi = piR

∗ ∩B 6= (x, y)B. Since dimB = 3, either P has height
one or P = Qi for some i. This completes the proof of item 6.

For item 7, observe piBn ( (pi, fn)Bn ⊆ Qi∩Bn ( mBn
. Since dimBn = 3 and

(pi, fn)Bn is a prime ideal, we have (pi, fn)Bn = Qi ∩Bn. To show each Qi is not
finitely generated, we show that fn+1 6∈ (pi, fn)B for each n ≥ 0. For this, observe
f = pτ and thus fn = pτn. It follows that fn = xfn+1 + pxcn+1, by Endpiece
Recursion Relation

EndRecRel
5.5.1. Assume that fn+1 ∈ (pi, fn)B. Then fn+1 = api + bfn,

for some a, b ∈ B, and so
xapi + xbfn = xfn+1 = fn − pxcn+1 =⇒
fn(1− xb) = xapi + pxcn+1 ∈ xpiB.

By Proposition
11.2.52
5.17.1, x ∈ J (B), and so 1− xb is a unit of B and fn ∈ piB. Then

fn ∈ piB∩Bn = piBn, by Proposition
11.2.52
5.17.2, a contradiction, since pi is an element

of (x, y)k[x, y](x,y) and Bn is the localization of the polynomial ring Un = k[x, y, fn]
at the maximal ideal (x, y, fn)Un. Thus Qi is not finitely generated.

Since B is a UFD, the height-one prime ideals of B are principal and, since the
maximal ideal of B is two-generated, every nonfinitely generated prime ideal of B
has height two and thus is in the set {Q1, . . . , Qm}. This completes the proof of
item 7.

For item 8, the chain (0) ⊂ xB ⊂ (x, y)B = mB is saturated and has length
two, while the chain (0) ⊂ p1B ⊂ Q1 ⊂ mB is saturated and has length three. □

B1/xucat Remark 14.4. Theorem
16.5.2
14.3, parts 2 and 8, show that the ringB is an example

with B[1/x] and B/xB both universally catenary, whereas B itself is not catenary.
By Remark

ucathom
3.27, RLRs are universally catenary.

In Proposition
3dB+
14.5, we list additional properties of the prime ideals of Exam-

ples
16.5.1
14.1

3dB+ Proposition 14.5. Assume the notation of Theorem
16.5.2
14.3. Then:

(1) Let P be a nonzero nonmaximal prime ideal of B. Then
(a) ht(PR∗) = ht(PD) = 1.
(b) P is contained in a nonmaximal prime ideal of D.
(c) If dim(B/P ) = 1, then P is the contraction of a prime ideal of D.
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(2) Let w be a prime element of B such that w /∈
⋃m
i=1Qi. Then wD is the

unique height-one prime ideal of D lying over wB.
(3) If P ∈ SpecB is such that P ∩R = (0), then ht(P ) ≤ 1 and P is principal.
(4) If P ∈ SpecB, htP = 1 and P ∩R 6= 0, then P = (P ∩R)B.
(5) Let pi be one of the prime factors of p. Then piB is a prime ideal of B.

Moreover the ideals piB and Qi := piD ∩ B = (pi, f1, f2, . . .)B are the
only nonmaximal prime ideals of B that contain pi. Thus they are the
only prime ideals of B that lie over piR in R.

(6) The constructed ring B has Noetherian spectrum.

Proof. For item 1.a, if P = Qi for some i, then PR∗ ⊆ piR∗ and htPR∗ = 1.
Assume P is not one of the Qi. By Theorem

16.5.2
14.3 parts 1 and 6, B is a UFD

and htP = 1. Hence P is a principal height-one prime ideal. Since D and R∗ are
Noetherian, ht(PD) = ht(PR∗) = 1 by Krull Altitude Theorem

krullpit
2.23. Item 1.b now

follows.
For item 1.c, observe that PD ⊆ P ′, where P ′ is a nonmaximal prime ideal of

D, by item 1.b. Since mBD = mD, we have P ⊆ P ′∩B ( mB . Now dim(B/P ) = 1
implies P = P ′ ∩B.

For w as in item 2, we have dim(B/wB) = 1 by Theorem
16.5.2
14.3.6. By item 1.c,

wB = p ∩ B, where p ∈ SpecD. The DVR BwB is birationally dominated by Dp,
and thus BwB = Dp. This implies that p is the unique prime ideal of D lying over
wB. Also wBwB = pDp. Since D is a UFD and p is the unique minimal prime
ideal of wD, it follows that wD = p.

For item 3, htP ≤ 1 because the field of fractions K(f) of B has transcendence
degree one over the field of fractions K of R; see Cohen’s Theorem

cohenextensions
2.26. Since B

is a UFD, P is principal.
For item 4, if x ∈ P , then P = xB and the statement is clear. Assume x 6∈ P .

By Construction Properties Theorem
11.2.51
5.14.

Rt1/z
4, B[1/x] is a localization of Bn, and

so ht(P ∩ Bn) = 1 for all integers n ≥ 0. Thus (P ∩ R)Bn = P ∩ Bn, for each n,
and so P = (P ∩R)B.

For item 5, piB is a prime ideal by Proposition
11.2.52
5.17.

pRpU
2. By Theorem

16.5.2
14.3,

dimB = 3 and the Qi are the only height-two prime ideals of B. Since the ideal
piR + pjR is mR-primary for i 6= j, it follows that piB + pjB is mB-primary, and
hence piB and Qi are the only nonmaximal prime ideals of B that contain pi.

Item 6 holds by Corollary
z1/zNspc
5.21. □

14.2. Two cases of Examples
16.5.1
14.1 and their spectra2casespec

We use the following lemma.

prime Lemma 14.6. Assume Notation
16.5.1n
14.2 and the notation of Theorem

16.5.2
14.3.

(1) For every element c ∈ mR \ xR and every t ∈ N, the element c+ xtf is a
prime element of the UFD B.

(2) For every fixed element c ∈ mR \ xR, the set {c + xtf}t∈N consists of
infinitely many non-associate prime elements of B, and so there exist
infinitely many distinct height-one prime ideals of B of the form (c+xtf)B.

Proof. For the first item, since f = pτ , Equation
16.5.1n
14.2.b implies that

fr = pcr+1x+ xfr+1
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for each r ≥ 0. In B0 = k[x, y, f ](x,y,f), the polynomial c + xtf is linear in the
variable f = f0 and the coefficient xt of f is relatively prime to the constant term
c of c+ xtf . Thus c+ xtf is a prime element of B0. Since f = f0 = pc1x+ xf1 in
B1 = k[x, y, f1](x,y,f1), the polynomial c+xtf = c+xtpc1x+x

t+1f1 is linear in the
variable f1 and the coefficient xt+1 of f1 is relatively prime to the constant term c.
Thus c+ xtf is a prime element of B1. To see that this pattern continues, observe
that in B2,

f = pc1x+ xf1 = pc1x+ pc2x
2 + x2f2 =⇒

c+ xtf = c+ pc1x
t+1 + pc2x

t+2 + xt+2f2,

a linear polynomial in the variable f2. Thus c+ xtf is a prime element of B2 and
a similar argument shows that c + xtf is prime in Br for each positive integer r.
Therefore the element c+ xtf is prime in B, for each t ∈ N.

For item 2, we prove that (c+xtf)B 6= (c+xmf)B, for positive integers t > m.
Assume that q := (c+xtf)B = (c+xmf)B is a height-one prime ideal of B. Then

(xt − xm)f = xm(xt−m − 1)f ∈ q.

Observe that q 6= xB, since c /∈ xB. Thus xm /∈ q. Since B is local, xt−m − 1
is a unit of B. It follows that f ∈ q and thus (c, f)B ⊆ q. By Construction
Properties Theorem

11.2.51
5.14.3, B[1/x] is a localization of R[f ] = S, and x /∈ q implies

that Bq = Sq∩S . This is a contradiction since the ideal (c, f)S has height two.
Thus there exist infinitely many distinct height-one primes of the form (c +

xtf)B. □

Recall the following terminology
ZSII
[194, page 325].

16.554 Definition 14.7. If a ring C is a subring of a ring E, a prime ideal P of C is
lost in E if PE ∩ C 6= P .

Lemma
lost
14.8 is useful for giving a more precise description of SpecB for B

as in Examples
16.5.1
14.1. For each nonempty finite subset H of {Q1, . . . , Qm}, there

exist infinitely many height-one prime ideals contained in each Qi ∈ H, but not
contained in Qj if Qj /∈ H.

lost Lemma 14.8. Assume Notation
16.5.1n
14.2 and the notation of Theorem

16.5.2
14.3, and

also assume p = p1 · · · pm. Let G be a nonempty subset of {1, . . . ,m}, let H =
{Qi | i ∈ G}, and let pG =

∏
{pi | i ∈ G}. Then for each t ∈ N:

(1) (pG + xtf)B is a prime ideal of B that is lost in D.
(2) (p2G + xtf)B is a prime ideal of B that is not lost in D.

The sets {(pG + xtf)B}t∈N and {(p2G + xtf)B}t∈N are both infinite. Moreover, the
prime ideals in both item 1 and item 2 are contained in each Qi such that Qi ∈ H,
but are not contained in Qj if Qj /∈ H.

Proof. For item 1,

(
lost
14.8.1) (pG + xtf)D ∩B = pG(1 + xtτ

∏
j /∈G

pj)D ∩B = pGD ∩B =
⋂
i∈G

Qi.

Thus each prime ideal of B of the form (pG + xtf)B is lost in D and R∗. By the
second item of Lemma

prime
14.6, infinitely many height-one prime ideals (pG + xtf)B

of B are lost in D and R∗.
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For item 2,

(
lost
14.8.2)

(p2G + xtf)D ∩B = (p2G + xtpG(
∏
j /∈G

pj)τ)D ∩B

= pG(pG + xt(
∏
j /∈G

pj)τ)D ∩B ( pGD ∩B =
⋂
i∈G

Qi.

The last inclusion is strict since pG + xt(
∏
j /∈G pj)τ ∈ mD. This implies that prime

ideals of B of form (p2G + xtf)B are not lost. By Lemma
prime
14.6 there are infinitely

many distinct prime ideals of that form.
The “moreover” statement for the prime ideals in item 1 follows from Equa-

tion
lost
14.8.1. Equation

lost
14.8.2 implies that the prime ideals in item 2 are contained

in each Qi ∈ H. For j /∈ G, if p2G + xtf ∈ Qj , then pj + xtf ∈ Qj implies that
p2G − pj ∈ Qj by subtraction. Since pj ∈ Qj , this would imply that p2G ∈ Qj , a
contradiction. This completes the proof of Lemma

lost
14.8. □

We use Theorem
16.5.2
14.3, Proposition

3dB+
14.5 and Lemmas

prime
14.6 and

lost
14.8 to describe

a special case of the ring B of Examples
16.5.1
14.1

16.5.3de Example 14.9. Assume Notation
16.5.1n
14.2 and take m = 1 and p = p1 = y. Then:

R = k[x, y](x,y), f = yτ, fn = yτn, Bn = R[yτn](x,y,yτn), B =

∞⋃
n=0

Bn.

By Theorem
16.5.2
14.3, the ideal Q := yD ∩ B = (y, {yτn}∞n=0)B is the unique prime

ideal of B of height 2. Moreover, Q is not finitely generated and is the only prime
ideal of B that is not finitely generated. Also Q ∩Bn = (y, yτn)Bn for each n ≥ 0.

To identify the ring B up to isomorphism, observe that τn = cn+1x + xτn+1,
by Equation

16.5.1n
14.2.b. Thus

(
16.5.3de
14.9.1) fn = xfn+1 + yxcn+1.

The family of equations (
16.5.3de
14.9.1) uniquely determines B as a nested union of the

three-dimensional RLRs Bn = k[x, y, fn](x,y,fn).

Discussion
types
14.10 gives more details for Example

16.5.3de
14.9. The prime spectrum for

Example
16.5.3de
14.9 is displayed in Diagram

types
14.10.d.

types Discussion 14.10. By Theorem
16.5.2
14.3, if q is a height-one prime ideal of B, then

B/q is Noetherian if and only if q is not contained in Q. This is true because: (1)
B is a UFD implies that q is principal, (2) Q is the unique prime ideal of B that is
not finitely generated, and (3) a ring is Noetherian if every prime ideal of the ring
is finitely generated, by Cohen’s Theorem

3.2.1
2.25.

The height-one prime ideals q of B may be separated into several types as
follows:
Type I: The height-one prime ideals q 6⊆ Q. These prime ideals have the property
that B/q is a one-dimensional Noetherian local domain. By Proposition

3dB+
14.5.1.c,

these prime ideals are contracted from D; that is, they are not lost in D.
Every element of mB \Q is contained in a prime ideal q of type I. Thus mB ⊆

Q ∪
⋃
{q of Type I}. Since mB is not the union of finitely many strictly smaller

prime ideals, there are infinitely many prime ideals q of Type I.
Type I*: The prime ideal xB. Among the prime ideals of Type I, the prime ideal
xB is special since it is the unique height-one prime ideal q of B such that R∗/qR∗
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is not complete. If q is a height-one prime ideal of B such that x /∈ qR∗, then x /∈ q.
Thus R∗/qR∗ is complete with respect to the powers of the nonzero principal ideal
generated by the image of x mod qR∗. Notice that R∗/xR∗ ∼= k[y]yk[y].

If q is a height-one prime ideal of B not of Type I, then B = B/q has precisely
three prime ideals. These prime ideals form a chain: (0) ⊂ Q ⊂ (x, y)B = mB .

Type II: The height-one prime ideals q ⊂ Q, contracted from D. That is, q = p∩B,
for some p ∈ SpecD, where D = k(x, y, f) ∩R∗. The Type II prime ideals are not
lost in D. For example, the prime ideal y(y+ τ)B is Type II by Lemma

lost
14.8. For q

of Type II, the domain B/q is dominated by the one-dimensional Noetherian local
domain D/p. Thus B/q is a non-Noetherian generalized local ring in the sense
of Cohen; that is, the unique maximal ideal n of B/q is finitely generated and
∩∞i=1n

i = (0),
Co
[36].

For q of Type II, the maximal ideal of B/q is not principal. This follows because
a generalized local domain having a principal maximal ideal is a DVR

N2
[138, (31.5)].

There are infinitely many height-one prime ideals of Type II, for example,
y(y + xtτ)B for each t ∈ N by Lemma

prime
14.6. 1 For q of Type II, the DVR Bq is

birationally dominated by Dp. Hence Bq = Dp, and

(
types
14.10.0)

√
qD = p ∩ yD.

Type III: The height-one prime ideals q ⊂ Q, not contracted from D. That is, q
is lost in D. For example, the prime ideal yB and the prime ideal (y + xtyτ)B for
t ∈ N are Type III by Lemma

lost
14.8. The elements y and y+xtyτ are prime because

they are in mB and are not in m2
B and B is a UFD. There are infinitely many prime

ideals of Type III by Lemma
prime
14.6. If q has Type III, then

√
qD = yD.

If q = yB or q = (y + xtyτ)B, then the image mB of mB in B := B/q is xB,
a principal ideal. It follows that the intersection of the powers of mB is Q/q and
B/q is not a generalized local ring. To see that

⋂∞
i=1 mB

i 6= (0), argue as follows:
If P is a principal prime ideal of a ring and P ′ is a prime ideal properly contained
in P , then P ′ is contained in the intersection of the powers of P ; see

Kap
[104, page 7,

ex. 5] and Exercise
insidepssec
14.

hesa
4.

The picture of Spec(B) is shown below.

1Bruce Olberding pointed out that the existence of prime ideals q of Type II answers a
question asked by Anderson-Matijevic-Nichols in

AMN
[17, page 17]. Their question asks whether in

an integral domain every nonzero finitely generated prime ideal P that satisfies
⋂∞

n=1 P
n = (0)

and that is minimal over a principal ideal has htP = 1. For q of Type II, the ring B = B/q is a
generalized local domain with precisely three prime ideals. An element in the maximal ideal mB

not in the other nonzero prime ideal generates an ideal primary for mB . Since htmB = 2, this
yields a negative answer to the question.
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mB := (x, y)B

Q := (y, {fi})B

xB ∈ Type I Type II yB ∈ Type III

(0)

Diagram
types
14.10.d

In Remarks
17.45
14.11 we examine the height-one prime ideals q of the ring B of

Example
16.5.3de
14.9 from a different perspective.

17.45 Remarks 14.11. Assume the notation of Example
16.5.3de
14.9. Then R = k[x, y](x,y),

D = K(f) ∩R∗, f = yτ, fn = yτn, , Bn = R[yτn](x,y,yτn), B =
⋃∞
n=0Bn.

(1) If w is a nonzero prime element of B such that w /∈ Q = (y, {yτn}) = yD∩B,
then wD is a prime ideal in D and is the unique prime ideal of D lying over wB,
by Proposition

3dB+
14.5.2. In particular, q = wB is not lost in D.

If q is a height-one prime ideal of B that is contained in Q, then yD is a minimal
prime of qD, and q is of Type II or III depending on whether or not qD has other
minimal prime divisors.

To see this, observe that, if yD is the only prime divisor of qD, then qD has
radical yD and yD ∩B = Q implies that Q is the radical of qD ∩B. Thus q is lost
in D and q is of Type III.

On the other hand, if there is a minimal prime ideal p ∈ SpecD of qD that is
different from yD, then y is not in p∩B and hence p∩B 6= Q. Since Q is the only
prime ideal of B of height two, it follows that p∩B is a height-one prime ideal and
thus p ∩B = q. Thus q is not lost in D and q is of Type II.

By Equation
types
14.10.0, for every Type II prime ideal q of B, there are exactly

two minimal prime ideals of qD; one of these is yD and the other is a height-one
prime ideal p of D such that p ∩ B = q. If p is a height-one prime ideal of D such
that p∩B = q, then Bq is a DVR that is birationally dominated by Dp, and hence
Bq = Dp. The uniqueness of Bq = Dp as a DVR overring of D implies that there
is precisely one such prime ideal p of D.

An example of a height-one prime ideal q of B of Type II is q := (y2 + yτ)B.
The ideal qD = (y2 + yτ)D has the two minimal prime ideals yD and (y + τ)D.

(2) The ring B/yB is a rank 2 valuation domain. This can be seen directly
or else one may apply a result of Heinzer and Sally

HS
[94, Prop. 3.5(iv)]; see Exer-

cise
insidepssec
14.

hesa
4. For other prime elements g of B with g ∈ Q, it need not be true that

B/gB is a valuation domain. If g is a prime element contained in m2
B , then the

maximal ideal of B/gB is 2-generated but is not principal, and B/gB is not a
valuation domain. For a specific example over the field Q, let g = y2 + xyτ .

The following example where m = 1 and e1 = 2 in Example
16.5.1
14.1 gives a proper

subring of the constructed ring of Example
16.5.3de
14.9.
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y2tau Example 14.12. Assume Notation
16.5.1n
14.2 with m = 1 and e1 = 2; that is, p = y2.

Then:

R = k[x, y](x,y), f = y2τ, fn = y2τn, Bn = R[y2τn](x,y,y2τn), B =

∞⋃
n=0

Bn.

By Theorem
16.5.2
14.3, dimB ≤ 3, the maximal ideal is mB := (x, y)B, and the proper

chain (0) ( yB ( yD ∩ B ( mB shows that dimB = 3 and ht(yD ∩ B) = 2. The
ideal Q := yD ∩ B = (y, {y2τn}∞n=0)B is the unique prime ideal of B of height 2.
Moreover, Q is not finitely generated and is the only prime ideal of B that is not
finitely generated. We also have Q ∩Bn = (y, y2τn)Bn for each n ≥ 0.

We return to the general case of Example
16.5.1
14.1.

16.555 Remark 14.13. With Notation
16.5.1n
14.2, consider the birational inclusion B ↪→ D

and the faithfully flat map D ↪→ R∗. The following statements hold concerning
the inclusion maps R ↪→ B ↪→ D ↪→ R∗, and the associated maps in the opposite
direction of their spectra: 2

(1) The map SpecR∗ → SpecD is surjective, since every prime ideal of D
is contracted from a prime ideal of R∗, while the maps SpecR∗ → SpecB and
SpecD → SpecB are not surjective. All the induced maps to SpecR are surjective
since the map SpecR∗ → SpecR is surjecive.

(2) By Lemma
lost
14.8, each of the prime ideals Qi of B contains infinitely many

height-one prime ideals of B that are the contraction of prime ideals of D and
infinitely many that are not.

An ideal contained in a finite union of prime ideals is contained in one of
the prime ideals; see

AM
[16, Prop. 1.11, page 8] or

M
[123, Ex. 1.6, page 6]. Thus

there are infinitely many non-associate prime elements of the UFD B that are not
contained in the union

⋃m
i=1Qi. We observe that for each prime element q of B

with q /∈
⋃m
i=1Qi the ideal qD is contained in a height-one prime ideal q of D and

q ∩ B is properly contained in mB since mD is the unique prime ideal of D lying
over mB . Hence q ∩B = qB. Thus each qB is contracted from D and R∗.

In the four-dimensional example B of Theorem
16.5.4t
16.6, each height-one prime

ideal of B is contracted from R∗, but there are infinitely many height-two prime
ideals of B that are lost in R∗, in the sense of Definition

16.554
14.7; see Section

2casespec
14.2.

(3) Among the prime ideals of the domain B of Examples
16.5.1
14.1 that are not

contracted from D are the piB. Since piD ∩ B = Qi properly contains piB, the
prime ideal piB is lost in D.

(4) Since x and y generate the maximal ideals mB and mD of B and D, it
follows that mD is isolated over its intersection mB = mD ∩B; that is, mD is both
maximal and minimal with respect to the prime ideals of D lying over mB . Since B
is integrally closed in D and B 6= D, the version of Zariski’s Main Theorem given
by Evans in

Ev
[48] implies that D is not integral over an essentially finitely generated

B-subalgebra of D; see also Peskine’s article
Peskine
[149]. 3

Using the information above, we display below a picture of Spec(B) in the case
m = 2 and p = p1p2.

2See Discussion
3.21d
3.29 for information concerning the spectral maps.

3“Essentially finitely generated” is defined in Section
3.02
2.1.
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mB := (x, y)B

Q1 Q2

xB ∈ NOT Lost NL L NL L NL L

(0)

Diagram
16.555
14.13.0

Comments on Diagram
16.555
14.13.0. Here Q1 = p1R

∗ ∩ B and Q2 = p2R
∗ ∩ B,

and each box represents an infinite set of height-one prime ideals. We label a box
“NL” for “not lost” and “L” for “lost”. An argument similar to that given for the
Type I prime ideals in Example

16.5.3de
14.9 shows that the height-one prime ideals q of B

such that q * Q1 ∪Q2 are not lost. That the other boxes are infinite follows from
Lemma

lost
14.8.

Exercises
(1) Let R = k[x, y](x,y) be the localized polynomial ring in the variables x, y over

a field k, and let S = R[ yx ].
(a) Prove that S is a UFD, and that the localization of S at every maximal

ideal is a RLR.
(b) Prove that the prime ideal xR is lost in S in the terminology of Defini-

tion
16.554
14.7.

(c) Prove that xR is the only prime ideal of R that is lost in S.
Suggestion: If q is a prime ideal of R that does not contain x, then
S ⊂ R[1/x] ⊂ Rq.

(d) (Suggested by Bruce Olberding.) Show that there exists a height-one prime
ideal of R that is the contraction of a height-one maximal ideal of S. Hence
“Going-up” fails for the extension R ↪→ S.
Suggestion: Let p = (y2 − x)R. Show that p is a height-one prime ideal
of R such that R/p is a DVR with maximal ideal x(R/p). Let y1 := y

x .
Then pS = x(x(y1)

2 − 1)S. Show that q = (x(y1)
2 − 1)S is a height-one

prime ideal of S such that q ∩R = p. Deduce that S/q is a field.
16.5.17 (2) As in Notation

16.5.1n
14.2, with p = y, let R = k[x, y](x,y), let R∗ = k[y](y)[[x]],

let τ ∈ xk[[x]] be algebraically independent over k(x) and let f = yτ . Then
D = k(x, y, τ) ∩ k[y](y)[[x]] is a Local Prototype. Let B be the Approximation
Domain B =

⋃∞
n=1 k[x, y, fn](x,y,fn) to A = k(x, y, f) ∩ k[y](y)[[x]].

(a) Prove that D = A is a two-dimensional RLR that birationally dominates
the local domain B.

(b) Prove that D[1/x] is a localization of T := R[τ ] and B[1/x] is a localization
of S := R[f ].

(c) For P ∈ SpecD with x /∈ P , prove that the following are equivalent:
(i) DP = BP∩B (ii) τ ∈ BP∩B (iii) y /∈ P.
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Suggestions: For part b, use Remark
4.211
5.16.3 and Construction Properties

Theorem
11.2.51
5.14.

For part c, (ii) =⇒ (iii), one way to show that y ∈ P =⇒ τ /∈ BP∩B
would be to follow this outline: Show B[1/x] a localization of R[f ] =⇒ BP∩B
is a localization of R[f ] =⇒ BP∩B = (R[f ])P∩R[f ]). Then y ∈ P =⇒
(R[f ])P∩R[f ]) ⊆ V := R[f ]yR[f ] and f is a unit in the DVR V . Conclude that
τ = f/y /∈ V .

For (iii) =⇒ (i) (outline) show thatR[f ][1/xy] = R[τ ][1/xy], thatR[τ ][1/xy]
is a localization of R[f ], and that R[τ ](P∩R[τ ]) is a localization of R[f ]. Show
this implies R[τ ](P∩R[τ ]) = R[f ](P∩R[f ]). Also show that D[1/xy] is a localiza-
tion of R[τ ][1/xy] = R[f ][1/xy], and so D[1/xy] is a localization of R[f ]. Since
B[1/x] is a localization of R[f ], show that DP and BP∩B are both localizations
of R[f ]. Deduce that DP = BP∩B .

(3) Let R = k[x, y](x,y) be the localized polynomial ring in the variables x, y over
a field k. Consider the local quadratic transform S := R[ yx ]x, yx )R[ yx ] of the
2-dimensional RLR R.
(a) Prove that there are infinitely many height-one prime ideals of R that are

lost in S.
(b) Prove that there are infinitely many height-one prime ideals of R that are

not lost in S.
(c) Describe precisely the height-one prime ideals of R that are lost in S, and

the prime ideals of R that are not lost in S.
hesa (4) In connection with Remarks

17.45
14.11.2, let (R,m) be a local domain with principal

maximal ideal m = tR.
(a) If Q is a prime ideal properly contained in m, prove that tnQ = Q, for

every n ∈ N.
(b) Prove that

⋂∞
n=1 m

n is a prime ideal that is properly contained in m.
(c) Let P :=

⋂∞
n=1 m

n. Prove that every prime ideal of R properly contained
in m is contained in P .

(d) Prove that R/P is a DVR.
(e) Prove that P = PRP .
(f) Prove that R is a valuation domain if and only if RP is a valuation domainHS

[94, Prop. 3.5(iv)].
(g) Construct an example of a local domain (R,m) with principal maximal

ideal m such that R is not a valuation domain.
Comment: Since P = PRP by part e, there is an embedding R/P ↪→ RP /P .
It follows that R may be regarded as a pullback as in the paper of Gabelli and
Houston

GH
[56] or the book of Leuschke and R. Wiegand

LW
[111, p. 42].

Suggestion: To construct an example for part g, let x, y be indeterminates
over a field k, let U = k(x)[y], let W be the DVR UyU , and let P := yW denote
the maximal ideal of W . Then W = k(x) + P . Let R = k[x2](x2k[x2]) + P .
This is an example of a “D +M” construction, as outlined in Remark

D+M
16.12.

Another example is Example
referee
16.13.



CHAPTER 15

Noetherian properties of non-Noetherian ringsinsideps1.5

In this chapter we establish Noetherian properties that hold for integral do-
mains constructed using Inclusion Construction

4.4.1
5.3 and Insider Construction

16.1.1
10.7.

These results are helpful for determining Noetherian properties of non-Noetherian
rings.

15.1. A general question and the setting for this chapter

Consider the question:

bmodxadj1/x Question 15.1. Let x be a non-nilpotent element of a ring C. If the rings
C/xC and C[1/x] are Noetherian what implications follow for the ring C?

Question
bmodxadj1/x
15.1 is inspired by the constructions and examples featured in earlier

chapters. By Corollary
11.2.51c
5.15, if the base ring R for Inclusion Construction

4.4.1
5.3 is

a Noetherian ring and R∗ is the x-adic completion of R, then B/xB and B[1/x]
are Noetherian, where x is a nonzero nonunit of R and B is the Approximation
Domain of Equation

4.2.3
5.4.5.

Remarks
bmodxrem
15.2 and Proposition

zinPnmht2
15.3 give some straightforward answers in general

to Question
bmodxadj1/x
15.1.

bmodxrem Remarks 15.2. Let x be an element of a ring C such that C/xC and C[1/x]
are Noetherian. Then:

(1) SpecC is Noetherian.
(2) Every ideal of C that contains x is finitely generated. In particular, every

P ∈ SpecC such that x ∈ P is finitely generated.
(3) For every P ∈ SpecC such that x /∈ P , the localization CP is Noetherian.
(4) For every P ∈ SpecC, the maximal ideal PCP of CP is finitely generated.
(5) There exist examples C where C is not Noetherian.
(6) There are examples with C/xC and C[1/x] Noetherian and universally

catenary, but C is not Noetherian and not catenary.

Proof. Item 1 follows from Proposition
z1/zNsp
5.20. For item 2, let I be an ideal of C

with x ∈ I. Since C/xC is Noetherian, there exist finitely many elements a1, . . . , an
in I that generate the image of I in C/xC. It follows that I = (x, a1, . . . , an)C
is finitely generated. If P ∈ SpecC and x /∈ P , then CP is a localization of the
Noetherian ring C[1/x]. Therefore CP is Noetherian. This establishes item 3.

For item 4, let P ∈ SpecC. Either x ∈ P , in which case P is finitely generated
by item 2 and a fortiori PCP is finitely generated, or x /∈ P , in which case CP is
Noetherian by item 3 and PCP is finitely generated.

By Theorem
16.5.2
14.3, the rings B of Examples

16.5.1
14.1 are non-Noetherian local UFDs

of dimension 3 for which the element x of B satisfies the desired properties of x in
C. This establishes item 5.

185
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By Remark
B1/xucat
14.4, the rings B of Examples

16.5.1
14.1 are not catenary, even though

B[1/x] and B/xB are universally catenary. □

zinPnmht2 Proposition 15.3. Let x be an element of a UFD C.
(1) If the ring C/xC is Noetherian, then CQ is Noetherian, for every prime

ideal Q of C with x ∈ Q and htQ ≤ 2.
(2) If the rings C/xC and C[1/x] are both Noetherian, then CQ is Noetherian,

for every prime ideal Q of C with htQ ≤ 2.

Proof. For item 1, if htQ = 1, then CQ is a DVR. Hence CQ is Noetherian for
Q of height-one. If Q has height two, then the prime ideals of CQ are QCQ, {QαCQ}
and (0), where the Qα range over all height-one prime ideals of C contained in Q.
Since C is a UFD, every such Qα is principal. Thus every prime ideal of CQ is
finitely generated, and so CQ is Noetherian by Cohen’s Theorem

3.2.1
2.25.

For item 2, if x /∈ Q, then CQ is Noetherian by Remark
bmodxrem
15.2.3. If x ∈ Q, then

item 1 implies that CQ is Noetherian. □

We use the setting from Insider Construction
16.1.1
10.7, but we restrict to a Noether-

ian base ring R and just one f , and the elements of τ are algebraically independent
in R∗ over R..

InsCsetnot Setting 15.4. Basic setup of Insider Construction
16.1.1
10.7 for Chapter

insideps1.5
15. Let R

be a Noetherian domain with field of fractions Q(R) = K. Let x ∈ R be a nonzero
nonunit of R, and let R∗ be the x-adic completion of R. Let τ = {τ1, . . . , τs} ⊆ xR∗
be a set of elements that are algebraically independent over the base ring R. Assume
that K(τ) ⊆ Q(R∗), the total ring of fractions of R∗, and that

Ψ∗ : T := R[τ ] = R[τ1, . . . . , τs] ↪→ R∗[1/x]

is flat.
Let f ∈ (τ)R[τ ] ⊆ xR∗ be transcendental over R. Since f ∈ (τ)R[τ ], f has

zero constant term as a polynomial in the τi. Define Intersection Domains

A := K(f) ∩R∗, and D := K(τ) ∩R∗.

Let B be the Approximation Domain over R constructed using f as in Section
4.45
5.2;

that is, B is the Approximation Domain of Inclusion Construction
4.4.1
5.3 associated

to R and f . 1

With Setting
InsCsetnot
15.4, Noetherian Flatness Theorem

11.3.25
6.3.1 implies D is also the

Approximation Domain of Inclusion Construction
4.4.1
5.3 associated to τ , as in Def-

inition
appintdef
5.7. Thus D is a Noetherian Limit Intersection Domain, as defined in

Definition
NLIDdef
6.4.

Corollary
11.2.51c
5.15 implies that B/xB and B[1/x] are Noetherian. The non-flat

locus of the extension B ↪→ R∗[1/x] gives more information about Noetherian
properties of B such as that certain homomorphic images of B and certain local-
izations of B at prime ideals are Noetherian; see Local FlatnessTheorem

Noeth2
6.13, and

Theorem
Noeth
6.15.

1The examples of this chapter are Approximation Domains.
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15.2. More properties of Insider Constructions
pins152

This section concerns properties of the constructed rings in the generality of
Setting

InsCsetnot
15.4. These apply to Example

yztau
15.10 and examples described in Chapter

insideps2
16.

nflInsC Remark 15.5. The fact that R[τ1, . . . , τs] ↪→ R∗[1/x] is flat in in Setting
InsCsetnot
15.4

and that then non-flat locus of ϕ : S = R[f ] ↪→ T is closed imply that the non-
flat locus of ψ : S = R[f ] ↪→ R∗[1/x] is closed; that is, the non-flat locus of ψ
is determined by an ideal of R∗[1/x]. Let L be the ideal of R generated by the
nonconstant coefficients of f . By Corollary

16.3.7c
7.29, the ideal LT determines the non-

flat locus of ϕ : S = R[f ] ↪→ T . Then, by Theorem
16.3.9
10.12, parts 1 and 2, the ideal

LR∗[1/x] determines the non-flat locus of both maps below:
B ↪→ R∗[1/x] and ψ : S := R[f ] ↪→ R∗[1/x].

Proposition
Bnfg
15.6 shows that an appropriate choice of f ensures that certain

prime ideals of B are not finitely generated.

Bnfg Proposition 15.6. Assume Setting
InsCsetnot
15.4. Let P be a prime ideal of R such

that x /∈ P and PB 6= B. If the polynomial f has the form f = p1τ1 + · · · + psτs,
where each pi ∈ P, and if Q ∈ SpecB satisfies:

(i) q := Q ∩R ⊆ P , and (ii) {fn}n∈N ⊆ Q.
Then

B =

∞⋃
n=1

Bn =⇒ Q =
⋃
n∈N

(Q ∩Bn) =⇒ Q =
⋃
n∈N

(Q ∩Bn)B.

Moreover fn+1 /∈ (Q ∩Bn)B, Q is not finitely generated, and Q = (q, {fn}n∈N)B.

Proof. For each i ∈ {1, 2, . . . , s} and each n ∈ N, let τin be the nth-endpiece
of τi, as defined in Equation

4.2.3
5.4.3. The expression for f implies that for each n ∈ N

fn := p1τ1n + · · ·+ psτsn ∈ Q ∩Bn.
By Endpiece Recursion Relation

EndRecRel
5.5, τin = xτi,n+1 + ci,n+1x, with ci,n+1 ∈ R; it

follows that
(
Bnfg
15.6.1) fn = xfn+1 + p1c1,n+1x+ · · ·+ pscs,n+1x = xfn+1 + xp′,

where each ci,n+1 ∈ R and p′ ∈ P .
For each n > 0, Qn := Q ∩ Bn is a prime ideal of Bn and is a localization

of Q ∩ Un = Q ∩ (R[fn]) = (q, fn)R[fn], a prime ideal of the polynomial ring
Un = R[fn] in the variable fn. Thus fn ∈ Q ∩ (R[fn]) implies Q ∩Bn = (q, fn)Bn.

Suppose fn+1 ∈ (Q ∩ Bn)B = (q, fn)B ⊆ (P, fn)B. Then fn+1 = pa + fnb,
where a, b ∈ B and p ∈ q ⊆ P . Substituting pa + fnb for fn+1 in Equation

Bnfg
15.6.1

yields
fn = xpa+ xfnb+ xp′ =⇒ (1− xb)fn = xpa+ xp′.

By Proposition
11.2.52
5.17, the element 1−xb is a unit of B. Thus fn = xa′p+xp′′ for new

elements a′ ∈ B and p′′ ∈ PB. By Proposition
11.2.52
5.17.

pRpU
2.e, fn ∈ PB∩Un = PUn. This

contradicts the fact that Un is the polynomial ring R[fn]. Thus fn+1 /∈ (Q∩Bn)B.
Since Q =

⋃∞
n=1(Q ∩ Bn)B, it follows that Q = (q, {fn}n∈N)B, and Q is not

finitely generated. □

Proposition
contr*B
15.7 describes prime ideals of B having height equal to the dimen-

sion of R.
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contr*B Proposition 15.7. Assume Setting
InsCsetnot
15.4. Also assume that (R,mR) is a Noe-

therian local domain of dimension n > 0. Let P be a nonmaximal prime ideal of
B such that htP = n, and let L be the ideal of R generated by the nonconstant
coefficients of f . Then

(1) The maximal ideal mB of B is mRB, dimB = n+1, and dim(B/P ) = 1.
(2) There exists a prime ideal P ∗ ∈ SpecR∗ such that

(a) PR∗ ⊆ P ∗ ( mR∗ , and P = PR∗ ∩B = P ∗ ∩B.
(b) htP ∗ ≤ n− 1 and LR∗ ⊆ P ∗.

(3) LR∗ ∩ B ⊆ P , and Q∗ ∩ B ⊆ P , for some prime ideal Q∗ of R∗ that is
minimal over LR∗.

Proof. For item 1, by Proposition
11.2.52
5.17.

Bloc
5, B is local with maximal ideal

mB = mRB. Since B =
⋃∞
n=0R[fn](mR,fn) is the Approximation Domain of In-

sider Construction
16.1.1
10.7, Proposition

nudimhgt
5.19.2 implies that dimB ≤ n+ 1. Since P is

a nonmaximal prime ideal of height n, dimB = n+ 1.
For item 2, htmB = n+ 1. We define P ∗ in each of the two cases below:

Case i: x ∈ P . By Theorem
11.2.51
5.14.

Rmodzn
2, R/xR = B/xB = R∗/xR∗. Then the

ideal P ∗ := PR∗ is nonmaximal in R∗, and P ∗ ∩B 6= mB .
Case ii: x /∈ P . Let P ∗ be a prime ideal of R∗ minimal over PR∗ as in

Proposition
11.2.52
5.17.

znpna
4. Then x /∈ P ∗ and x /∈ P ∗ ∩ B imply that P ∗ is not

maximal and P ∗ ∩B 6= mB .
In either case, P ⊆ PR∗ ∩ B ⊆ P ∗ ∩ B ( mB . Then P = PR∗ ∩ B = P ∗ ∩ B,

since htP = n and htmB = n + 1. Since P ∗ is a nonmaximal prime ideal of R∗,
htP ∗ < dimR∗ = n = htP . By Remark

remflat
2.37.

flgd
10, the extension BP ↪→ R∗P∗ is not

flat.
In Case i, BP ↪→ R∗P∗ not flat implies that (L, x)R∗∩B ⊆ P, by Theorem

Noeth2
6.13.

Thus item 2 holds in Case i.
In Case ii, R∗[1/x]P∗R∗[1/x] = R∗P∗ , since x /∈ P ∗. By Theorem

16.3.9
10.12.3, the non-

flat locus of the extension B ↪→ R∗[1/x] is LR∗[1/x]. Thus LR∗[1/x] ⊆ P ∗R∗[1/x].
It follows that LR∗ ⊆ P ∗ and LR∗ ∩B ⊆ P ∗ ∩B = P , and so item 2 holds.

For item 3, choose a prime ideal Q∗ of R∗ such that LR∗ ⊆ Q∗ ⊆ P ∗ and Q∗

is minimal over LR∗. Then Q∗ ∩B ⊆ P ∗ ∩B = P . □
Proposition

homimB
15.8 relates the constructed ring B to a ring of lower dimension. It

is used in Proposition
y2tauyztau
15.14 to show that a homomorphic image of Example

yztau
15.10

is isomorphic to the three-dimensional ring B of Example
y2tau
14.12.

homimB Proposition 15.8. Assume Setting
InsCsetnot
15.4 and also assume that (R,m) is a reg-

ular local ring of dimension at least 3, that x,w ∈ R are part of a regular system
of parameters of R, and that R∗ is the x-adic completion of R.

(i) Let L be the ideal of R generated by the coefficients of f .
(ii) Let π : R∗ → R∗/wR∗ be the natural homomorphism, and let denote

the image under π in the RLR R∗/wR∗ = R∗. Assume that τ1, . . . , τs are
algebraically independent over R/wR.

(iii) Let B′ be the Approximation Domain formed by taking R as the base ring
and defining the endpieces fn of f analogously to Equation

4.2.3
5.4.1. That

is, B′ is defined by setting

U ′n = R[fn], B
′
n = (U ′n)n′

n
, U ′ =

∞⋃
n=1

U ′n, and B′ =

∞⋃
n=1

B′n,
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where n′n = (mR, fn)U
′
n.

If L * wR∗[1/x], then B′ = B/wB = B and B is a UFD.

Proof. Since w is part of a regular system of parameters, w is a prime ele-
ment of R. By Proposition

11.2.52
5.17.

pRpU
2, wB is a prime ideal of B; see Exercise

regsopprime
1. By

Theorem
16.3.9
10.12.3, the non-flat locus of B ↪→ R∗[1/x] is defined by LR∗[1/x]. Since

L is not contained in wR∗[1/x], we have that

B ↪→ R∗[1/x]wR∗[1/x]

is flat, and therefore BwR∗[1/x]∩B ↪→ R∗[1/x]wR∗[1/x] is faithfully flat. From this it
follows that wR∗[1/x] ∩B = wB. Hence B = B/(wR∗ ∩B) = B/wB. Since

R/xR = B/xB = R∗/xR∗,

the integral domain R∗ is the (x)-adic completion of R. Since the coefficients of f
generate L and are not all contained in wR∗, the element f of the integral domain
B is transcendental over R. Since the endpieces fn differ from f by elements of R,
they are also transcendental over R.

Recall that U0[1/x] = Un[1/x] = U [1/x] by Construction Properties Theo-
rem

11.2.51
5.14.

Rt1/z
4 and Remark

4.211
5.16.3, and thus wU ∩ Un = wUn, for each n ∈ N. Then

wB ∩Bn = wBn, since Bn is a localization of Un. Since wR∗ ∩B = wB, it follows
that wR∗ ∩Bn = wBn. Thus

R ⊆ Bn = Bn/wBn ⊆ B = B/wB ⊆ R∗ = R∗/wR∗.

Therefore B =
⋃∞
n=0Bn. Then B′ = B, since B′n = Bn. By Theorem

Bufd
5.24, the

ring B is a UFD. □

homimBrmk Remark 15.9. In the notation of Proposition
homimB
15.8, if R is the localized polyno-

mial ring R = k[x, y1, . . . , yn]x,y1,...,yn) and w ∈ (y1, . . . , yn)k[y1, . . . , yn], then the
assumption that τ1, . . . , τs are algebraically independent over R/wR holds.

15.3. A four-dimensional non-Noetherian domainpins161

We present a four-dimensional Approximation Domain B constructed using
Setting

InsCsetnot
15.4; we identify Noetherian properties of B.

yztau Example 15.10. Let k be a field, let x, y and z be indeterminates over k. We
use Setting

InsCsetnot
15.4 with r = 1 = s (one τ and one f) to construct a four-dimensional

Approximation Domain B such that

R : = k[x, y, z](x,y,z) ⊆ B ⊆ R∗ : = k[y, z](y,z)[[x]].

With τ ∈ xk[[x]] transcendental over k(x) and D := k(x, y, z, τ) ∩ k[y, z](y,z)[[x]],
the Intersection Domain D is a Local Prototype as in Definition

prodef
4.28. In addition,

D is a three-dimensional RLR that is a directed union of four-dimensional RLRs.
We construct B inside D using Insider Construction

16.1.1
10.7. Define

f := yzτ and A := k(x, y, z, f) ∩R∗.

The domain A = D, since k(x, y, z, f) = k(x, y, z, τ). For each integer n ≥ 0, let
τn be the nth endpiece of τ as in Equation

4.2.3
5.4.1. Then the nth endpiece of f is



190 15. NOETHERIAN PROPERTIES OF RINGS

fn = yzτn. By Remarks
4.211
5.16.3, the integral domains Un, Bn, U and Approximation

Domain B can be chosen as follows:

(
yztau
15.10.2)

Un := k[x, y, z, fn] Bn := k[x, y, z, fn](x,y,z,fn)

U :=

∞⋃
n=0

Un and B :=

∞⋃
n=0

Bn.

Theorem
yztauth
15.11 lists properties of the ring B that we prove in this section.

yztauth Theorem 15.11. Assume the setting of Example
yztau
15.10. Then:

(1) The ring B is a four-dimensional non-Noetherian local UFD with maximal
ideal mB = (x, y, z)B, and the mB-adic completion of B is the three-
dimensional RLR k[[x, y, z]].

(2) The ring B[1/x] is a Noetherian regular UFD and the ring B/xB is a
two-dimensional RLR. For a prime ideal P of B, we have

BP is an RLR ⇐⇒ BP is Noetherian ⇐⇒ (yz, x)R∗ ∩B * P.

If htP ≤ 2, then BP is an RLR.
(3) The height-one prime ideals yB and zB are not contracted from R∗.
(4) If w is a prime element of B such that w /∈ yR∗∪zR∗, then wR∗∩B = wB,

and wB is the contraction of a height-one prime ideal of R∗.
(5) The prime spectrum of B is Noetherian.
(6) Concerning the finite generation of ideals of B:

(a) Every height-one prime ideal is principal.
(b) The ideals Q1 = (y, {fn})B = yR∗ ∩B, Q2 = (z, {fn})B = zR∗ ∩B

and Q3 = (y, z, {fn})B = (y, z)R∗ ∩B are prime and are not finitely
generated, and htQ1 = htQ2 = 2 and htQ3 = 3.

(c) The prime ideals (x, y)B and (x, z)B have height three.
(d) If P is a height-two prime ideal of B that contains an element of the

form y + g(z, x) or z + h(x, y), where 0 6= g(z, x) ∈ (x, z)k[x, z] and
0 6= h(x, y) ∈ (x, y)k[x, y], then P is generated by two elements.

(e) If a is an ideal of B that contains x+ yzg(y, z), for some polynomial
g(y, z) ∈ k[y, z], then a is finitely generated.

(f) B has infinitely many height-three prime ideals that are not finitely
generated, such as Qi,α = (y−αxi, z, {fn})B, where i ∈ N and α ∈ k.

(7) Every maximal ideal of B[1/x] has height 2 or 3, and B[1/x] has infinitely
many maximal ideals of height three and infinitely many maximal ideals
of height two.

(8) B(x,y)B and B(x,z)B are three-dimensional non-Noetherian local UFDs.

We use Proposition
nflyztau
15.12 in the proof of Theorem

yztauth
15.11.

nflyztau Proposition 15.12. Assume the notation of Example
yztau
15.10. Then:

yztaunfl (1) The non-flat locus of the maps α : R[f ] ↪→ R∗[1/x] and ψ : B ↪→ R∗[1/x]
is defined by the ideal (yz)R∗[1/x].

wf4dtau (2) For every height-one prime ideal p of R∗ except yR∗ and zR∗, we have
ht(p ∩B) ≤ 1.

wR*cBtau (3) If w is a prime element of B such that w /∈ yR∗∪zR∗, then wR∗∩B = wB.

Proof. Item
yztaunfl
1 follows from Theorem

16.3.9
10.12, parts 2 and 3; see Remark

nflInsC
15.5.
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By Theorem
11.2.51
5.14.

znintA
1, item

wf4dtau
2 holds if p = xR∗. Let p be a height-one prime of

R∗ such that p /∈ {xR∗, yR∗, zR∗}. Then xyz /∈ p. Since pR∗[1/x] does not contain
(yz)R∗[1/x] and R∗[1/x] ⊆ (R∗)p, the map Bp∩B ↪→ (R∗)p is faithfully flat. Thus
ht(p ∩B) ≤ 1. This establishes item

wf4dtau
2.

Let p be a height-one prime ideal of R∗ that contains wR∗. Then p 6= yR∗ or
zR∗. By item 2, p ∩B has height at most one. We have that the height-one prime
ideal p ∩B ⊇ wR∗ ∩B ⊇ wB, a height-one prime ideal. Thus item

wR*cBtau
3 follows. □

Proof. (Of Theorem
yztauth
15.11) For item 1, the map ψ : B ↪→ R∗[1/x] is not flat

by Proposition
nflyztau
15.12

yztaunfl
1, and so the ring B of Example

yztau
15.10 is non-Noetherian by

Noetherian Flatness Theorem
11.3.25
6.3.1. The maximal ideal of B is mB = (x, y, z)B,

since the maximal ideal of each Un is (x, y, z, fn)Un and fn ∈ (x, y, z)Un+1. Also
dimB ≤ 4 by Proposition

nudimhgt
5.19. Since the chain of prime ideals

(0) ( yB ( (y, {fn})B ( (y, z, {fn})B ( mB = (x, y, z)B

has strict containments—consider the elements y, f, z, x, we have dimB = 4. The
ring B is a UFD by Theorem

Bufd
5.24. By Construction Properties Theorem

11.2.51
5.14.

compR*
3, the

(x)-adic completion of B is R∗, and so the mB-adic completion of B is k[[x, y, z]].
Thus item 1 holds.

For item 2, Theorem
Bufd
5.24 implies that the ring B[1/x] is a Noetherian regular

UFD. By Construction Properties Theorem
11.2.51
5.14.

Rmodzn
2, we have R/xR = B/xB, and

so B/xB is a two-dimensional RLR. The non-flat locus of ψ is yzR∗[1/x], the
ideal generated by the coefficients of f , by Theorem

16.3.9
10.12.2. By Theorem

16.3.9
10.12.8,

the domain BP is Noetherian if and only if (yz, x)R * P . Combined with the
fact that B/xB is a regular local ring, this implies that BP is a regular local ring.
Proposition

zinPnmht2
15.3 implies the last statement of item 2.

For item 3, yB and zB are not contracted from R∗, since
yB ( (y, f)B ⊆ yR∗ ∩B and zB ( (z, f)B ⊆ zR∗ ∩B.

By Proposition
nflyztau
15.12, item 4 holds. Item 5 follows from Corollary

z1/zNspc
5.21.

For item 6a, since B is a UFD, every height-one prime ideal is principal. For
items 6b and 6c, we have the following containments, most of which are proper:

(
nflyztau
15.12.a) yB ( Q1 ⊆ yR∗ ∩B ( (x, y)B ( (x, y, z)B.

The containment yR∗ ∩ B ⊆ (x, y)B follows from (x, y)B/xB = (x, y)R∗/xR∗.
The sequence of elements fn, x, z yields the asserted proper containments. The
ideals yB, (x, y)B, and (x, y, z)B are prime ideals by Proposition

11.2.52
5.17.

pRpU
2.b. Since

ht((x, y, z)B) = 4, we have ht(yR∗ ∩ B) = 2 and ht((x, y)B) = 3. Also yR∗ ∩ B is
clearly a prime ideal that contains Q1. By Proposition

Bnfg
15.6 with Q1 = yR∗ ∩B,

fn+1 /∈ (yR∗ ∩Bn)B; yR∗ ∩B = ∪∞n=1(yR
∗ ∩Bn)B = (y, {fn})B = Q1;

and yR∗ ∩B is not finitely generated. Thus Q1 is a prime ideal, htQ1 = 2 and Q1

is not finitely generated. Similarly, Q2 is a prime ideal, Q2 = zR∗ ∩ B, htQ2 = 2,
Q2 is not finitely generated and ht(x, z)B = 3. Proposition

Bnfg
15.6 implies that

fn+1 /∈ (y, z)R∗ ∩B, Q3 = (y, z)R∗ ∩B and Q3 is a prime ideal that is not finitely
generated. Since Q1 ( Q3 ( (x, y, z)B, we have htQ3 = 3.

For item 6d, observe that the maximal ideal of R = k[x, y, z](x,y,z) is generated
by the regular system of parameters x, y, z. Since {x,w = y + g(x, z), z} and
{x, y, v = z+h(x, y)} also generate the maximal ideal of R, they are regular systems
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of parameters. Since y /∈ wB and z /∈ vB, the condition of Proposition
homimB
15.8 that

the ideal L = yzR generated by the coefficients of f is not contained in either wB
or vB is satisfied. Thus, by Proposition

homimB
15.8, B/wB and B/vB are UFDs, and

so every height-one prime ideal of B/wB or of B/vB is principal. It follows that
every height-two prime ideal of B that contains such an element w or v is finitely
generated.

For item 6e, assume a is an ideal of B that contains a prime element of the form
x+ yzg(y, z). Let p = (x+ yzg(y, z))B. Then p is a prime ideal and p ⊆ a. Item 4
above implies the prime ideal p Since g(y, z) 6= 0, x is a regular element on R∗/pR∗.
Also the ideal p is contracted from R∗ and so pR∗ ∩ B = p. By Theorem

Noeth
6.15.3,

the ring B/p is Noetherian. Therefore a is finitely generated.
For item 6f, the ideals Qi,α = (y − αxi, z, {fn})B are prime ideals, since each

Qi,α ∩ Bn is a prime ideal. By Proposition
Bnfg
15.6, using P = (y − αxi, z)R as the

prime ideal of R in Proposition
Bnfg
15.6, we see that each Qi,α is not finitely generated.

If i > j or i = j and α 6= β ∈ k, then

αxi − βxj ∈ Qi,α =⇒ αxi−j − β ∈ Qi,α.

If i > j and β 6= 0, this would imply that Qi,α contains a unit; if i ≥ j and β = 0
but α 6= 0, then Qi,α contains x or a unit. if i = j and α 6= β, then Qi,α contains
a unit. Since each Qi,α is a proper prime ideal, there are infinitely many distinct
prime ideals of the form Qi,α.

For item 7, Theorem
d1impht
5.18.2 with n = 3 and s = 1 implies 2 ≤ htP ≤ 3, for

every prime ideal of B maximal with respect to x /∈ P . Equivalently, every maximal
ideal of B[1/x] has height 2 or 3. By item 6f, there are infinitely many height-three
maximal ideals of B[1/x], such as the Qi,αB[1/x].

We claim, for each i ∈ N, the ideal Qi := (y − z, y − xi)B[1/x] is a height-two
ideal of B maximal with respect to x /∈ Qi, and so Qi is a maximal ideal of B[1/x]
of height 2. To see this, observe that qi := (y− z, y− xi)R ∈ SpecR and ht qi = 2.
By Proposition

11.2.52
5.17.

pRpU
2, Qi = qiB ∈ SpecB. Also (y − z)B ( Qi ( mB , since

(y − z)Bn ( qiBn ( mBn
, for every n ∈ N, and so 2 ≤ htQi ≤ 3. Suppose that

Qi ⊆ P , for some P ∈ SpecB with htP = 3. Then, by Proposition
contr*B
15.7.3, yz ∈ P

and so y or z ∈ P . In either case, y − z ∈ Qi ⊆ P =⇒ (y, z, x)B = mB ⊆ P , a
contradiction to htP = 3 < htmB = 4. Thus Qi is not contained in any height-
three prime ideal of B. Hence htQi = 2 and Qi is maximal with respect to not
containing x, as desired for the claim.

To complete item 7, for i < j ∈ N, we show that Qi 6= Qj . Suppose not; then
xj−i(xi − 1) = xj − xi = (y − xi)− (y − xj) ∈ Qi ∩R = qi. This implies xi ∈ qi, a
contradiction. Thus B[1/x] contains infinitely many height-two maximal ideals.

For item 8 with P = (x, y)B, by Local Flatness Theorem
Noeth2
6.13, BP is not

Noetherian, since (yz, x)R = (yz, x)R∗ ∩ R ⊆ P = (x, y)B. The rest of item 8
follows from items 2, 6b and 6c. Similarly, B(x,z)B is a non-Noetherian local UFD.

□

We display a partial picture of Spec(B) and make comments about the diagram.
Here β ranges over the elements of k.
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•mB := (x, y, z)B

{(y, z − βx, {fi})B}{(z, y − βx, {fi})B}
•(x, z)B

•(y, z, {fi})B

•(y, z)B

•(x, y)B

•zB

•(z, {fi})B •(y, {fi})B

•yB
•xB

•(0)
Diagram

nflyztau
15.12.0

Comments regarding Diagram
nflyztau
15.12.0. A line going from a box at one level

to a bullet at a higher level indicates that every prime ideal in the lower level box
is contained in the prime ideal in the higher level box. The links connecting every
pair of bullets shown are saturated—no other prime ideals are between the two
endpoints of each link. If one or more prime ideals are between two prime ideals,
say P1 ( P2 ( P3 ∈ SpecB, and BP3 is Noetherian, then there are infinitely many
prime ideals (not shown) between P1 and P3. For example, there are infinitely many
prime ideals between (0) and (y, z)B (e.g. (y − βz)B for every β ∈ k[x]); these are
not shown in the picture. On the other hand, the only prime ideal between yB
and (x, y)B is the prime ideal yR∗ ∩ B, by Proposition

yznotinxg
15.13.8. If g is a prime

element of B such that yz /∈
√
(x, g)B, then the height-one prime ideal gB of B is

contained in a height-two prime P of B that contains x; see Proposition
yznotinxg
15.13.6.

The prime ideals of B that contain {fi} but not x are not finitely generated by
Proposition

Bnfg
15.6.

Other properties of SpecB are given in Proposition
yznotinxg
15.13.

yznotinxg Proposition 15.13. Let B be the ring constructed in Example
yztau
15.10. Then:

(1) SpecB has no maximal saturated chain of length 2.
(2) Let P be a prime ideal of B of height three. Then

(a) P contains yR∗ ∩B or zR∗ ∩B.
(b) P = (y, g(z, x))R∗ ∩ B or P = (z, h(y, x)R∗ ∩ B, for some irre-

ducible polynomial-power series g(z, x) ∈ k[z](z)[[x]] and h(y, x) in
k[y](y)[[x]].

(c) (x, y)B and (x, z)B are the only height-three prime ideals of B that
contain x.

(3) Let g(z, x) ∈ k[z](z)[[x]] be an irreducible polynomial-power series such that
g(z, x)R∗ ∩ B 6= 0. Then P = (y, g(z, x))R∗ ∩ B is a height-three prime
ideal of B. If h(y, x) is irreducible in k[y](y)[[x]] and h(y, x)R∗ ∩ B 6= 0,
then P = (z, h(y, x))R∗ ∩B is a height-three prime ideal of B.

(4) Let P be a prime ideal of B of height three, P 6= (x, y)B and P 6= (x, z)B.
Then (a) P is not finitely generated, and (b) BP is an RLR.

(5) Every prime ideal P of B such that yz /∈ P has height ≤ 2.
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(6) If g ∈ B and yz /∈
√

(g, x)B, then (g, x)B is contained in a height-two
prime ideal of B.

(7) If g ∈ B, yz ∈
√

(g, x)B, and P ∈ SpecB is minimal over (g, x)B, then
P = (x, y)B or P = (x, z)B; thus every prime ideal of B minimal over
(g, x)B has height 3.

(8) There is a unique prime ideal N of B such that yB ( N ( (x, y)B, namely
N = yR∗ ∩ B. Similarly, zR∗ ∩ B is the unique prime ideal between zB
and (x, z)B.

Proof. For item 1, if (0) = P0 ( P1 ( . . . ( Ph is a maximal chain then
Ph = mB = mRB and h > 0. If h = 2 and x /∈ P1, then the ideal P1B[1/x]
is maximal, a contradiction to Theorem

yztauth
15.11.7. If x ∈ P1, then the extension

P1 = xB ( mB is saturated, a contradiction to dim(B/xB) = dim(R/xR) = 2.
For item 2, Proposition

contr*B
15.7.3 implies that P = P ∗ ∩B, for some nonmaximal

prime ideal P ∗ of R∗ with yzR∗ ⊆ P ∗. Then htP ∗ ≤ 2 and y ∈ P ∗ or z ∈ P ∗.
Since the proof is similar for z, assume yR∗ ⊆ P ∗, and so yR∗ ∩ B ⊆ P . By
Theorem

yztauth
15.11.6b, ht(yR∗ ∩ B) = 2. Then htP = 3 implies yR∗ ∩ B ( P and

yR∗ ( P ∗, and ht(yR∗) = 1 implies htP ∗ = 2. Since R∗ = k[y, z](y,z)[[x]] is a
UFD, so is R∗/yR∗ = k[z](z)[[x]]. Hence the height-one prime ideal P ∗/yR∗ of
R∗/yR∗ is principal, generated by an irreducible element of the form g(z, x) in the
ring k[z](z)[[x]]. That is, P ∗ = (y, g(z, x))R∗ and so P = (y, g(z, x))R∗ ∩ B. Thus
items 2a and 2b hold. Item 2c follows from item 2a.

For item 3, clearly P ∗ = (y, g(z, x))k[y, z](y,z)[[x]] is a height-two prime ideal
of R∗ = k[y, z](y,z)[[x]], and g(z, x) ∈ B \ (yR∗ ∩ B). Let P = (y, g(z, x))R∗ ∩ B.
Thus (yR∗ ∩B) ( P ( mB , and so P is a height-three prime ideal of B. Similarly
the other part of item 3 holds.

For item 4.a, by item 2, every prime ideal of height three contains {fn}∞n=1.
By Proposition

Bnfg
15.6, every such prime ideal that avoids x is not finitely generated.

Since (x, y)B and (x, z)B are the only height-three prime ideals that contain x,
item 4.a holds. Item 4.b holds by Theorem

yztauth
15.11.2 if P is a height-three prime ideal

that does not contain x. Since B(x,y)B contains the nonfinitely generated prime
ideal (y, {fn}∞n=1, B(x,y)B is not Noetherian. Similarly B(x,z)B is not Noetherian.

For item 5, if yz /∈ P , then P is not maximal, and, by item 2, htP 6= 3. Thus
htP ≤ 2.

For item 6, first suppose g ∈ xB. Then
√
(g, x)B = xB ( P = (x, y + z)B,

a prime ideal since (x, y + z)Bn is a prime ideal for every n. Also yz /∈ P and
xB ( P , and so htP = 2 by item 5.

Now suppose that g /∈ xB and yz /∈
√
(g, x)B. Since B/xB is Noetherian,√

(g, x)B has a primary decomposition, and so there exists a prime ideal P such
that xB ( (g, x)B ⊆ P and yz /∈ P . By item 5, htP = 2.

For item 7, let P ∈ SpecB be minimal over
√
(g, x)B. Then yz ∈

√
(g, x)B

implies yz ∈ P . Also B/xB is Noetherian and so htB/xB(P/xB) ≤ 1, by Krull
Altitude Theorem

krullpit
2.23. Thus P 6= mB , and so htP ≤ 3. Since yz ∈ P , either

y or z is in P ; say y ∈ P . Then (x, y)B ⊆ P and ht((x, y)B) = 3 imply that
P = (x, y)B.

For item 8, assume that yB ( N ( (x, y)B. Then x /∈ N and so there exists
N∗ ∈ SpecR∗ with NR∗ ⊆ N∗ and x /∈ N∗ by Proposition

11.2.52
5.17.

znpna
4. Then y ∈ N
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implies yR∗ ⊆ N∗. Thus there are chains of prime ideals of B

(0) 6= yB ( N ⊆ N∗ ∩B ( (x, y)B, and yB ⊆ yR∗ ∩B ⊆ N∗ ∩B.

Since ht(x, y)B = 3, we have N∗ ∩B = N . Also ht(N∗ ∩B) = 2 = ht(yR∗ ∩B) by
Theorem

yztauth
15.11.6b, and so N = yR∗ ∩B. □

y2tauyztau Proposition 15.14. The homomorphic image B/(y − z)B of the ring B of
Example

yztau
15.10 is isomorphic to the three-dimensional ring of Example

y2tau
14.12.

Proof. In order to distinguish and compare the two constructed rings, let the
base ring RC denote the base ring for Example

y2tau
14.12 and let C denote the ring

of Example
y2tau
14.12 over RC ; let B be the ring of Example

yztau
15.10 with base ring R.

Thus,

RC := k[x, y](x,y), R∗C = k[y](y)[[x]], C =

∞⋃
n=0

k[x, y, y2τn](y,z)

R := k[x, y, z](x,y,z), R∗ = k[y, z](y,z)[[x]], B =

∞⋃
n=0

k[x, y, z, yzτn](x,y,z,yzτn).

Let π be the natural map B → B = B/(y−z)B. Since π is the identity on k[[x]], the
element τ is in both R∗C and R∗. Then π(y) = π(z) = y and π(f) = π(yzτ) = y2τ .
Thus R ∼= k[x, y](x,y) = RC . Here L = yzR, and so L * (y − z)R∗[1/x]. By
Proposition

homimB
15.8 with w = y − z ∈ R, we have B′ = B/(y − z)B, where B′ is the

approximation domain over R = R/(y−z)R using the element f , which corresponds
to y2τ as an element of k[y](y)[[x]]. Thus B ∼= C. □

16.5.yztau Remark 15.15. Let B be the non-Noetherian local UFD of dimension four
constructed in Example

yztau
15.10, and let I be an ideal of B. By Proposition

11.2.52
5.17.

Bloc
5,

IR∗ is mR∗ -primary ⇐⇒ I is mB-primary,

We do not know the answers to Questions
yztauq
15.16.

yztauq Questions 15.16. For the ring B constructed in Example
yztau
15.10,

(1) Does every prime ideal of B that is not finitely generated contain the set
{fi}∞i=1?

(2) Are the prime ideals

Q1 := (y, f1, . . . , fi, . . .)B and Q2 := (z, f1, . . . , fi, . . .)B

the only height-two prime ideals of B that are not finitely generated?

yztauqsame Remark 15.17. The analysis in this chapter of Example
yztau
15.10 implies that a

“Yes” answer to Question
yztauq
15.16.2 yields a “Yes” answer to Question

yztauq
15.16.1. By

Proposition
yznotinxg
15.13.2, every prime ideal of height three contains the set {fi}∞i=0, and

the prime ideals of height three other than (x, y)B and (x, z)B are not finitely
generated. The prime ideals of height one and height four are known to be finitely
generated since B is a local UFD. Thus Question

yztauq
15.16.1 boils down to whether

every prime ideal of B of height two that is not finitely generated contains the set
{fi}∞i=0. For some computations related to the two questions, see Exercise

finp
2.
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Exercises
regsopprime (1) Let (R,m) be a regular local ring of dimension d, and let a1, . . . ad be a regular

system of parameters for R.2 If {b1, . . . , be} is a subset of {a1, . . . ad}, prove
that R/(b1, . . . , be)R is an RLR, and conclude that (b1, . . . , be)R is a prime ideal
of R.

finp (2) Assume the notation of Example
yztau
15.10, and write τ =

∑∞
i=1 cix

i, where ci ∈ k.
Let n ∈ N0 and r ∈ N, and let P be a prime ideal of B that contains fn and
fn+r, but x /∈ P . Prove:
(a) xrfn+r − fn = ayzx ∈ P , where a ∈ k[x].
(b) If a = 0, then all the coefficients cn+r, cn+r−1, · · · , cn+1 are 0.
(c) If a 6= 0, then y ∈ P or z ∈ P .
(d) With the additional assumption that ci 6= 0, for some i with n < i ≤ n+ r,

the two prime ideals given in Question
yztauq
15.16.2 are the only prime ideals of

height two that contain fn and fn+r, but that do not contain x.
Suggestion: For part a, use Endpiece Recursion Relation

EndRecRel
5.5, and fn = yzτn.

For part c, show a = uxt, for some u ∈ k[x] and some power t ∈ N0; also use x
is in the Jacobson radical of B. For part d, show fi ∈ P , for every i ∈ N.

(3) Let R be an integral domain and let τ1, . . . , τs be algebraically independent
over R. Let f ∈ R[τ1, . . . , τs]. If f /∈ R, prove that f is transcendental over R.

2See the description of “Regular local ring” just above Remarks
regnormal
2.10.



CHAPTER 16

Non-Noetherian examples in higher dimension
May 29 2020 (insideps2)insideps2

In this chapter we extend the construction of Chapter
insidepssec
14 to obtain local domains

of dimension > 3 that are not Noetherian, but are close to being Noetherian. For
every m, d ∈ N, there exist non-catenary non-Noetherian local unique factorization
domains B of dimension d+ 2 such that:

(i) B has exactly m prime ideals of height d+ 1;
(ii) These m prime ideals are not finitely generated;
(iii) The localization of B at every nonmaximal prime ideal of B is Noetherian.

These examples use Insider Construction
16.1.1
10.7 of Section

17.22
10.2 and results from

Chapter
insideps1.5
15.

Section
ehdim
16.1 contains Theorem

ehdim1
16.2; its proof establishes the properties of the

ring B discussed above. In Section
pins21
16.2 we analyze a four-dimensional case of the

example in more detail. Section
D+Msec
16.3 relates the examples of this chapter to the

D +M construction, finite conductor domains and coherence.

16.1. Higher dimensional non-Noetherian examplesehdim

The main examples in this chapter are similar to Examples
16.5.1
14.1 and Exam-

ples
16.3.10
10.15. Setting

ehdimset
16.1 describes the rings of the examples and gives the basic

set-up for this section. Theorem
ehdim1
16.2 shows that these rings have many properties

similar to those of Examples
16.5.1
14.1 and

yztau
15.10.

ehdimset Setting 16.1. Let d,m ∈ N, let x, y1, . . . , yd be indeterminates over a field k,
and let y := {y1, . . . , yd}. Define

R := k[x, y](x,y), mR := (x, y)R, R∗ = k[y](y)k[y][[x]].

Then R∗ is the x-adic completion of R. Let τ := τ1, . . . , τd ∈ xk[[x]] be algebraically
independent elements over k(x). Let p1, . . . , pm be m non-associate nonzero prime
elements of R \ (x, y2, . . . , yd)R such that with qi := (pi, y2, . . . , yd)R, then R/qi
is a DVR. It follows that R∗/qiR∗ is a DVR. For example, let pi = y1 − xi. Set
q = p1p2 · · · pm, and consider the element

f := qτ1 + y2τ2 + · · ·+ ydτd ∈ xk[[x]].
Let fn denote the nth-endpiece of f , defined analogously to τn in Equation

16.5.1n
14.2.a.

Define B to be the Approximation Domain corresponding to f , a nested union of
localized polynomial rings of dimension d+ 2:

B :=

∞⋃
n=1

Bn, where Bn = k[x, y, fn](x,y,fn).

The Local Prototype D := k(x, y, τ)∩R∗ contains both B and A := k(x, y, f)∩R∗.

197
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ehdim1 Theorem 16.2. Assume Setting
ehdimset
16.1 and define Qi = (pi, y2, . . . , yd)R

∗ ∩ B,
for every i with 1 ≤ i ≤ m. Then:

(1) The integral domain B is a non-Noetherian local UFD of dimension d+2
with maximal ideal mB = mRB.

(2) The Intersection Domain A equals its Approximation Domain B.
(3) The mB-adic completion of B is k[[x, y]], the formal power series ring, a

regular local domain of dimension d+ 1.
(4) The ring B[1/x] is a Noetherian regular UFD, the ring B/xB is an RLR

of dimension d, and, for every nonmaximal prime ideal P of B, the ring
BP is an RLR.

(5) The ring B has exactly m prime ideals of height d+1, namely Q1, . . . , Qm.
(6) Each Qi is a nested union Qi =

⋃∞
n=1Qin, where Qin = (pi, y2, . . . , yd, fn),

and each Qi is not finitely generated.
(7) The local ring (B,mB) birationally dominates a localized polynomial ring

in d+ 2 variables over the field k.
(8) Every saturated chain of prime ideals of B has length either d+1 or d+2,

and there exist saturated chains of prime ideals of lengths both d+ 1 and
d + 2. Thus B is not catenary, and every maximal ideal of B[1/x] other
than the QiB[1/x] has height d.

(9) Each height-one prime ideal of B is the contraction of a height-one prime
ideal of R∗.

(10) SpecB is Noetherian.

Proof. Let L := (q, y2, . . . , yd)R, the ideal generated by the coefficients of f .
For item 1, the ideal LR∗[1/x] defines the non-flat locus of β : B ↪→ R∗[1/x],

by Theorem
16.3.9
10.12.2, and, by Theorem

16.3.9
10.12.4, B is not Noetherian. By Proposi-

tion
11.2.52
5.17.

Bloc
5, B is local with maximal ideal mB = mRB. By Theorem

Bufd
5.24, B is a

UFD. By Proposition
nudimhgt
5.19, dimB ≤ d+ 2.

For the rest of item 1 and part of item 5, since (pi, y2, . . . , yd)R
∗ is a prime

ideal of R∗, the ideal Qi is prime. By Proposition
11.2.52
5.17.

pRpU
2, the ideals piB and

(pi, y2, . . . , yj)B are prime, for every j with 2 ≤ j ≤ d. The inclusions in the chain
of prime ideals

(0) ⊂ piB ⊂ (pi, y2)B ⊂ · · · ⊂ (pi, y2, . . . , yd)B ⊂ Qi ⊂ mB

are strict because the contractions to Bn are strict for each n; to verify this, consider
the list pi, y2, y3, . . . , yd, f, x, and use that f ∈ Qi \ (pi, y2, . . . , yd)Bn, for each n.
Thus dimB = d + 2, each Qi has height d + 1, and (pi, y2, . . . , yd)B has height d,
for each i. This proves item 1 and part of item 5.

For item 2, the non-flat locus of the extension R[f ] ↪→ R[τ ] is LR[τ ], by Theo-
rem

16.3.9
10.12.1, and ht(LR∗[1/x]) > 1. Since R[τ ] is a UFD, Proposition

16.3.4
9.19 implies

equality of the approximation and intersection domains B and A corresponding to
the element f of R∗. This completes item 2.

By Construction Properties Theorem
11.2.51
5.14.

compR*
3, the (x)-adic completion of B is

R∗. Hence the mB-adic completion of B is the same as the mR-adic completion of
R, that is B̂ = k[[x, y1, . . . , yd]]. This proves item 3.

For item 4, by Theorem
Bufd
5.24, the ringB[1/x] is a Noetherian regular UFD. Then

R/xR = B/xB implies B/xB is a d-dimensional RLR. For every nonmaximal prime
ideal P of B, (x, q, y2, . . . , yd)R = (L, x)R∗ ∩ R * P , and so, by Theorem

16.3.9
10.12.8,

BP is Noetherian. For the last part of item 4, if x /∈ P , then BP is a localization
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of the Noetherian regular ring B[1/x] and so BP is an RLR. If x ∈ P , let P be the
image of P in B/xB. Then (B/xB)P = BP /xBP is a localization of an RLR and so
is an RLR. Thus PBP /xBP is generated by h elements, where h = ht(PBP /xBP ).
Hence PBP is generated by h + 1 elements, if x is added to preimages of the
generators for PBP /xBP . Since htP = ht(PBP ) ≥ h + 1, and BP is Noetherian,
we have that BP is an RLR. Thus item 4 holds.

For the remainder of item 5, if P is a height-(d + 1) prime ideal of B, then
Proposition

contr*B
15.7 implies that P = P ∗ ∩B, for a nonmaximal prime ideal P ∗ of R∗

such that (q, y2, . . . , yd)R
∗ = LR∗ ⊆ P ∗, and so (pi, y2, . . . , yd)R

∗ ⊆ P ∗, for some i
with 1 ≤ i ≤ m. It follows that Qi = (pi, y2, . . . , yd)R

∗ ∩ B ⊆ P ∗ ∩ B = P . Then
htQi = htP implies Qi = P . Thus item 5 holds.

Item 6 holds by Proposition
Bnfg
15.6. Item 7 follows from the construction of B,

since Bn ⊆ B ⊆ Q(Bn).
For item 8, there always exists a saturated chain of prime ideals of B between

(0) and mB that contains the height-one prime xB, and B/xB = R∗/xR∗ implies
that this chain has length equal to dimR∗ = d + 1. Since dimB = d + 2, there
also exists a saturated chain of prime ideals in B of length d + 2. Hence B is not
catenary.

Suppose that

(
ehdim1
16.2.0) (0) ( P1 ( P2 ( . . . ( P ( mB

is a saturated chain of prime ideals of B, and so dim(B/P ) = 1. Thus P is a
nonmaximal prime ideal of B, and so, by item 4, BP is an RLR. It follows that
BP is catenary; see Remark

ucathom
3.27. Hence h = htP = htPBP is the number of links

from (0) to P in every saturated chain of the form Equation
ehdim1
16.2.0.

There are two cases:
Case i: If x /∈ P , then Theorem

d1impht
5.18 implies that htP is d or d + 1. Therefore

every chain from (0) to P has length d or d+ 1.
Case ii: If x ∈ P , then ht(B/xB) = ht(R/xR) = d, and there exists a saturated
chain of prime ideals of B of the form

(0) ( xB ( . . . ( P ( mB .

Here the non-zero prime ideals correspond to prime ideals of B/xB. Since xB
has height one, since dim(B/xB) = dim(R/xR) = d, and since BP is catenary, it
follows that htP = htB/xB(P/xB) + 1 = d and every saturated chain from (0) to
P has length d.

Thus in either case every saturated chain of prime ideals in B has length d+1
or d+ 2.

For the last part of item 8, suppose that P ∈ SpecB has htP = h and that
PB[1/x] is a maximal ideal, but P 6= Qi for every i. Then P is maximal with respect
to x /∈ P and h 6= d+1, by items 1 and 5. By Theorem

d1impht
5.18.1, dim(B/P ) = 1, and

so there is a saturated chain of length h + 1 of the form (0) ( . . . ( P ( mB in
SpecB. Since h 6= d+ 1, it follows that h = d. This completes the proof of item 8.

For item 9, since R∗ is a Krull domain and B = A = Q(B) ∩ R∗, it follows
that B is a Krull domain and each height-one prime of B is the contraction of a
height-one prime of R∗. Item 10 holds by Corollary

z1/zNsp
5.20. □
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17.5.2 Question 16.3. For the ring B constructed in Theorem
ehdim1
16.2, are the prime

ideals
Qi := (pi, y2, . . . , yd, f1, . . . , fi, . . .)B

the only prime ideals of B that are not finitely generated?

16.2. A 4-dimensional prime spectrum
pins21

In Example
16.5.4de
16.4, we study in more detail a four-dimensional special case of

Examples
16.3.10
10.15.

16.5.4de Example 16.4. Set R := k[x, y, z](x,y,z), where x, y and z are indeterminates
over a field k and let R∗ denote the x-adic completion k[y, z](y,z)[[x]] of R. and let
mR and mR∗ denote the maximal ideals of R and R∗, respectively. Let τ and σ in
xk[[x]] be algebraically independent over k(x). Say

τ :=

∞∑
n=1

cnx
n and σ :=

∞∑
n=1

dnx
n,

where the cn and dn are in k.
Let D be the Local Prototype D := R∗ ∩ k(x, y, z, τ, σ). By Local Prototype

Theorem
11.4.11ic
10.6.1 the domain D is Noetherian and equals the approximation domain

associated to τ, σ. In addition, D is a three-dimensional RLR that is a directed
union of 5-dimensional RLRs, and the extension T := R[τ, σ] ↪→ R∗[1/x] is flat.

Define f := yτ + zσ and A := R∗ ∩ k(x, y, z, f), that is, A is the intersection
domain associated with f . This notation fits that of Theorem

ehdim1
16.2, with d = 2,

m = 1, y1 = y, y2 = z, τ1 = τ , τ2 = σ, and the coefficient q of τ1 = τ in the
expression for f is just one prime element p1 = y of R \ (x, z).

For each integer n ≥ 0, let τn and σn be the nth endpieces of τ and σ as in
Equation

4.2.3
5.4.1. Then the nth endpiece of f is fn = yτn+zσn. As in Equation

EndRecRel
5.5.1,

τn = xτn+1 + xcn+1 and σn = xσn+1 + xdn+1,

where cn+1 and dn+1 are in the field k. Therefore

(
16.5.4de
16.4.1)

fn = yτn + zσn = yxτn+1 + yxcn+1 + zxσn+1 + zxdn+1

= xfn+1 + yxcn+1 + zxdn+1.

The approximation domains Un, Bn, U and B for A are as follows:

(
16.5.4de
16.4.2)

For n ≥ 0, Un := k[x, y, z, fn] Bn := k[x, y, z, fn](x,y,z,fn)

U :=

∞⋃
n=0

Un and B :=

∞⋃
n=0

Bn.

By Theorem
ehdim1
16.2, B is a four-dimensional local non-Noetherian UFD with

exactly one prime ideal of height three, namely Q = (y, z)R∗ ∩B, Q is not finitely
generated, and B = A. The remaining properties of Theorem

ehdim1
16.2, adjusted for

this set-up, also hold for B.
We establish other properties of Example

16.5.4de
16.4 in Propositions

homimB-z
16.5,

16.5.4t
16.6 andnfl

16.7.

homimB-z Proposition 16.5. Assume the notation of Example
16.5.4de
16.4. The homomorphic

image B/zB of the ring B is isomorphic to the three-dimensional ring called B in
Example

16.5.3de
14.9.
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Proof. For this proof, let B denote the Approximation Domain formed with
respect to f = yτ + zσ, as in Example

16.5.4de
16.4. Revise the notation for Example

16.5.3de
14.9:

RE := k[x, y](x,y), g = yτ, gn = yτn, E =
⋃
RE [gn](x,y,gn).

Thus E is the Approximation Domain constructed for g over RE and called B in
Example

16.5.3de
14.9.

We show that the ring B/zB ∼= E: By Proposition
homimB
15.8 and Remark

homimBrmk
15.9 with

w = z, the ringB′ = B/zB, whereB′ is the Approximation Domain overR = R/zR
using the element f , transcendental over R. Let ψ0 : R → RE denote the k-
isomorphism defined by x 7→ x and y 7→ y. Then, as in the proof of Proposition

homimB
15.8,

R∗ is the (x)-adic completion of R. Thus ψ0 extends to an isomorphism ψ : R∗ →
(RE)

∗ that agrees with ψ0 on R and such that ψ(τ) = τ . Then ψ(f) = ψ(y ·
τ + z · σ) = yτ , which is the transcendental element g used in the construction
of E. Thus ψ is an isomorphism from B = B/zB to E, the ring constructed in
Example

16.5.3de
14.9. □

16.5.4t Proposition 16.6. In Example
16.5.4de
16.4, let Q := (y, z)R∗ ∩B. Then

infnotinQ (1) There exist infinitely many height-two prime ideals of B not contained in
Q and each of these prime ideals is contracted from R∗.

infbetwpq (2) For certain height-one prime ideals p contained in Q, there exist infinitely
many height-two prime ideals between p and Q that are contracted from
R∗, and infinitely many that are not contracted from R∗. Hence the map
SpecR∗ → SpecB is not surjective.

Proof. For item
infnotinQ
1, since x 6∈ Q and B/xB ∼= R/xR is a Noetherian ring of di-

mension two, there are infinitely many height-two prime ideals of B containing xB;
see Exercise

Kinfinitelymany
6 of Chapter

3tools
2. This proves there are infinitely many height-two prime

ideals of B not contained in Q. If P is a height-two prime ideal of B not contained
in Q, then ht(mB/P ) = 1, by Theorem

ehdim1
16.2.5, and so, by Proposition

11.2.52
5.17.

Bloc
5, P is

contracted from R∗. This completes the proof of item
infnotinQ
1.

For item
infbetwpq
2 we show that p = zB has the stated properties. By Proposition

homimB-z
16.5,

the ring B/zB is isomorphic to the ring called B in Example
16.5.3de
14.9. For convenience

we relabel the ring of Example
16.5.3de
14.9 as B′. By Theorem

16.5.2
14.3, B′ has exactly one

non-finitely generated prime ideal, which we label Q′, and htQ′ = 2. It follows
that Q/zB = Q′. By Discussion

types
14.10, there are infinitely many height-one prime

ideals contained in Q′ of Type II (that is, prime ideals that are contracted from
R∗/zR∗) and infinitely many height-one prime ideals contained in Q′ of Type III
(that is, prime ideals that are not contracted from R∗/zR∗). The preimages in B
of these prime ideals are height-two prime ideals of B that are contained in Q and
contain zB. It follows that there are infinitely many contracted from R∗ and there
are infinitely many not contracted from R∗, as desired for item

infbetwpq
2. □

Proposition
nfl
16.7 concerns the non-flat locus and the height-one prime ideals of

the ring B of Example
16.5.4de
16.4.

nfl Proposition 16.7. Assume the notation of Example
16.5.4de
16.4. Then:

yznfl (1) The ideal F1 := (y, z)R∗[1/x] defines the non-flat locus of the map
B ↪→ R∗[1/x].

wf4d (2) If p is a height-one prime ideal of R∗, then ht(p ∩B) ≤ 1.
wR*cB (3) If w is a prime element of B, then wR∗ ∩B = wB.
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Proof. Item
yznfl
1 follows from Theorem

16.3.9
10.12.2.

Item
wf4d
2 is clear if p = xR∗. Let p be a height-one prime of R∗ other than xR∗.

Since p does not contain (y, z)R∗ and does not contain x, the map Bp∩B ↪→ (R∗)p
is faithfully flat. Thus ht(p ∩B) ≤ 1. This establishes item

wf4d
2.

Item
wR*cB
3 is clear if wB = xB. Assume that wB 6= xB and let p be a height-one

prime ideal of R∗ that contains wR∗. Then pR∗[1/x]∩R∗ = p, and by item
wf4d
2, p∩B

has height at most one. Now wB ⊆ wR∗ ∩B ⊆ p ∩B. Thus item
wR*cB
3 follows. □

We display a partial picture of Spec(B) and make comments about the diagram.

mB := (x, y, z)B

Q := (y, z, {fi})B

(x, y − δz)B ∈ ht. 2, 6⊂ Q

xB ∈ ht. 1, 6⊂ Q

ht. 2, contr. R∗ (y, z)B ∈ ht. 2, Not contr. R∗

yB, zB ∈ ht. 1, ⊂ Q

(0)
Diagram

16.5.4t
16.6.0

Comments on Diagram
16.5.4t
16.6.0. The abbreviation “contr. R∗” means “con-

tracted from R∗”. A line going from a box at one level to a box at a higher level
indicates that every prime ideal in the lower level box is contained in at least one
prime ideal in the higher level box. By Theorem

ehdim1
16.2.8, B has no maximal sat-

urated chain of length 2. For P ∈ SpecB, x ∈ P =⇒ P * Q. The two lines
connecting levels 1 and 2 of the diagram are justified by Remarks

16.5.41r
16.8.2: For every

pair of prime elements g and h of B with g ∈ Q and h /∈ Q, there is a height-two
prime ideal P of B that contains both gB and hB, but P is not contained in Q.
There are no lines connecting the lower level righthand box to higher boxes that
are contained in Q because we are uncertain about what inclusion relations exist
for these prime ideals. We discuss this situation in Remarks

16.5.4tr
16.11.

16.5.41r Remarks 16.8. Assume the notation of Example
16.5.4de
16.4.

(1) By Theorem
16.5.4t
16.6.8, the localization B[1/x] has a unique maximal ideal

QB[1/x] = (y, z, f)B[1/x] of height three and all the other maximal ideals have
height two. There are infinitely many maximal ideals of B[1/x] of height two,
such as (y, z − βxi)B[1/x], for nonzero β ∈ k and i ∈ N, because every Pβ,i :=
(y, z − βxi)B is a height-two prime ideal, by Proposition

11.2.52
5.17.

pRpU
2, and P is not

contained in Q,
(2) Let p, q ∈ mB be prime elements of B such that q ∈ Q and p /∈ Q. We

claim that there exists a height-two prime ideal P of B such that (p, q)B ⊆ P . Let
P be a prime ideal of B that is minimal over (p, q)B. Since p /∈ Q and qB ⊆ Q,
it follows that P 6= Q and 1 < htP . Also htP 6= 3. If htP = 2, for some
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prime ideal P ∈ SpecB, there is nothing to prove. Suppose that every prime
ideal of B that is minimal over (p, q)B has height 4. Then (p, q)B is primary for
mB . By Proposition

11.2.52
5.17.

Bloc
5.b, (p, q)R∗ is mR∗ -primary. But R∗ is Noetherian and

htmR∗ = 3, and so this would contradict Krull Altitude Theorem
krullpit
2.23. Hence there

is a prime ideal P containing (p, q)B having height two.
(3) Define

Cn :=
Bn

(y, z)Bn
and C :=

B

(y, z)B
.

Let P = (y, z)R∗[1/x]. Since x /∈ P and B[1/x] is a localization of S = R[f ], it
follows that SP∩S = BP∩B . Similarly SP∩S = (Bn)P∩Bn . It follows that (y, z)B ∩
Bn = (y, z)Bn. Therefore C =

⋃∞
n=0 Cn.

We show that C is a rank 2 valuation domain with principal maximal ideal
generated by the image of x. For each positive integer n, let gn ∈ Cn denote
the image in Cn of the element fn ∈ Bn and let x denote the image of x. Then
Cn = k[x, gn](x,gn) is a 2-dimensional RLR. By Equation

16.5.4de
16.4.1, fn = xfn+1 +

x(cny + dnz). It follows that gn = xgn+1 for each n ∈ N. Thus C is an infinite
directed union of local quadratric transforms of 2-dimensional regular local rings.
Hence C is a valuation domain of dimension at most 2 by

Abhy
[3, Remark 2, p. 332 and

Lemma 12, p.337]. By items 2 and 4 of Proposition
16.5.4t
16.6, dimC ≥ 2, and therefore

C is a valuation domain of rank 2. The maximal ideal of C is xC.
By Proposition

homimB-z
16.5, B/zB ∼= E, where E is the ring B of Example

16.5.3de
14.9. By

an argument similar to that of Proposition
homimB
15.8 and by Proposition

homimB-z
16.5, we see

that the above ring C is isomorphic to E/yE.

17.5.12 Question 16.9. Let B be the ring constructed in Example
16.5.4de
16.4: Is Q the only

prime ideal of B that is not finitely generated?

Proposition
16.5.4t
16.6 implies that the only possible nonfinitely generated prime

ideals of B other than Q have height two. We do not know whether every height-
two prime ideal of B is finitely generated. We show in Theorem

litNoeth
16.10 that certain

of the height-two prime ideals of B are finitely generated.

litNoeth Theorem 16.10. Assume the notation of Example
16.5.4de
16.4. Let w be a prime

element of B. Then
(1) B/wB is Noetherian if and only if w /∈ Q.
(2) Every ideal of B that is not contained in Q is finitely generated.
(3) If w ∈ (y, z)k[x, y, z] and w has a nontrivial degree one term in y or z,

then Q/wB is the unique nonfinitely generated prime ideal of B/wB, and
so Q is the unique nonfinitely generated prime ideal of B that contains w.

Proof. For item 1, if w ∈ Q, then B/wB is not Noetherian since Q is not
finitely generated. Assume w /∈ Q. Since B/xB is known to be Noetherian, we may
assume that wB 6= xB. By Proposition

nfl
16.7.

yznfl
1, QR∗[1/x] = (y, z)R∗[1/x] defines

the non-flat locus of ϕ : B → R∗[1/x]. Since wR∗[1/x] + (y, z)R∗[1/x] = R∗[1/x],
Theorem

Noeth
6.15 with I = wB and z = x implies that B/wB is Noetherian.

For item 2, we use that every nonfinitely generated ideal is contained in an ideal
maximal with respect to not being finitely generated and the latter ideal is prime.
Thus it suffices to show every prime ideal P not contained in Q is finitely generated.
If P 6⊆ Q, then, since B is a UFD, there exists a prime element w ∈ P \ Q. By
item 1, B/wB is Noetherian, and so P is finitely generated.
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For item 3, w is a prime element of R and of R∗. Let denote image under
the canonical map π : R∗ → R∗/wR∗. We may assume that w is linear in z, that
the coefficient of z is 1 and therefore that w = z − yg(x, y), where g(x, y) ∈ k[x, y].
Thus R ∼= k[x, y](x,y). By Proposition

homimB
15.8, B is the approximation domain over R

with respect to the transcendental element
f = y · τ + z · σ = y · τ + y · g(x, y) · σ.

The setting of Theorem
Bufd
5.24 applies with B replaced by B, the underlying ring R

replaced by R, and z = x. Thus the ring B is a UFD, and so every height-one
prime ideal of B is principal. Since w ∈ Q and Q is not finitely generated, it follows
that ht(Q) = 2 and that Q is the unique nonfinitely generated prime ideal of B.
Hence the theorem holds. □

16.5.4tr Remarks 16.11. It follows from Proposition
11.2.52
5.17.

Bloc
5 that every height-two prime

ideal of B that is not contained in Q is contracted from a prime ideal of R∗. As
we state in Proposition

16.5.4t
16.6.

infbetwpq
2, there are infinitely many height-two prime ideals

of B that are contained in Q and are contracted from R∗ and there are infinitely
many height-two prime ideals of B that are contained in Q and are not contracted
from R∗. Indeed, among the height-two prime ideals between zB and Q, there are
infinitely many contracted from R∗ and infinitely many that are not contracted
from R∗, by Proposition

homimB-z
16.5. A similar statement holds with zB replaced by yB.

Since BQ is a three-dimensional regular local ring, for each height-one prime
ideal p of B with p ⊂ Q, the set

Sp = {P ∈ SpecB | p ⊂ P ⊂ Q and htP = 2}
is infinite. The infinite set Sp is the disjoint union of the sets Spc and Spn, where the
elements of Spc are contracted from R∗ and the elements of Spn are not contracted
from R∗.

We do not know whether there exists a height-one prime ideal p contained in
Q having the property that one of the sets Spc or Spn is empty. Furthermore if one
of these sets is empty, which one is empty? If there are some such height-one prime
ideals p with one of the sets Spc or Spn empty, which height-one primes are they?
It would be interesting to know the answers to these questions.

16.3. D +M constructions, coherence,  finite conductor domainsD+Msec

Related to Example
16.5.4de
16.4, Evan Houston raised the question: “How does this

example compare to a ring constructed using the three-dimensional ring of Ex-
ample

16.5.3de
14.9 and applying the popular “D +M” technique of multiplicative ideal

theory?” In this section, we compare the two constructions in Example
referee
16.13, and

we also give connections to other concepts.

D+M Remark 16.12. The “D+M” construction involves an integral domain D and
a prime ideal M of an extension domain E of D such that D ∩M = (0). Then
D + M = {a + b | a ∈ D, b ∈ M}. Moreover, for a, a′ ∈ D and b, b′ ∈ M , if
a + b = a′ + b′, then a = a′ and b = b′. For more information on the D + M
construction, see for example the work of Gilmer in

Gil
[53, p. 95],

Gilb
[55] or the paper

of Brewer and Rutter
BR
[26].

Gilmer in
Gildek
[54, p. 583] remarks that the first use of the D +M construction

seems to be by Krull to give an example of a one-dimensional integrally closed local
domain that is not a valuation domain

Krullii
[107, p. 670]. An earlier related construction
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by Prüfer gives an example of an integrally closed domain that is not completely
integrally closed

Pr
[151, p. 19]. Seidenberg uses the D+M construction in his study

of the dimension theory of polynomial rings
Se
[167].

Since D embeds in E/M , the ring D + M is a pullback as in the paper of
Gabelli and Houston

GH
[56] or the book of Leuschke and R. Wiegand

LW
[111, p. 42].

That is, we have the following commutative diagram:

R := D +M

����

� � // E

����
D = R/M

� � // E/M

Exercise
insidepssec
14.

hesa
4 includes properties of D +M constructions and gives an outline for

an example.

In Example
referee
16.13, we consider a “D +M” construction that contrasts nicely

with Example
16.5.4de
16.4.

referee Example 16.13. Let (B,mB) be the ring of Example
16.5.3de
14.9. Thus k is a coeffi-

cient field of B and B = k + mB . Assume the field k is the field of fractions of a
DVR V , and let t be a generator of the maximal ideal of V . Define

C := V + mB = { a + b | a ∈ V, b ∈ mB }.

The integral domain C has the following properties:
(1) The maximal ideal mB of B is also a prime ideal of C, and C/mB ∼= V .
(2) C has a unique maximal ideal mC ; moreover, mC = tC.
(3) mB =

⋂∞
n=1 t

nC, and B = CmB
= C[1/t].

(4) Each P ∈ SpecC with P 6= mC is contained in mB , and P ∈ SpecB.
(5) dimC = 4 and C has a unique prime ideal of height h, for h = 2, 3 or 4.
(6) mC is the only nonzero prime ideal of C that is finitely generated. In-

deed, every nonzero proper ideal of B is an ideal of C that is not finitely
generated.

Thus C is a non-Noetherian non-catenary four-dimensional local domain.

Proof. Since C is a subring of B, mB ∩ V = (0) and VmB = mB , item 1
holds. We have C/(tV +mB) = V/tV . Thus tV +mB is a maximal ideal of C. Let
b ∈ mB . Since 1 + b is a unit of the local ring B, we have

1

1 + b
= 1− b

1 + b
and b

1 + b
∈ mB .

Hence 1+ b is a unit of C. Let a+ b ∈ C \ (tV +mB), where a ∈ V \ tV and b ∈ mB .
Then a is a unit of V and thus a unit of C. Moreover, a−1(a+ b) = 1 + a−1b and
a−1b ∈ mB . Therefore a + b is a unit of C. We conclude that mC := tV + mB is
the unique maximal ideal of C. Since t is a unit of B, we have mB = tmB . Hence
mC = tV +mB = tC. This proves item 2.

For item 3, since t is a unit of B, we have mB = tnmB ⊆ tnC for all n ∈ N.
Thus mB ⊆

⋂∞
n=1 t

nC. If a+ b ∈
⋂∞
n=1 t

nC with a ∈ V and b ∈ mB , then

b ∈
∞⋂
n=1

tnC =⇒ a ∈ (

∞⋂
n=1

tnC) ∩ V =

∞⋂
n=1

tnV = (0).
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Hence mB =
⋂∞
n=1 t

nC. Again using tmB = mB , we obtain

C[1/t] = V [1/t] + mB = k + mB = B.

Since t /∈ mB , we have B = C[1/t] ⊆ CmB
⊆ BmB

= B. This proves item 3.
Item 4 follows from part c of Exercise

insidepssec
14.

hesa
4 and from Exercise

insideps2
16.

D+mcQD+m
1. Item 5 now

follows from item 4 and the structure of SpecB.
For item 6, let J be a nonzero proper ideal of B. Since t is a unit of B, we have

J = tJ . This implies by Nakayama’s Lemma that J as an ideal of C is not finitely
generated; see

BR
[26, Lemma 1]. Thus item 6 follows from item 4.

By item 6, C is non-Noetherian. Since (0) ( xB ( mB ( tC is a saturated
chain of prime ideals of C of length 3, and (0) ( yB ( Q ( mB ( tC is a saturated
chain of prime ideals of C of length 4, the ring C is not catenary. □

finconductor Definitions 16.14. An integral domain R is said to be a finite conductor do-
main if for elements a, b in the field of fractions of R the R-module aR ∩ bR is
finitely generated. This concept is considered in the paper of McAdam

McAdam
[124].

A ring R is said to be coherent if every finitely generated ideal of R is finitely
presented. By a theorem of Chase

Chase
[33, Theorem 2.2], this condition is equivalent

to each of the following:
(1) For each finitely generated ideal I and element a of R, the ideal (I :R a) =
{b ∈ R | ba ∈ I} is finitely generated.

(2) For each a ∈ R the ideal (0 :R a) = {b ∈ R | ba = 0} is finitely generated,
and the intersection of two finitely generated ideals of R is again finitely
generated.

A coherent integral domain is a finite conductor domain. Examples of finite
conductor domains that are not coherent are given by Glaz in

Glaz2
[59, Example 4.4]

and by Olberding and Saydam in
OS
[146, Proposition 3.7]. On the other hand, by a

result of Brewer and Rutter
BR
[26, Prop. 2], the ring of Example

referee
16.13 is not a finite

conductor domain and thus is not coherent.

coherence Remark 16.15. Rotthaus and Sega state that the approximation domains B
in the setting of Theorems

16.5.2
14.3,

yztauth
15.11 and

ehdim1
16.2 are coherent and regular; that is,

they are coherent and every finitely generated submodule of a free module over B
has a finite free resolution

RS
[162]. For the ring B =

⋃∞
n=1Bn of these constructions,

it is stated in
RS
[162] that Bn[1/x] = Bn+k[1/x] = B[1/x] and that Bn+k is generated

over Bn by a single element for all positive integers n and k. This is not correct
for the local rings Bn. However, if instead of asserting these statements for the
localized polynomial rings Bn and their union B of the construction, one makes
the statements for the underlying polynomial rings Un and their union U defined
in Equation

4.2.3
5.4.5, or those defined in Examples

16.5.1
14.1, then one does have that

Un[1/x] = Un+k[1/x] = U [1/x] and that Un+k is generated over Un by a single
element for all positive integers n and k; see Theorem

11.2.51
5.14.

Rt1/z
4 and Equation

4.2.3
5.4.4.

Thus the Rotthaus-Sega argument yields that U and its localization B are coherent.
Hence the rings of Examples

16.5.1
14.1 and

16.5.4de
16.4 are coherent.

Bruce Olberding pointed out to us that every nonfinitely generated prime ideal
P of either the ring B of Example

16.5.1
14.1 or of Example

16.5.4de
16.4 is not an associated

prime of a finitely generated ideal I of B; that is, P 6= (I : a), where a ∈ B and
I is a finitely generated ideal of B. By Definition

finconductor
16.14.1, if B is coherent and
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P = (I : a), where a ∈ B and I is a finitely generated ideal of B, then P is also
finitely generated.

Exercises
D+mcQD+m (1) As in Remarks

D+M
16.12, let B be an integral domain of the form B = K +M ,

where M is a maximal ideal of B and K is a field. Let D be an integral domain
with field of fractions K, and let C = D +M , a D +M construction as in
Example

referee
16.13. If P ∈ SpecC and P ⊆M , prove that P ∈ SpecB.

Suggestion: Notice that B = (D \ {0})−1C. Show that PB = P .
16.5K+M (2) Let K denote the field of fractions of the integral domain B of Example

16.5.3de
14.9,

let t be an indeterminate over K and let V denote the DVR K[t](t). Let M
denote the maximal ideal of V . Thus V = K +M . Define C := B +M . Show
that the integral domain C has the following properties:
(a) mBC is the unique maximal ideal of C, and is generated by two elements.
(b) For every nonzero element a ∈ mB , we have M ⊂ aC.
(c) M is the unique prime ideal of C of height one; moreover M is not finitely

generated as an ideal of C.
(d) dimC = 4 and C has a unique prime ideal of height h, for h = 1, 3 or 4.
(e) For each P ∈ SpecC with htP ≥ 2, the ring CP is not Noetherian.
(f) C has precisely two prime ideals that are not finitely generated.
(g) C is non-catenary.

refext (3) Let C = V +mB be as in Example
referee
16.13. Assume that V has a coefficient field

L, and that L is the field of fractions of a DVR V1. Define C1 := V1 + tC. Let
s be a generator of V1. Show that the integral domain C1 has the following
properties:
(a) The maximal ideal mC of C is also a prime ideal of C1, and C1/mC ∼= V1.
(b) The principal ideal sC1 is the unique maximal ideal of C1.
(c) mC =

⋂∞
n=1 s

nC1, and C = C1[1/s].
(d) Each P ∈ SpecC1 with P 6= sC1 is contained in mC ; thus P ∈ SpecC.
(e) dimC1 = 5.
(f) C1 has a unique prime ideal of height h for h = 2, 3, 4, or 5.
(g) The maximal ideal of C1 is the only nonzero prime ideal of C1 that is

finitely generated. Indeed, every nonzero proper ideal of C is an ideal of
C1 that is not finitely generated.

(h) C1 is non-catenary.
Comment: For item h, exhibit two saturated chains of prime ideals from (0)
to sC1 of different lengths.





CHAPTER 17

The Homomorphic Image Construction May 29,
2020 (constrhomim)constrhomim

This chapter contains a description and analysis of Homomorphic Image Con-
struction

4.4.2
17.2, a more complex construction than Inclusion Construction

4.4.1
5.3. Con-

struction
4.4.2
17.2 leads to more sophisticated examples. In both constructions, R is an

integral domain and R∗ is the ideal-adic completion of a principal ideal of R.
• Inclusion Construction

4.4.1
5.3 defines an Intersection Domain A inside R∗;

thus A = Ainc := R∗ ∩ L for a subfield L of the total quotient ring of R∗.
• Homomorphic Image Construction

4.4.2
17.2 yields an Intersection Domain A

inside a homomorphic image R∗/I of R∗; here A = Ahom := (R∗/I) ∩K,
where I is an ideal of R∗ such that P ∩R = (0) for each associated prime
P of I, and K is the field of fractions of R.

Homomorphic Image Construction
4.4.2
17.2 is defined in Section

4.4
17.1. Section

4.55
17.2

contains the construction of an Approximation Domain for Construction
4.4.2
17.2. Con-

struction Properties Theorem
11.2.4
17.11, Noetherian Flatness Theorem

11.3.2
17.13 and Weak

Flatness Theorem
7.5.5fch
17.19 are proved in Sections

HIappprop
17.3-

HIwf
17.5; they are Homomorphic

Image versions of theorems from earlier chapters for Inclusion Construction
4.4.1
5.3.

Theorem
11.3.4
17.17 relates Homomorphic Image Construction

4.4.2
17.2 for an ideal I

to the resulting construction if a power of I replaces I. In Section
4.56
17.6, Inclusion

Construction
4.4.1
5.3 is identified with a special case of Homomorphic Image Construc-

tion
4.4.2
17.2, in such a way that Approximation Domains for Inclusion Construction

4.4.1
5.3

correspond to Approximation Domains fitting the Homomorphic Image format of
Section

4.55
17.2. A connection between the two constructions is established in Sec-

tion
HIconIC
17.7. Homomorphic Image Construction

4.4.2
17.2 is used with the Local Prototypes

of Definition
prodef
4.28 for the construction of non-catenary examples in Chapter

catsec
18.

17.1. Two construction methods and a picture
4.4

Setting
setconstr
17.1 for Homomorphic Image Construction

4.4.2
17.2 is the same as Set-

ting
setinclconstr
5.1; we repeat it here for convenience. This facilitates comparison with Inclu-

sion Construction
4.4.1
5.3.

setconstr Setting 17.1. Let R be an integral domain with field of fractions K := Q(R).
Assume x ∈ R is a nonzero nonunit such that

⋂
n≥1 x

nR = (0), the x-adic comple-
tion R∗ is Noetherian, and x is a regular element of R∗.

4.4.2 Construction 17.2. Homomorphic Image Construction: With R, x and R∗

as in Setting
setconstr
17.1, let I be an ideal of R∗ such that P ∩R = (0) for each P ∈ SpecR∗

that is associated to I. Define the Intersection Domain A = Ahom := K ∩ (R∗/I).
The ring Ahom is a subring of a homomorphic image of R∗ and is a birational
extension of R.

209
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4.4.21 Note 17.3. The condition in Construction
4.4.2
17.2, that P ∩ R = (0) for every

prime ideal P of R∗ that is associated to I, implies that the field of fractions K of
R embeds in the total quotient ring Q(R∗/I) of R∗/I. To see this, observe that
the canonical map R→ R∗/I is an injection and that regular elements of R remain
regular as elements of R∗/I. In this connection see Exercise

exer5.1
1 of this chapter.

We summarize Inclusion Construction
4.4.1
5.3, relabeled as Construction

4.4.1hi
17.4, for

easy reference and comparison to Homomorphic Image Construction
4.4.2
17.2.

4.4.1hi Construction 17.4. (Inclusion Construction
4.4.1
5.3): Assume Setting

setconstr
17.1. Let

τ1, . . . , τs ∈ xR∗ be algebraically independent elements over R such that
K(τ1, . . . , τs) ⊆ Q(R∗). This inclusion implies that nonzero elements ofK[τ1, . . . , τs]
are units in Q(R∗) and therefore are regular elements of R∗. The Intersection Do-
main A = Ainc := K(τ1, . . . , τs) ∩R∗.

In Construction
4.4.2
17.2, the Intersection Domain Ahom is an integral domain that

is birational over R and is a subring of a homomorphic image of a power series
extension of R. The Intersection Domain Ainc associated with Inclusion Construc-
tion

4.4.1hi
17.4 is an integral domain that is not algebraic over R and is a subring of a

power series extension of R.

4.4.3 Picture 17.5. The diagram below shows the relationships among these rings.

Q(R∗) R∗ Q(R∗/I)

R∗ L = K({τi}) R∗/I K = Q(R)

Ainc = R∗ ∩ L K = Q(R)

birationaltranscendental

Ahom = (R∗/I) ∩K

R R

(
4.4.1hi
17.4) A := L ∩R∗ (

4.4.2
17.2) A := K ∩ (R∗/I)

4.4.4 Remarks 17.6. Homomorphic Image Construction
4.4.2
17.2 is widely applicable. If

a Noetherian local domain R is essentially finitely generated over a field, then there
often exist ideals I in the completion R̂ of R, or in an ideal-adic completion R∗ of R,
such that the intersection domain Q(R)∩ (R̂/I), or Q(R)∩ (R∗/I), is a Noetherian
local domain that birationally dominates R; see Theorem

4.6.15
4.2. Construction

4.4.2
17.2

may be used to describe Example
4.3.1
4.15 of Nagata, Christel’s Example

4.3.3
4.17, and

other examples given by Brodmann and Rotthaus, Heitmann, Ogoma and Weston,BR1
[27],

BR2
[28],

H1
[96],

O1
[147],

O2
[148], and

W
[184].

While Inclusion Construction
4.4.1hi
17.4 is simpler, Homomorphic Image Construc-

tion
4.4.2
17.2 has more flexibility and yields examples that are not possible with Con-

struction
4.4.1hi
17.4. Construction

4.4.1hi
17.4 is not sufficient to obtain certain types of rings
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such as Ogoma’s celebrated example
O1
[147] of a normal non-catenary Noetherian

local domain. As Theorem
IncUncat
6.27 shows, the universally catenary property holds for

every Noetherian ring constructed using Inclusion Construction
4.4.1hi
17.4 over a Noe-

therian universally catenary local domain R.
Remark

IncUncatr
17.16 and Example

11.4.5
18.15 show that examples constructed with Homo-

morphic Image Construction
4.4.2
17.2 may result in a non-catenary Noetherian local

domain even if the base domain is universally catenary, Noetherian and local. Ex-
ample

11.4.5
18.15 is a Noetherian local domain with geometrically regular formal fibers

that is not universally catenary.

17.2. Approximations for Homomorphic Image Construction4.55

The approximation methods in this chapter describe a subring B inside the
constructed Intersection Domain A of Construction

4.4.2
17.2. This subring is useful for

describing A.
The Approximation Domain B for Construction

4.4.2
17.2 is a nested union of bira-

tional extensions of R that are essentially finitely generated R-algebras. As with
the Approximation Domain for Inclusion Construction

4.4.1hi
17.4 from Definition

appintdef
5.7,

we approach A using a sequence of “approximation rings” over R. We use the
frontpieces of the power series involved, rather than the endpieces that are used for
the approximations in Inclusion Construction

4.4.1hi
17.4.

A goal of these computations is to prove Noetherian Flatness Theorem
11.3.2
17.13

for Homomorphic Image Construction
4.4.2
17.2.

4.5.4 Frontpiece Notation 17.7. Let R be an integral domain with field of frac-
tions K := Q(R). Let x ∈ R be a nonzero nonunit such that

⋂
n≥1 x

nR = (0), the
x-adic completion R∗ is Noetherian, and x is a regular element of R∗. Let I be an
ideal of R∗ such that P ∩R = (0), for each P ∈ SpecR∗ that is associated to R∗/I.
As in Construction

4.4.2
17.2, define A = Ahom := K ∩ (R∗/I).

Since I ⊂ R∗, each γ ∈ I has an expansion as a power series in x over R,

γ :=

∞∑
i=0

aix
i, where ai ∈ R.

For each positive integer n we define the nth frontpiece γn of γ with respect to this
expansion:

γn :=

n∑
j=0

ajx
j

xn
.

Thus, if I := (σ1, . . . , σt)R
∗, then for each σi

σi :=

∞∑
j=0

aijx
j , where the aij ∈ R,

and the nth frontpiece σin of σi is

(
4.5.4
17.7.1) σin :=

n∑
j=0

aijx
j

xn
∈ K.

For Homomorphic Image Construction
4.4.2
17.2, we obtain approximating rings as

follows: We define
(
4.5.4
17.7.2) Un := R[σ1n, . . . , σtn], and Bn := (1 + xUn)

−1Un.



212 17. THE HOMOMORPHIC IMAGE CONSTRUCTION MAY 29, 2020 (CONSTRHOMIM)

The rings Un and Bn are subrings of K. Proposition
11.25
17.9 implies that they may

also be considered to be subrings of R∗/I. First we show in Proposition
4.5.4c
17.8 that

the approximating rings Un and Bn are nested.

4.5.4c Proposition 17.8. With the setting of Frontpiece Notation
4.5.4
17.7, for each in-

teger n ≥ 0 and for each integer i with 1 ≤ i ≤ t:
(1) σin = −xai,n+1 + xσi,n+1.
(2) (x, σi)R

∗ = (x, ai0)R
∗ and hence (x, I)R∗ = (x, a10, . . . , at0)R

∗.
(3) (x, σi)R

∗ = (x, xnσin)R
∗ and hence (x, I)R∗ = (x, xnσ1n, . . . , x

nσtn)R
∗.

Thus R ⊆ U0, Un ⊆ Un+1 and Bn ⊆ Bn+1, for each positive integer n.

Proof. For item 1, Definition
4.5.4
17.7.1 implies σi,n+1 :=

∑n+1
j=0

aijx
j

xn+1 . Thus

xσi,n+1 =

n+1∑
j=0

aijx
j+1

xn+1
=

n∑
j=0

aijx
j

xn
+ xai,n+1 = σin + xai,n+1.

For item 2, by definition

σi :=

∞∑
j=0

aijx
j = ai0 + x

( ∞∑
j=1

aijx
j−1).

For item 3, the following equation in R∗ holds:

σi =

∞∑
j=0

aijx
j = xnσin + xn+1

( ∞∑
j=n+1

aijx
j−n−1),

since xnσin ∈ R. The asserted inclusions follow from this equation. □

Proposition
11.25
17.9 shows that the frontpieces of each of the power series σi gen-

erating the ideal I are elements of R∗/I, and of K, and thus of the Intersection
Domain A of Homomorphic Image Construction

4.4.2
17.2. Even though they appear

different, Proposition
11.25
17.9 also shows that the nth frontpiece in Frontpiece Nota-

tion
4.5.4
17.7 of each σi is, modulo the ideal I, the same as the negative of the nth

endpiece of σi from Endpiece Notation
4.2.3
5.4. Equivalently, if the nth frontpiece and

the nth endpiece of σi are both considered as elements of R∗, then their images in
R∗/I are equal.

11.25 Proposition 17.9. Assume the setting of Frontpiece Notation
4.5.4
17.7 and let n

be a positive integer. As an element of R∗/I, the nth frontpiece σin is the image
in R∗/I of the negative of the nth endpiece of σi defined in Endpiece Notation

4.2.3
5.4,

that is, for σi :=
∑∞
j=0 aijx

j, where each aij ∈ R,

σin = −
∞∑

j=n+1

aijx
j

xn
= −

∞∑
j=n+1

aijx
j−n (mod I).

It follows that σin ∈ K ∩ (R∗/I), and so Un and Bn are subrings of A and of R∗/I.

Proof. Let π denote the natural homomorphism from R∗ onto R∗/I. Since
the restriction of π to R is the identity map on R, xnπ(σin) = π(xnσin) = xnσin;
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also π(σi) = 0, and so

σi = xnσin +

∞∑
j=n+1

aijx
j =⇒ xnσin = σi −

∞∑
j=n+1

aijx
j

=⇒ xnπ(σin) = π(σi)− π(
∞∑

j=n+1

aijx
j)

=⇒ xnπ(σin) = −xnπ(
∞∑

j=n+1

aijx
j−n).

Hence π(σin) = −π(
∑∞
j=n+1 aijx

j−n), since x is a regular element of R∗/I. Thus
σin = −

∑∞
j=n+1 aijx

j−n (mod I). □

4.5.5 Definition 17.10. Assume the setting of Frontpiece Notation
4.5.4
17.7. We define

the nested union U , the Approximation Domain B and the Intersection Domain A:

11.2.111.2.1 (
4.5.5
17.10.1) U :=

∞⋃
n=1

Un, B :=

∞⋃
n=1

Bn = (1 + xU)−1U, A := K ∩ (R∗/I).

By Remark
3.38.0
3.3.1, the element x is in the Jacobson radical of R∗. By Proposi-

tion
11.25
17.9, B ⊆ A. Construction

4.4.2
17.2 is said to be limit-intersecting if B = A.

17.3. Basic properties of the Approximation DomainsHIappprop

Construction Properties Theorem
11.2.4
17.11 (Homomorphic Image Version) relates

to the analysis of Homomorphic Image Construction
4.4.2
17.2.1 The proof uses Lemma

11.2.3ic
5.12

to establish relationships among rings that arise in Homomorphic Image Construc-
tion

4.4.2
17.2 and the approximations in Section

4.55
17.2.

11.2.4 Construction Properties Theorem 17.11. (Homomorphic Image Version)
Let R be an integral domain with field of fractions K. Let x ∈ R be a nonzero
nonunit such that

⋂
n∈N x

nR = (0), the x-adic completion R∗ is Noetherian, and
x is a regular element of R∗. Let I = (σ1, . . . , σt)R

∗ be an ideal of R∗ such that
P ∩R = (0) for each P ∈ SpecR∗ that is associated to R∗/I. Assume the notation
of Definition

4.5.5
17.10. Then, for each positive integer n:

(1) The ideals of R containing xn are in one-to-one inclusion preserving cor-
respondence with the ideals of R∗ containing xn. In particular,
(I, x)R∗ = (a10, . . . , at0, x)R

∗, and
(I, x)R∗ ∩ R = (a10, . . . , at0, x)R

∗ ∩ R = (a10, . . . , at0, x)R.

(2) The ideal (a10, . . . , at0, x)R equals (x(R∗/I)) ∩R under the identification
of R as a subring of R∗/I, and the element x is in the Jacobson radical
of both R∗/I and B.

(3) (xn(R∗/I))∩A = xnA, (xn(R∗/I))∩U = xnU, (xn(R∗/I))∩B = xnB.
(4) U/xnU = B/xnB = A/xnA = R∗/(xnR∗ + I) = R/((xnR∗ + I) ∩ R).

The rings A, U and B all have x-adic completion R∗/I, that is,
A∗ = U∗ = B∗ = R∗/I.

1When there is no confusion, we omit “Homomorphic Image Version”. We also may write
“Inclusion Version” for Theorem

11.2.51
5.14 if it seems helpful to distinguish the two versions.
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(5) R[1/x] = U [1/x], U = R[1/x]∩B = R[1/x]∩A = R[1/x]∩ (R∗/I). Also:
(a) B[1/x] is a localization of R and of U .
(b) The integral domains R, U , B and A all have the same field of

fractions K; that is, U , B and A are birational extensions of R.
(c) If P is a prime ideal of B such that x /∈ P , then RP∩R = BP = UP∩U .

localhi (6) If R is local with maximal ideal mR, then
• R∗, A, and B are local with maximal ideals mR∗ = mRR

∗,mA := mRA
and mB = mRB respectively.
• Â = Û = B̂ = R̂/IR̂ = (̂R/I).

Proof. The first assertion of item 1 follows because R/xnR is canonically
isomorphic to R∗/xnR∗. The next assertion of item 1 is Proposition

4.5.4c
17.8.2. If

γ =
∑t
i=1 σiβi+xτ ∈ (I, x)R∗∩R, where τ, βi ∈ R∗, then each βi = bi+xβ

′
i, where

bi ∈ R, β′i ∈ R∗. Thus γ−
∑t
i=1 ai0bi ∈ xR∗∩R = xR, and so γ ∈ (a10, . . . , at0, x)R.

Since x(R∗/I) = (x, I)R∗/I, it follows that (a10, . . . , at0, x)R ⊆ x(R∗/I) ∩R.
The reverse inclusion in item 2 follows from (I, x)R∗ = (a10, . . . , at0, x)R

∗. For
the last part of item 2, since x ∈ J (R∗), the element 1 + ax is outside every
maximal ideal of R∗, for every a ∈ R∗. Thus x ∈ J (R∗/I). By the definition of B
in Equation

4.5.5
17.10.1, x ∈ J (B).

The first assertion of item 3 follows from the definition of A as (R∗/I)∩K. To
see that x(R∗/I)∩U ⊆ xU , let g ∈ x(R∗/I)∩U . Then g ∈ Un, for some n, implies
g = r0 + g0, where r0 ∈ R, g0 ∈ (σ1n, . . . , σtn)Un. Also σin = −xai,n+1 + xσi,n+1,
and so g0 ∈ xUn+1 ⊆ x(R∗/I). Now r0 ∈ (x, σ1, . . . , σt)R

∗ = (I, x)R∗. Thus by
item 1, r0 ∈ (a10, . . . , at0, x)R. Also each ai0 = xσi1 − xai1 ∈ xU . Thus r0 ∈ xU ,
as desired. This proves that xn(R∗/I) ∩ U = xnU . Since B = (1 + xU)−1U , we
also have xn(R∗/I) ∩B = xnB. Thus item 3 holds.

For item 4, we show that, with S = A and T = R∗/I, condition 1 of the four
equivalent conditions in Lemma

11.2.3ic
5.12 holds: that is, (i) xA = x(R∗/I) ∩ A and

(ii) A/xA = (R∗/I)/(x(R∗/I)). Part i holds by item 3. Part i implies that the
kernel of the composition ψ of the maps shown

ψ : A
⊆
↪→ (R∗/I)→ (R∗/I)/(x(R∗/I)) = R∗/(x, I)R∗

is xA. By Definitions
3.1.1
3.1, R+ xR∗ = R∗, and so condition 4(ii) of Lemma

11.2.3ic
5.12

R+ (x(R∗/I)) ⊆ A+ (x(R∗/I)) =⇒ A+ (x(R∗/I)) = R∗/I.

Thus the map ψ is surjective, and so part ii holds. Also Item 4 for the ring A
follows from statements 2 and 3 of the four equivalent statements in Lemma

11.2.3ic
5.12.

The proofs of item 4 for the rings U and B are similar.
For item 5, if g ∈ U , then g ∈ Un, for some n. By Equation

4.5.4
17.7.1, each

σin ∈ R[1/x], and so g ∈ R[1/x]. Thus U [1/x] = R[1/x]. By item 3,

xB ∩ U = ((xR∗/I) ∩B) ∩ U = x(R∗/I) ∩ U = xU ;

similarly xA ∩ U = xU. Item 4 and (i) =⇒ (iv) of Lemma
11.2.3ic
5.12 with S = U

and T = B, T = A, or T = R∗/I imply that U = U [1/x] ∩ B = R[1/x] ∩ B,
U = R[1/x]∩A, and U = R[1/x]∩R∗/I. For statement a of item 5, B = (1+xU)−1U
implies B[1/x] = (1 + xU)−1U [1/x] is a localization of U [1/x] = R[1/x], and of
U and R. For statement b, the integral domains R, U , B and A all have the
same field of fractions since each is contained in A, and A ⊆ K. For statement
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c of item 5, since 1/x ∈ BP , the ring BP is a localization of R and of U . Thus
BP = RP∩R = UP∩U ; see Exercise

constrincl
5.
bplocu
1.

For item
localhi
6, notice that x ∈ mR. By item 2, x ∈ J (B) and x ∈ J (R∗), that is,

x is in every maximal ideal of B and of R∗/I. Also R∗ is local with maximal ideal
mR∗ = mRR

∗. By item 4, B/xB = A/xA = R∗/(xR∗+ I) = R/((xR∗+ I)∩R), it
follows that B and A are local with maximal ideals mRB and mRA. For the rest
of item

localhi
6 above, Fact

R*hat
3.2 implies that R̂∗ = R̂. By item 4, A∗ = U∗ = B∗ = R∗/I.

Thus the mA-adic completion of A, the mU -adic completion of U and mB-adic
completion of B are equal to the completion of R∗/I, which is R̂/I. □

11.2.5 Remark 17.12. Theorem
11.2.4
17.11 implies the statements below.

(1) The definitions in Definition
11.2.14.5.5
17.10.1 of B and U are independent of

(a) the choice of generators for I, and
(b) the representation of the generators of I as power series in x,
by Theorem

11.2.4
17.11.5.

(2) The rings U = R[1/x] ∩ (R∗/I) and B = (1 + xU)−1U are uniquely
determined by x and the ideal I of R∗ by Theorem

11.2.4
17.11.5.

(3) If b ∈ B is a unit of A, then b is already a unit of B. This follows by
Theorem

11.2.4
17.11.4, since x is in the Jacobson radical of B.

(4) The diagram below displays the relationships among these rings.

Q(R) Q(U) Q(B) Q(A) ⊆−−−−→ Q(R∗/I)x x x x x
R[1/x] U [1/x]

⊆−−−−→ B[1/x]
⊆−−−−→ A[1/x]

⊆−−−−→ (R∗/I)[1/x]x x x x x
R

⊆−−−−→ U = ∪ Un
⊆−−−−→ B

⊆−−−−→ A
⊆−−−−→ R∗/I.

17.4. Noetherian flatness for homomorphic imagesHInft

Noetherian Flatness Theorem
11.3.2
17.13 (Homomorphic Image Version) gives pre-

cise conditions for the Approximation Domain B of Homomorphic Image Construc-
tion

4.4.2
17.2 to be Noetherian.

11.3.2 Noetherian Flatness Theorem 17.13. (Homomorphic Image Version) Let
R be an integral domain with field of fractions K. Let x ∈ R be a nonzero nonunit
such that

⋂
n≥1 x

nR = (0), the x-adic completion R∗ is Noetherian, and x is a
regular element of R∗. Let I be an ideal of R∗ such that p ∩ R = (0) for each
p ∈ Ass(R∗/I). As in Frontpiece Notation

4.5.4
17.7.2 and Definition

4.5.5
17.10.1, let

U :=

∞⋃
n=1

Un, B :=

∞⋃
n=1

Bn = (1 + xU)−1U, and A := K ∩ (R∗/I).

Then
(1) The following statements are equivalent:

(a) The extension ψ : R ↪→ (R∗/I)[1/x] is flat.
(b) The ring B is Noetherian.
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(c) The extension B ↪→ R∗/I is faithfully flat.
(d) The ring A := K ∩ (R∗/I) is Noetherian and A = B.
(e) The ring A is Noetherian and A is a localization of a subring of

R[1/x].
(2) If R is assumed to be Noetherian, then statements a-e are equivalent to

the ring U being Noetherian.

Proof. For item 1, (a) =⇒ (b), if ψ is flat, then, by factoring ψ through
U [1/x] = R[1/x] ↪→ (R∗/I)[1/x], it follows that U ↪→ (R∗/I)[1/x] is flat. By
Lemma

11.3.1
6.2.3, with S = U and T = R∗/I, the ring B is Noetherian.

For (b) =⇒ (c), B∗ = R∗/I is flat over B, by Theorem
11.2.4
17.11.4 and Re-

mark
3.38.0
3.3.

N*ff
3. By Proposition

11.2.52
5.17.1, x ∈ J (B), and so, by Remark

3.38.0
3.3.

N*Jff
4, B∗ = R∗/I

is faithfully flat over B.
For (c) =⇒ (d), again Theorem

11.2.4
17.11.4 yields B∗ = R∗/I, and so B∗ is

faithfully flat over B. Then

B = Q(B) ∩ (R∗/I) = Q(A) ∩ (R∗/I) = K ∩ (R∗/I) = A

by Remark
remflat
2.37.

ffint
9 and Theorem

11.2.51
5.14.2. By Remark

remflat
2.37.

ffNN
8, A is Noetherian.

The implication (d) =⇒ (e) holds since B = A is a localization of U and U is
a subring of R[1/x] = U [1/x], by Theorem

11.2.51
5.14.5.

For (e) =⇒ (a): since A is a localization of a subring D of R[1/x], write
A := Γ−1D, where Γ is a multiplicatively closed subset of D. Now

R ⊆ A = Γ−1D ⊆ Γ−1R[1/x] = Γ−1A[1/x] = A[1/x].

Since A is Noetherian, A ↪→ A∗ = R∗/I is flat by Remark
3.38.0
3.3.

N*fl
2. Therefore

A[1/x] ↪→ (R∗/I)[1/x] is flat, and so

R ⊆ R[1/x] ⊆ Γ−1R[1/x] = A[1/x] ↪→ (R∗/I)[1/x]

is a composition of flat extensions. It follows that R ↪→ (R∗/I)[1/x] is flat.
For item 2, R Noetherian implies R[1/x] is Noetherian. Assume condition d

holds. Then the composite embedding.

U ↪→ B = A ↪→ B∗ = A∗ = R∗/I

is flat because B is a localization of U and A is Noetherian; see Remark
3.38.0
3.3.

N*ff
3. By

Remark
3.38.0
3.3.

N*Jff
4 again, A∗ is faithfully flat over A. Thus Lemma

11.3.1
6.2, parts 1 and 3,

with S = U and T = R∗/I yields that S[1/x] = U [1/x] = R[1/x] is Noetherian,
and hence U is Noetherian by Lemma

11.3.1
6.2.4.

If U is Noetherian, then the localization B of U is Noetherian, and as above
B = A. Hence A is a localization of U , a subring of R[1/x]. Thus condition e holds
and the proof is complete. □

11.3.21 Corollary 17.14. Let R, I and x be as in Noetherian Flatness Theorem
11.3.2
17.13

(Homomorphic Image version). If dim(R∗/I) = 1, then ϕ : R ↪→W := (R∗/I)[1/x]
is flat and therefore the equivalent conditions of Theorem

11.3.2
17.13 all hold.

Proof. By Construction Properties Theorem
11.2.4
17.11.2, x is in the Jacobson

radical of R∗/I. Thus dim(R∗/I) = 1 implies that dimW = 0. The hypothesis on
the ideal I implies that every prime ideal P of W contracts to (0) in R. Hence

ϕP : RP∩R = R(0) = K ↪→WP .
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Thus WP is a K-module and so a vector space over K. By Remark
remflat
2.37.

flelt
2, ϕP is

flat. Since flatness is a local property by Remark
remflat
2.37

floc
1, the map ϕ is flat. □

11.3.3 Remarks 17.15. Let R, I, x, A and B be as in Noetherian Flatness Theorem11.3.2
17.13:

(1) We show in Section
4.56
17.6 that the Intersection Domain and Approximation

Domain of Inclusion Construction
4.4.1hi
17.4 are isomorphic to the domains con-

structed in Homomorphic Image Construction
4.4.2
17.2 with a different base

ring. Thus, by Remark
11.3.26
6.10, there are examples using Construction

4.4.2
17.2

such that the Intersection Domain A is Noetherian, but the Approxima-
tion Domain B 6= A, and other examples where A = B is non-Noetherian.

(2) A necessary and sufficient condition that A = B is that A is a localization
of R[1/x] ∩ A. Indeed, Theorem

11.2.4
17.11.5 implies that R[1/x] ∩ A = U

and, by Definition
11.2.14.5.5
17.10.1, B = (1 + xU)−1U . Therefore the condition is

sufficient. On the other hand, if A = Γ−1U , where Γ is a multiplicatively
closed subset of U , then by Remark

11.2.5
17.12.3, each y ∈ Γ is a unit of B, and

so Γ−1U ⊆ B and A = B. See also Theorem
7.5.5fch
17.19 for more discussion of

when A = B,
(3) Section

11.4
10.1 describes a family of Prototype examples where the condi-

tions of the Inclusion version of Noetherian Flatness Theorem
11.3.25
6.3 hold.

Under the identifications of Diagram
11.26
17.20.1 below, these examples be-

come examples where R ↪→ (R∗/I)[1/x] is flat for Homomorphic Image
Construction

4.4.2
17.2; see Remark

incprothi
17.25.

IncUncatr Remark 17.16. By Theorem
IncUncat
6.27, the universal catenary property is preserved

by Inclusion Construction
4.4.1
5.3. In contrast, consider the constructed domains A

and B of Homomorphic Image Construction
4.4.2
17.2, for (R,m) a universally catenary

Noetherian local domain, x ∈ m an appropriate nonzero element and I an ideal of
the x-adic completion R∗ of R. Then A and B are local and

A∗ = B∗ = R∗/I, and so Â = B̂ = R̂/IR̂,

by Construction Properties Theorem
11.2.4
17.11.4. Even if A = B and is Noetherian

as in Noetherian Flatness Theorem
11.3.2
17.13, it is not necessarily true that R̂/IR̂ is

equidimensional. In Example
11.4.5
18.15, with base ring R a localized polynomial ring in

3 variables over a field, so that R is certainly universally catenary, we construct a
Noetherian local domain A that is not universally catenary by using Homomorphic
Image Construction

4.4.2
17.2.

Theorem
11.3.4
17.17 extends the range of applications of Homomorphic Image Con-

struction
4.4.2
17.2.

11.3.4 Theorem 17.17. Assume Setting
setconstr
17.1 and Construction

4.4.2
17.2. Thus R is an

integral domain with field of fractions K, x is a nonzero nonunit of R, and R∗,
the x-adic completion of R, is Noetherian. The ideal I of R∗ has the property that
p ∩ R = (0), for each p ∈ Ass(R∗/I). Assume in addition that I is generated by a
regular sequence of R∗. If R ↪→ (R∗/I)[1/x] is flat, then, for each n ∈ N:

(1) Ass(R∗/In) = Ass(R∗/I),
(2) R canonically embeds in R∗/In, and
(3) R ↪→ (R∗/In)[1/x] is flat.
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Proof. Let I = (σ1, . . . , σr)R
∗, where σ1, . . . , σr is a regular sequence in R∗.

Then the sequence σ1, . . . , σr is quasi-regular in the sense of
M
[123, Theorem 16.2,

page 125]; that is, the associated graded ring of R∗ with respect to I, which is the
direct sum R∗/I⊕I/I2⊕ ... , is a polynomial ring in r variables over R∗/I. For each
positive integer n, the component In/In+1 is a free (R∗/I)-module generated by the
monomials of total degree n in these variables. Thus Ass(In/In+1) = Ass(R∗/I);
that is, a prime ideal P of R∗ annihilates a nonzero element of R∗/I if and only if
P annihilates a nonzero element of In/In+1.

For item 1 we proceed by induction: assume Ass(R∗/In) = Ass(R∗/I) and
n ∈ N. Consider the exact sequence
(
11.3.4
17.17.0) 0→ In/In+1 ↪→ R∗/In+1 → R∗/In → 0.

Then Ass(R∗/I) = Ass(In/In+1) ⊆ Ass(R∗/In+1). Also
Ass(R∗/In+1) ⊆ Ass(In/In+1) ∪ Ass(R∗/In) = Ass(R∗/I)

by
M
[123, Theorem 6.3, p. 38], and so it follows that Ass(R∗/In+1) = Ass(R∗/I).

Thus R canonically embeds in R∗/In for each n ∈ N.
That R ↪→ (R∗/In)[1/x] is flat for every n ∈ N now follows by induction on

n and by considering the exact sequence obtained by tensoring over R the short
exact sequence (

11.3.4
17.17.0) with R[1/x]. □

ch8example Example 17.18. Let R = k[x, y] be the polynomial ring in the variables x and
y over a field k and let R∗ = k[y][[x]] be the x-adic completion of R. Fix an element
τ ∈ xk[[x]] such that x and τ are algebraically independent over k, and define the
k[[x]]-algebra homomorphism θ : k[y][[x]] → k[[x]], by setting θ(y) = τ . Then
ker(θ) = (y − τ)R∗. Set I := (y − τ)R∗. Notice that θ(R) = k[x, τ ] ∼= R because x
and τ are algebraically independent over k. Hence I ∩ R = (0). Also I is a prime
ideal generated by a regular element of R∗, and (I, x)R∗ = (y, x)R∗ is a maximal
ideal of R∗. Corollary

11.3.21
17.14 and Theorem

11.3.4
17.17 imply that for each positive integer

n, the Intersection Domain An := (R∗/In)∩k(x, y) is a one-dimensional Noetherian
local domain having x-adic completion R∗/In. Since x generates an ideal primary
for the unique maximal ideal of R∗/In, the ring R∗/In is also the completion of An
with respect to the powers of the unique maximal ideal nn of An. Since R∗/I is a
DVR, Remark

3.02.1
2.1 implies that A1 is a DVR. For n > 1, the completion of An has

nonzero nilpotent elements, and hence the integral closure of An is not a finitely
generated An-module by Remarks

3.38.4
3.19. The inclusion In+1 ( In and the fact that

An has completion R∗/In imply that An+1 ( An for each n ∈ N; see Exercise
exer5.4
2 of

this chapter. Hence the rings An form a strictly descending chain
A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·

of one-dimensional local birational extensions of R = k[x, y].

17.5. Weak Flatness for Homomorphic Image Construction
4.4.2
17.2HIwf

Theorem
7.5.5fch
17.19 is a version of Weak Flatness Theorem

7.5.5fc
9.9 that applies to Ho-

momorphic Image Construction
4.4.2
17.2.

7.5.5fch Weak Flatness Theorem 17.19. (Homomorphic Image Version) Assume Set-
ting

setconstr
17.1 and Construction

4.4.2
17.2. Thus R is an integral domain with field of fractions

K, x is a nonzero nonunit of R and R∗, the x-adic completion of R, is Noetherian.
The ideal I of R∗ has the property that p ∩ R = (0) for each p ∈ Ass(R∗/I). Let
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the rings A and B be as defined in Section
4.5.5
17.10. Assume in addition that R and

B are Krull domains. Then
(1) If the extension R ↪→ (R∗/I)[1/x] is weakly flat, then A = B, that is, the

construction is limit-intersecting as in Definition
4.5.5
17.10.

(2) If R∗/I is a Krull domain, then the following statements are equivalent:
(a) A = B.
(b) R ↪→ (R∗/I)[1/x] is weakly flat.
(c) The extension B ↪→ (R∗/I)[1/x] is weakly flat.
(d) The extension B ↪→ R∗/I is weakly flat.

Proof. Theorem
11.2.4
17.11.3 implies that each height-one prime of B containing

xB is contracted from R∗/I. Using Frontpiece Notation
4.5.4
17.7, Definition

4.5.5
17.10

and Theorem
11.2.4
17.11 yields that B[1/x] is a localization of R[1/x] = U [1/x]. Since

R ↪→ (R∗/I)[1/x] is weakly flat, it follows that B ↪→ (R∗/I)[1/x] is weakly flat by
Remark

6.2.9wf
9.5.b. Therefore B ↪→ R∗/I is weakly flat. By Proposition

6.2.9fp
9.3.1, we have

B = Q(B) ∩ (R∗/I) = A. This proves item 1.
For item 2, since R∗/I is a normal integral domain, A = (R∗/I) ∩ Q(R) is a

Krull domain. As noted in the proof of item 1, Theorem
11.2.4
17.11 implies that each

height-one prime of B containing xB is contracted from R∗/I and B[1/x] is a
localization of R[1/x] = U [1/x]. It follows that (b), (c) and (d) are equivalent. By
Proposition

6.2.9fp
9.3.3, (a) =⇒ (d), and by Proposition

6.2.9fp
9.3.1, (d) =⇒ (a). □

17.6. Inclusion Constructions are Homomorphic Image Constructions4.56

For this section we revise the setting so that R denotes the base ring for Inclu-
sion Construction

4.4.1hi
17.4.

11.26 Setting 17.20. Let R, x, and R∗ be as in Setting
setconstr
17.1. As in Construc-

tion
4.4.1hi
17.4, let τ1, . . . , τs ∈ xR∗ be algebraically independent elements over R such

that K(τ1, . . . , τs) ⊆ Q(R∗). We define A to be the Intersection Domain A =
Ainc := K(τ1, . . . , τs) ∩R∗, a subring of R∗ that is not algebraic over R. Thus

τi :=

∞∑
j=1

rijx
j where rij ∈ R.

Let t1, . . . , ts be indeterminates over R, define S := R[t1, . . . , ts], let S∗ be the
x-adic completion of S, and let I denote the ideal (t1 − τ1, . . . , ts − τs)S∗. Notice
that S∗/I ∼= R∗ implies that P ∩S = (0) for each prime ideal P ∈ Ass(S∗/I). Thus
we are in the setting of Homomorphic Image Construction

4.4.2
17.2 where we define the

Intersection Domain D := Ahom := K(t1, . . . , ts) ∩ (S∗/I). Let σi := ti − τi, for
each i with 1 ≤ i ≤ s. For each n ∈ N0 and each i with 1 ≤ i ≤ s, the element
τin of R∗ is the nth endpiece of τi and the element σin ∈ S∗/I is the nth frontpiece
of σi.

17.6.1. Matching up Intersection Domains. Consider Diagram
11.26
17.20.1,

where λ is theR-algebra isomorphism of S intoR∗ that maps ti → τi for i = 1, . . . , s.
Here D := Ahom := Q(S) ∩ (S∗/I); that is, Ahom is the Intersection Domain
of Construction

4.4.2
17.2, if R and R∗ there are replaced by S and S∗. The map λ

naturally extends to a homomorphism of S∗ onto R∗, and the ideal I is the kernel
of this extension. Thus there is an induced isomorphism of S∗/I onto R∗ that we
also label λ.
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(
11.26
17.20.1)

S := R[t1, . . . , ts] −−−−→ D := K(t1, . . . , ts) ∩ (S∗/I) −−−−→ S∗/I

λ

y λ

y λ

y
R −−−−→ S′ := R[τ1, . . . , τs] −−−−→ A := Q(R)(τ1, . . . , τs) ∩R∗ −−−−→ R∗.

Then λ maps D isomorphically onto A via λ(ti) = τi, for every i with 1 ≤ i ≤ s.

IcH Proposition 17.21. Inclusion Construction
4.4.1
5.3 is a special case, up to isomor-

phism, of Homomorphic Image Construction
4.4.2
17.2. That is, under the identifications

of Diagram
11.26
17.20.1, the Intersection Domain of Inclusion Construction

4.4.2
17.2 fits the

description of the Intersection Domain of Homomorphic Image Construction
4.4.2
17.2.

Proof. Since λ maps D = Ahom isomorphically onto A = Ainc, Construc-
tion

4.4.2
17.2 includes Construction

4.4.1
5.3, up to isomorphism, as a special case. □

17.6.2. Matching up Approximation Domains. By Proposition
11.27
17.22,

the identifications of Diagram
11.26
17.20.1 transform the Approximation Domain for

Inclusion Construction
4.4.1
5.3 into the Approximation Domain of Homomorphic Im-

age Construction
4.4.2
17.2. That is, the formula given in Equation

4.2.3
5.4.5 of Section

4.45
5.2

using endpieces becomes the formula given in Definition
4.5.5
17.10 defined on S and

S∗/I using frontpieces.

11.27 Proposition 17.22. Assume Setting
11.26
17.20. As in Frontpiece Notation

4.5.4
17.7,

define σin to be the nth frontpiece for σi in S∗/I. Denote by Vn, Cn, V, C the
rings constructed in Frontpiece Notation

4.5.4
17.7 and Equation

11.2.14.5.5
17.10.1 with S as the

base ring, as shown in Equations
11.27
17.22.1. Define Un, Bn, U,B using Endpiece

Notation
4.2.3
5.4 and Equations

4.2.3
5.4.4 and

4.2.3
5.4.5 over R. Thus

(
11.27
17.22.1)

Vn : = S[σ1n, . . . , σsn] = R[t1, . . . , ts][σ1n, . . . , σsn],

Cn : = (1 + xVn)
−1Vn,

V : =

∞⋃
n=1

Vn, C :=

∞⋃
n=1

Cn = (1 + xV )−1V

U : =

∞⋃
n=1

Un, where Un = R[τ1n, . . . , τsn] and

B :=

∞⋃
n=1

Bn = (1 + xU)−1U, where Bn = (1 + xUn)
−1Un.

Then the R-algebra isomorphism λ has the following properties:

λ(D) = A, λ(σin) = τin, λ(Vn) = Un, λ(Cn) = Bn, λ(V ) = U, λ(C) = B,

for all i with 1 ≤ i ≤ s and all n ∈ N.
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Proof. Let rij be elements of R such that

τi :=

∞∑
j=1

rijx
j , τin :=

∞∑
j=n+1

rijx
j−n

σi := ti − τi = ti −
∞∑
j=1

rijx
j , σin :=

ti −
∑n
j=1 rijx

j

xn

=⇒ λ(σin) =
τi −

∑n
j=1 rijx

j

xn

= τin.

The remaining statements of Proposition
11.27
17.22 now follow. □

11.27r Remark 17.23. With Setting
11.26
17.20, Proposition

11.27
17.22 implies that each Vn is

a polynomial ring over R in the variables σ1n, . . . , σsn, since each Un is a polynomial
ring over R in the variables τ1n, . . . τsn. Thus

Vn := S[σ1n, . . . , σsn] = R[t1, . . . , ts][σ1n, . . . , σsn]
λ∼= R[σ1n, . . . , σsn],

where λ is defined as in Diagram
11.26
17.20.1; that is, λ(ti) = τi, for each i.

17.6.3. Making an Inclusion Prototype a homomorphic image. The
identifications of Diagram

11.26
17.20.1 to the Prototypes and Local Prototypes of Defi-

nitions
proicdef
10.3.and

prodef
4.28 give them the form of Homomorphic Image Construction

4.4.2
17.2.

These Prototypes are used to produce Homomorphic Image examples of non-
catenary Noetherian local domains in Chapter

catsec
18.

11.4.1sethi Setting 17.24. Let x be an indeterminate over a field k. Let r be a non-
negative integer and s a positive integer. Assume that τ1, . . . , τs ∈ xk[[x]] are
algebraically independent over k(x) and let y1, . . . , yr and t1, . . . , ts be additional
indeterminates. We define the following rings:
(
11.4.1sethi
17.24.a)

R := k[x, y1, . . . , yr], R
∗ = k[y1, . . . , yr][[x]], V = k(x, τ1, . . . , τs) ∩ k[[x]].

Notice that R∗ is the x-adic completion of R and V is a DVR by Remark
3.02.1
2.1.

By Prototype Theorem
11.4.1a
10.2, the Prototype D of Definition

proicdef
10.3 satisfies:

(
11.4.1sethi
17.24.b)

D := Aincl := k(x, y1, . . . , yr, τ1, . . . τs) ∩R∗

= (1 + xV [y1, . . . , yr])
−1V [y1, . . . , yr]

= Bincl := (1 + xUincl)
−1Uincl,

where Uincl :=
⋃
n∈NR[τ1n, . . . τsn], each τin is the nth endpiece of τi and each

τin ∈ R∗, for 1 ≤ i ≤ s. By Construction Properties Theorem
11.2.51
5.14.

compR*
3, the ring R∗

is the x-adic completion of each of the rings Aincl, Bincl and Uincl.
Set S := k[x, y1, . . . , yr, t1, . . . , ts], let S∗ be the x-adic completion of S, and let

σi := ti − τi, for each i. Define
I := (t1 − τ1, . . . , ts − τs)S∗ = (σ1, . . . , σs)S

∗,

By Definition
4.5.5
17.10,

(
11.4.1sethi
17.24.c)

Ahom := k(x, y1, . . . , yr, t1, . . . , ts) ∩ (S∗/I), Bhom := (1 + xUhom)−1Uhom,
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where Uhom :=
⋃
n∈N S[σ1n, . . . , σsn], each σin is the nth frontpiece of σi and each

σin ∈ Q(S) ∩ (S∗/I), for 1 ≤ i ≤ s, by Proposition
11.25
17.9. Then I := (σ1, . . . , σs)S

∗

is a prime ideal of S∗, and S∗/I ∼= k[y1, . . . , yr][[x]] = R∗. The fact that τ1, . . . , τs
are algebraically independent over k(x) implies that I ∩ S = (0). By Construction
Properties Theorem

11.2.4
17.11.4, the ring S∗/I is the x-adic completion of each of the

rings Ahom, Bhom and Uhom.

incprothi Remark 17.25. Prototypes constructed using Inclusion Construction are iso-
morphic by Propositions

IcH
17.21 and

11.27
17.22 to their “translations” into Homomorphic

Image Constructions: Assume Setting
11.4.1sethi
17.24. Under the identifications given in

Diagram
11.26
17.20.1, Ahom = Bhom is isomorphic to Aincl = Bincl. Thus Bhom is

Noetherian. Moreover:
(1) Bhom is isomorphic to a directed union of localizations of polynomial rings

in r + s+ 1 variables over k.
(2) Bhom = Ahom is Noetherian of dimension r + 1. Let V be the DVR

k(x, τ1, . . . , τs) ∩ k[[x]]. Then A is isomorphic to a localization of the
polynomial ring V [y1, . . . , yr]. Thus Ahom is a regular Noetherian integral
domain. That is, every localization of A at a prime ideal of A is an RLR.

(3) The canonical map α : S ↪→ (S∗/I)[1/x] is flat.
(4) If k has characteristic zero, then Bhom = Ahom is excellent.

Remark
incprothi
17.25 implies that there exist Prototypes with a specific format that

is easy to use.

incprothip Proposition 17.26. Let r be a nonnegative integer and s a positive integer,
and let x, y1, . . . , yr and t1, . . . , ts be indeterminates over a field k. Assume the
elements τ1, . . . , τs of xk[[x]] are algebraically independent over k(x).

(1) Set S := k[x, y1, . . . , yr, t1, . . . , ts], and let S∗ be the x-adic completion of
S. Set I := (t1 − τ1, . . . , ts − τs)S∗. Then

Ahom := k(x, y1, . . . , yr, t1, . . . , ts) ∩ (S∗/I)

is a Noetherian domain.
(2) (Local version) Set S := k[x, y1, . . . , yr, t1, . . . , ts](x,y1,...,yr,t1,...,ts). Let S∗

be the x-adic completion of S. Set I := (t1 − τ1, . . . , ts − τs)S∗. Then
Ahom := k(x, y1, . . . , yr, t1, . . . , ts) ∩ (S∗/I)

is a local Noetherian domain.
(3) Let A = Ahom be as in item 2, and let V = k(x, τ1, . . . , τs)∩ k[[x]]. Then:

(a) Ahom = Bhom ∼= V [y1, . . . , yr](x,y1,...,yr). Thus A is an RLR.
(b) If V is excellent, then A is excellent.

11.4.2 Example 17.27. Assume Setting
11.4.1sethi
17.24. Then t1 − τ1, . . . , ts − τs is a regular

sequence in S∗. Let I = (t1 − τ1, . . . , ts − τs)S
∗. Theorem

11.3.4
17.17 implies that

S ↪→ (S∗/In)[1/x] is flat for every positive integer n. Using In in place of I,
Proposition

incprothip
17.26.2 implies the existence for every r and n in N of a Noetherian

local domain A having dimension r + 1 such that the x-adic completion A∗ of A
has nilradical n with nn−1 6= (0).

Here are specific examples where Remark
incprothi
17.25 and Proposition

incprothip
17.26 apply.

Example
11.4.3
17.28 shows that the dimension of U can be greater than the dimension

of Bhom.
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11.4.3 Examples 17.28. (1) Let the notation be as in Proposition
incprothip
17.26.1, and let

S := k[x, t1, . . . , ts], that is, there are no y variables. Let S∗ denote the x-adic
completion of S. Then I = (t1 − τi, . . . , ts − τs)S∗, and, by Proposition

incprothip
17.26.1,

V := (S∗/I) ∩Q(S) = (k[t1, . . . , ts][[x]]/(t1 − τi, . . . , ts − τs)) ∩ k(x, t1, . . . , ts)
= Ahom = Bhom = k(x, τ1, . . . , τs) ∩ k[[x]].

The DVR V is also obtained by localizing U = Uhom =
⋃
n∈N S[σ1n, . . . , σsn] at

the prime ideal xU ; each σin is the nth frontpiece of σi = ti − τi. In this example
S[1/x] = U [1/x] has dimension s+ 1 and so dimU = s+ 1, while

dim(S∗/I) = dimAhom = dimBhom = 1.

(2) Essentially the same example as in item 1 can be obtained by using Theo-
rem

11.4.1a
10.2 as follows. Let R = k[x]. Then R∗ = k[[x]], and

Aincl = k(x, τ1, . . . , τs) ∩ k[[x]] and Aincl = Bincl,

by Theorem
11.4.1a
10.2. In this case Uincl is a directed union of polynomial rings in s+1

variables over k,

Uincl =

∞⋃
n=1

k[x][τ1n, . . . , τsn],

where the τin are the nth endpieces of the τi as in Section
4.45
5.2. By Proposition

11.25
17.9,

the endpieces are related to the frontpieces of the homomorphic image construction.

(3) Assume the notation of Proposition
incprothi
17.25.2. Set S = k[x, t1, . . . , ts](x,t1,...,ts),

a regular local domain of dimension s + 1. This gives a modification of Ex-
ample

11.4.3
17.28.1. In this case S[1/x] = U [1/x] has dimension s, while we still

have S∗/I ∼= k[[x]]. Thus dim(S∗/I) = 1 = dimAhom = dimBhom, whereas
dimU = s+ 1.

One can also obtain a local version of Example
11.4.3
17.28.2 using the inclusion

construction with R = k[x](x) and applying Theorem
11.4.1a
10.2. Then R∗ = k[[x]].

With S := k[x, t1, . . . , ts] or S = k[x, t1, . . . , ts](x,t1,...,ts) as in Example
11.4.3
17.28.1

or
11.4.3
17.28.3, the domains Bn constructed from S as in Section

4.55
17.2 are RLRs of

dimension s + 1 dominated by k[[x]] and having k as a coefficient field. In either
case, since (S∗/I)[1/x] is a field, the extension S ↪→ (S∗/I)[1/x] is flat. Thus by
Theorem

11.3.2
17.13 the family {Bn}n∈N is a directed union of RLRs of dimension s+1

whose union B is Noetherian, and is in fact a DVR.
(4) As in Proposition

incprothip
17.26.2, with r = 1 and y1 = y, the ring

S = k[x, y, t1, . . . , ts](x,y,t1,...,ts).

Then S∗/I ∼= k[y](y)[[x]]. By Remark
incprothi
17.25, the extension S ↪→ (S∗/I)[1/x] is flat.

Let V = k[[x]] ∩ k(x, τ1, . . . , τs). Then V is a DVR and

(S∗/I) ∩Q(S) ∼= V [y](x,y)

is a 2-dimensional regular local domain that is the directed union of RLRs of di-
mension s+ 2.
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17.7. Connecting the two constructionsHIconIC

In Setting
inclontohiset
17.29, we repeat the setting for Inclusion Construction

4.4.1
5.3. Propo-

sition
inclontohi
17.30 concerns the same set of algebraically independent elements τ1, . . . , τn

over the same base ring R in terms of Homomorphic Image Construction
4.4.2
17.2.

inclontohiset Setting 17.29. Let R be an integral domain with field of fractions K and
let x be a nonzero nonunit of R. Assume that the x-adic completion R∗ of R,
is Noetherian, τ = τ1, . . . , τn ∈ R∗ are algebraically independent over R, and the
Intersection Domain of Inclusion Construction

4.4.1
5.3 is A := K(τ) ∩R∗. Also U and

the Approximation Domain B are given by
Uj := R[τ1j , . . . , τnj ] Bj := (1 + xUj)

−1Uj .

U :=

∞⋃
j=1

Uj =

∞⋃
j=1

R[τ1j , . . . , τnj ] and B :=

∞⋃
j=1

Bn,

where each τij is an jth endpiece of τi.

inclontohi Proposition 17.30. Assume Setting
inclontohiset
17.29, and assume that P ∩R = (0), for

each P ∈ R∗ that is associated to the ideal I = (τ1, . . . , τn)R
∗. Let V and E be the

Approximation Domains for Homomorphic Image Construction
4.4.2
17.2 corresponding

to I defined by
Vj := R[τ ′1j , . . . , τ

′
nj ], and Ej := (1 + xVj)

−1Vj .

V :=

∞⋃
j=1

Vj , E :=

∞⋃
j=1

Ej = (1 + xV )−1V,

where the τ ′ij are the jth frontpieces of τi as defined in Frontpiece Notation
4.5.4
17.7, for

each i, j ∈ N. Then the canonical map ϕ : R∗ → R∗/I restricts to a homomorphism
that surjectively maps U onto V and B onto E.

Proof. The map ϕ is the identity map on R, and Proposition
11.25
17.9 implies ϕ

maps the negatives of endpiece generators of each Uj to the corresponding front-
pieces that generate Vj . Therefore ϕ(U) = V , and so ϕ(B) = E. □

inclontohic Corollary 17.31. Assume Setting
inclontohiset
17.29 and assume that P ∩ R = (0), for

each P ∈ R∗ that is associated to the ideal I = (τ1, . . . , τn)R
∗. Let B be the

Approximation Domain defined over R using Inclusion Construction
4.4.1
5.3 associated

to elements τ1, . . . , τn of R∗ algebraically independent over R, and let E be the
Approximation Domain defined over R associated to the ideal I = (τ1, . . . , τn)R

∗

using Homomorphic Image Construction
4.4.2
17.2. Then:

(1) If B is Noetherian, so is E.
(2) If R[τ ] ↪→ R∗[1/x] is flat, then so is the map R ↪→ (R∗/I)[1/x].
(3) If B ↪→ R∗ is faithfully flat, then so is the map E ↪→ R∗/I.
(4) If B is excellent, then E is excellent.
(5) If B is catenary, resp. universally catenary, then E is catenary, resp.

universally catenary.

Proof. The first item holds since the homomorphic image of a Noetherian
domain is also Noetherian. Items 2 and 3 follow since the “If” statements are
equivalent to B Noetherian, and the “Then” statements are equivalent to E is
Noetherian, by Noetherian Flatness Theorems

11.3.25
6.3.1 and

11.3.2
17.13.1. Items 4 and 5
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follow from the fact that the properties of excellence, catenary and universally
catenary are preserved under homomorphic image; see Remarks

3.435
3.48. □

inclontohie Example 17.32. Let R = k[x, y], R∗ and τ ∈ xk[[x]] be as in Example
ch8example
17.18.

Let K be the field of fractions of R, and set f = y − τ . Let A = K(f) ∩ R∗
be the intersection domain of Inclusion Construction

4.4.1
5.3 as in Setting

inclontohiset
17.29. Then

I = fR∗ is a prime ideal of R∗ and I∩R = (0). The hypotheses of Proposition
inclontohi
17.30

are satisfied with f replacing the τ of Proposition
inclontohi
17.30, and ϕ : R∗ → R∗/I maps

A = B surjectively onto E = (R∗/I) ∩ K. In this example, A is a Noetherian
regular UFD with dimA = 2 and E is a DVR birationally dominating the two-
dimensional RLR R(x,y)R. Since E also has residue field k, the dimension formulaM
[123, page 119] implies that E is not essentially finitely generated over R.

17.7.1. Insider Methods for Homomorphic Image Construction
4.4.2
17.2.

Theorem
insforhi
17.35 gives machinery for using Insider Construction

16.1.1
10.7 with the

Homomorphic Image Construction
4.4.2
17.2 to construct additional examples. Theo-

rem
insforhi
17.35 yields examples that do not fit Inclusion Construction

4.4.1
5.3. This machin-

ery is used in Chapter
ogoma
19 for the construction of Ogoma’s Example

ogomaeg
19.13.

This is a two-step process:
(1) Use Inclusion Construction

4.4.1
5.3 with elements τ1, . . . , τn in an x-adic com-

pletion R∗ of a Noetherian domain R such that the result is a Prototype
D, or more generally D is a Noetherian Limit Intersection Domain. 2

(2) Determine an appropriate ideal I of D such that IR∗ is a proper ideal of
R∗ and P ∩R = (0), for each associated prime P of IR∗.

In the application of Theorem
insforhi
17.35 to Insider Construction

4.4.1
5.3, the ideal I is

chosen to be (f1, . . . , fm)D, where the fi are elements of R[τ1, . . . , τn] that are
algebraically independent over R; see Corollary

insforhic
17.39. Then Theorem

insforhi
17.35 gives

criteria for ϕ : R ↪→ (R∗/IR∗)[1/x] to be flat. If ϕ is flat, then C = Q(R)∩(R∗/IR∗)
is a Noetherian Intersection Domain that is equal to its Approximation Domain.

In some cases the Intersection Domain Q(R) ∩ (R∗/IR∗) has additional prop-
erties such as being excellent.

insforhiset Setting 17.33. Let x ∈ R be a nonzero nonunit of a Noetherian domain R,
and let R∗ be the x-adic completion of R. Let τ = {τ1, . . . , τn} be a set of elements
of R∗ that are algebraically independent over K = Q(R). Assume that nonzero
elements of R[τ ] are regular elements in R∗. Let D := K(τ)∩R∗ be the Intersection
Domain of Inclusion Construction

4.4.1
5.3.

Assume that I is a proper ideal of R∗ and P∩R = (0), for each associated prime
P of R∗/I. Let C = K∩(R∗/I) be the Intersection Domain of Homomorphic Image
Construction

4.4.2
17.2 and let E be the Approximation Domain of Definition

4.5.5
17.10

corresponding to the ideal I of R∗.
insforhirem Remark 17.34. Assume Setting

insforhiset
17.33. Then:

(1) By Noetherian Flatness Theorem
11.3.25
6.3.1, the extension R[τ1, . . . , τn] ↪→

R∗[1/x] is flat ⇐⇒
D = K(τ1, . . . , τn) ∩R∗

is a Noetherian Limit Intersection Domain.
2See Definition

NLIDdef
6.4.
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(2) By Noetherian Flatness Theorem
11.3.2
17.13.1, the map

ϕ : R ↪→ (R∗/I)[1/x]

is flat ⇐⇒ C = K ∩ (R∗/I) is a Noetherian Limit Intersection Domain, that is,
C = E.

Theorem
insforhi
17.35 uses Insider Construction

16.1.1
10.7 and Homomorphic Image Con-

struction
4.4.2
17.2 to obtain conditions that imply the flatness of ϕ : R ↪→ (R∗/I)[1/x].

Theorem 17.35. Assume Setting
insforhiset
17.33 and that R[τ ] ↪→ R∗[1/x] is flat.3 Letinsforhi

L = I ∩R[τ ], and consider the following extensions:

R
β
↪→ R[τ ]/L

θ
↪→ (D/(I ∩D))[1/x]

α
↪→ (R∗/I)[1/x].

Let ψ := θ ◦ β : R ↪→ (D/(I ∩D))[1/x] and
ϕ := α ◦ θ ◦ β = α ◦ ψ : R ↪→ (R∗/I)[1/x].

Then:
(1) α is faithfully flat and θ is flat.
(2) If β is flat, then ψ is flat.
(3) ψ is flat ⇐⇒ ϕ : R ↪→ (R∗/I)[1/x] is flat.
(4) If β is flat or ψ is flat, then C is a Noetherian Limit Intersection Domain.

Proof. For item 1, since D is an Approximation Domain, Construction Prop-
erties Theorem

11.2.51
5.14.

Rt1/z
4 implies D[1/x] is a localization of R[τ ] and the x-adic com-

pletion of D is R∗. Noetherian Flatness Theorem
11.3.25
6.3.1 and D is a Noetherian Limit

Intersection Domain imply the extension D ↪→ R∗ is a faithfully flat extension. It
follows that I ∩ D = (I ∩ D)R∗ ∩ D. Also D Noetherian implies D/(I ∩ D) is
Noetherian; hence α′ : D/(I ∩D) ↪→ R∗/I is faithfully flat. By Fact

tensorflat
2.38,

α : (D/(I ∩D))[1/x] ↪→ (R∗/I)[1/x]

is faithfully flat since adjoining 1/x is the same as tensoring with R[1/x].
Since D[1/x] is a localization of R[τ ], it follows that

(D/(I ∩D))[1/x] = D[1/x]/(I ∩D)D[1/x])

is a localization of R[τ ]/L. Thus θ : R[τ ]/L ↪→ (D/(I ∩ D))[1/x] is flat, and so
item 1 holds.

Flatness of β and transitivity of flatness imply flatness of ψ = θ◦β. This proves
items 2. By Remarks

remflat
2.37.

flfl
13 and

remflat
2.37.

flff3
15, the map ψ is flat if and only if ϕ = α ◦ψ

is flat. This proves item 3.
For item 4, β is flat or ψ is flat implies that ϕ is flat, by items 2 and 3. By

Remark
insforhirem
17.34.2, ϕ is flat implies C = K∩(R∗/I) is a Noetherian Limit Intersection

Domain, and so item 4 holds. □
insforhicor Corollary 17.36. Assume the notation of Theorem

insforhi
17.35. Consider the fol-

lowing extension where ϕ is the composite map:

(
insforhicor
17.36.e1) ϕ : R

β
↪→ R[τ ]/L

θ
↪→ (D/(I ∩D))[1/x]

α
↪→ (R∗/I)[1/x].

(1) Let q∗ ∈ SpecR∗ with x /∈ q∗ and I ⊆ q∗. Then the following statements
are equivalent:
(a) β(q∗∩R[τ ]) : R ↪→ R[τ ](q∗∩R[τ ])/L(q∗∩R[τ ]) is flat.

3It follows that D is a Noetherian Limit Intersection Domain by Remark
insforhirem
17.34.1.
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(b) ψ(q∗∩D) = θ(q∗∩D) ◦β(q∗∩R[τ ]) : R ↪→ D(q∗∩D)/(I ∩D)D(q∗∩D) is flat.
(c) The composite extension ϕq∗ : R ↪→ R∗q∗/IR∗q∗ is flat.
(d) βx : R ↪→ (R[τ ]/L)[1/x] is flat.

(2) The non-flat loci of the maps in Equation
insforhicor
17.36.e1 are closed and defined

by ideals as follows:
(a) The non-flat locus of β : R ↪→ R[τ1, . . . , τn]/L is closed and defined

by an ideal F of (R[τ1, . . . , τn]/L).
(b) The non-flat loci of ϕ, ψ, and βx are also defined by F .

Proof. For each q∗ ∈ SpecR∗ with x /∈ q∗ and I ⊆ q∗, define the following
extensions involving localizations of the extension of Equation

insforhicor
17.36.e1 with ϕq∗ as

the composite map:
(
insforhicor
17.36.e2)

ϕq∗ : R
β(q∗∩R[τ])

↪→ R[τ ](q∗∩R[τ ])

θ(q∗∩D)

↪→ D(q∗∩D)/(I ∩D)D(q∗∩D)

αq∗
↪→ R∗q∗/IR∗q∗ .

For part 1, Theorem
insforhi
17.35 implies that the local maps αq∗ , θq∗∩D and there-

fore also αq∗ ◦ θq∗∩D, for q∗ ∈ SpecR∗, are faithfully flat. Equation
insforhicor
17.36.e2,

Remarks
remflat
2.37.

flfl
13 and

remflat
2.37.

flff3
15, and the faithful flatness of θq∗∩D together imply

β(q∗∩R[τ ]) is flat ⇐⇒ ψq∗∩D is flat.
Thus statements a and b are equivalent. Similarly αq∗ faithfully flat implies that

ψq∗∩D is flat ⇐⇒ ϕq∗ is flat,
and so statements b and c are equivalent. Statement a is equivalent to statement
d, since (R[τ1, . . . , τn]/L)[1/x] is a localization of R[τ1, . . . , τn]/L.

For statement a of part 2, the extension β : R ↪→ (R[τ1, . . . , τn]/L)[1/x] has
finite type. By Theorem

Mnflthm
2.42, the non-flat locus of β is closed and defined by

F := ∩{p/L | p ∈ Spec(R[τ ]), x /∈ p, L ⊆ p and βp is not flat},
where βp : R ↪→ (R[τ ]/L)(p/L) = R[τ ]p/Lp. Thus statement a of part 2 holds.

Statement b of part 2 now follows from Proposition
nflext
2.43 and Equation

insforhicor
17.36.e1,

since α and α ◦ ϕ are flat. □
insforhiexc Proposition 17.37. Assume Setting

insforhiset
17.33, and also assume that R is an ex-

cellent local domain. Let ψ = θ◦β : R ↪→ (D/(I∩D))[1/x], as in Equation
insforhicor
17.36.e1.

Then:
(1) If ψ is flat and I is a radical ideal, then C is analytically unramified.
(2) If ψ is smooth, then the formal fibers of C are geometrically regular.
(3) If ψ is smooth and C∗ = R∗/I is equidimensional, then C is excellent.

Proof. For item 1, since ψ is flat, C is a Noetherian Limit Intersection Domain
by Theorem

insforhi
17.35.4. Since R is excellent, the rings R∗ and C∗ = R∗/I are excellent

by Remarks
3.435
3.48. Since I is a radical ideal, C∗ is reduced. Since C∗ is excellent,

C∗ is Nagata, and so condition 2 of the Rees Finite Integral Closure Theorem
3.38.6
3.21

holds. By the equivalence of conditions 1 and 2 in Theorem
3.38.6
3.21, C∗ is analytically

unramified. In other words, Ĉ∗ = Ĉ is reduced. Hence C is analytically unramified.
For item 2, let p ∈ SpecC. First assume x /∈ p. Then C[1/x] ⊆ Cp implies

that Cp = R(p∩R), by Construction Properties Theorem
11.2.4
17.11.5a. Let q ∈ Spec Ĉ

be such that q ∩ C = p. By localizing Equation
insforhicor
17.36.e1, it follows that:

Cp = R(p∩R)

ψ(q∩(D/(I∩D))

↪→ D/(I ∩D)(q∩(D/(I∩D))

α(q∩C∗)

↪→ C∗(q∩C∗)

δ
↪→ Ĉq,
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where δ is the inclusion map. Also (D/(I ∩D))(q∩(D/(I∩D)) is a further localization
of (D/(I ∩ D))[1/x], which is a localization of R[τ ]/(I ∩ (R[τ ]) by Construction
Properties Theorem

11.2.51
5.14.

Rt1/z
4, and hence is excellent. Thus (D/(I∩D))(q∩(D/(I∩D)) is

excellent, and ̂(D/(I ∩D))(q∩(D/(I∩D)) = Ĉq. Thus the map γ = δ ◦α(q∩C∗) shown
in the equation below is faithfully flat with geometrically regular fibers:

Cp

ψ(q∩(D/(I∩D))

↪→ (D/(I ∩D))(q∩(D/(I∩D))

γ
↪→ Ĉq

Also ψ(q∩(D/(I∩D)) is smooth and hence regular. Thus γ ◦ψ(q∩(D/(I∩D)) is regular,
and so the formal fiber over p is geometrically regular.

Assume x ∈ p ∈ SpecC, and again let q ∈ Spec Ĉ be such that q∩C = p. Then
C/xC = C∗/xC∗; see Remarks

3.38.0
3.3.

R*P**
6. Thus p/xC = p∗/xC∗, for some prime ideal

p∗ of C∗ = R∗/I. Therefore

κ(p) = Q(C/p) = Q(C∗/p∗) = κ(p∗), and pC∗ = p∗.

Since C∗ is excellent, the formal fiber Ĉ∗q/p∗Ĉ∗q = Ĉq/pĈq is an RLR. For every
finite extension field F of κ(p) = κ(p∗), the ring (Ĉq/pĈq)⊗C F = (Ĉq/p

∗Ĉ)⊗C∗ F
is a Noetherian regular ring. Thus the formal fiber over p is geometrically regular.
This completes the proof of item 2.

For item 3, by Definition
exceld
8.22 and item 2, it suffices to show that C is universally

catenary. Let d = dimC, then d = dimC∗ = dim Ĉ by Remark
3.38.0
3.3.

N*Jff
4. Since C∗ is

equidimensional, dim(C∗/p∗) = d for every minimal prime ideal p∗ of C∗. Since C∗
is excellent and hence universally catenary, Ratliff’s Equidimension Theorem

15.2.1
3.26

implies the completion Ĉ/p∗Ĉ of C∗/p∗ is equidimensional. Hence dim(Ĉ/p̂) =

dim(C∗/p∗) = d for every prime ideal p̂ of Ĉ that is minimal over p∗Ĉ.
Let p̂ be a minimal prime ideal of Ĉ. Since Ĉ is flat over C∗, p̂ ∩ C∗ = p∗ is a

minimal prime of C∗; see Remark
remflat
2.37.

flgd
10. It follows that dim(Ĉ/p̂) = d. Hence Ĉ

is equidimensional. Therefore C is universally catenary. □

Corollary
insforhic
17.39 yields a procedure for constructions of examples using Pro-

totype Theorem
11.4.1a
10.2 and Insider Construction

16.1.1
10.7 together with Homomorphic

Image Construction
4.4.2
17.2. The first part of the setting for Corollary

insforhic
17.39 is the

same as for Corollary
16.3.2c
10.10, an application of Insider Construction

16.1.1
10.7.

insforhicset Setting 17.38. Let x and y = {y1, . . . , yr} be indeterminates over a field k, let
R = k[x, y](x,y) or R = k[x, y], and let R∗ be the x-adic completion of R. Let τ =

τ1, . . . , τn be elements of xk[[x]] ⊆ R∗ that are algebraically independent over k[x],
and let D = k(x, y, τ) ∩ R∗ be the Protoype of Definition

prodef
4.28 or Equation

11.4.1set
10.1.b.

Let f = f1, . . . , fm ∈ R[τ ] be algebraically independent over R.
Assume P∩R = (0), for every P ∈ Ass(R∗/(f)R∗). Apply Homomorphic Image

Construction
4.4.2
17.2: let C = k(x, y) ∩ (R∗/(f)R∗) be the Intersection Domain cor-

responding to I := (f)R∗; let E be the Approximation Domain of Definition
4.5.5
17.10

corresponding to the ideal I of R∗. Let L = I ∩ R[τ ], and let β, θ and α be the
inclusion maps shown

R
β
↪→ R[τ ]

L

θ
↪→
( D

I ∩D
)
[
1

x
]
α
↪→
(R∗
I

)
[
1

x
],

insforhic Corollary 17.39. Assume Setting
insforhicset
17.38. Then:



EXERCISES 229

(1) If either of the maps

ψ = θ ◦ β : R ↪→
( D

I ∩D
)
[
1

x
] or β : R ↪→

( R[τ ]

I ∩R[τ ]
)
[
1

x
],

is flat, then C = k(x, y) ∩ (R∗/IR∗) is a Noetherian Limit Intersectin
Domain.

(2) Assume R = k[x, y](x,y) and the ideal I is equidimensional. If ψ is smooth,
then C is excellent.

Proof. Item 1 follows from Theorem
insforhi
17.35.4, and item 2 follows from Propo-

sition
insforhiexc
17.37.3. □

Exercises
exer5.1 (1) Let A be an integral domain and let A ↪→ B be an injective map to an extension

ring B. For an ideal I of B, prove that the following are equivalent:
(i) The induced map A→ B/I is injective, and each nonzero element of A is

regular on B/I.
(ii) The field of fractions Q(A) of A naturally embeds in the total quotient ring
Q(B/I) of B/I.

If B is Noetherian, prove that conditions (i) and (ii) are also equivalent to the
following condition:
(iii) For each prime ideal P of B that is associated to I we have P ∩A = (0).

exer5.4 (2) Let A be an integral domain and let A ↪→ B be an injective map to an extension
ring B. Let I be an ideal of B such that I ∩A = (0) and every nonzero element
of A is a regular element on B/I. Let C := Q(A) ∩ (B/I).
(i) Prove that C = {a/b | a, b ∈ A, b 6= 0 and a ∈ I + bB }.
(ii) Assume that J ⊆ I is an ideal of B such that every nonzero element of A

is a regular element on B/J . Let D := Q(A)∩ (B/J). Prove that D ⊆ C.
Suggestion: Item ii is immediate from item i. To see item i, observe that
bC = b(B/I) ∩Q(A), and a ∈ bC ⇐⇒ a ∈ b(B/I) ⇐⇒ a ∈ I + bB.

(3) For the strictly descending chain of one-dimensional local domains
A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·

given in Example
ch8example
17.18 of birational extensions of R = k[x, y], prove that

D :=
⋂∞
n=1An = R(x,y)R.

Suggestion: Since nn ∩ R = (x, y)R, we have R(x,y)R ⊂ An for each n ∈ N.
By Exercise

exer5.4
2, the ring An may be described as
An = { a/b | a, b ∈ R, b 6= 0 and a ∈ In + bR∗ }.

Show that a ∈ In + bR∗ for all n ∈ N if and only if a/b ∈ R(x,y)R.
(4) Assume the setting of Frontpiece Notation

4.5.4
17.7 and Definition

4.5.5
17.10. If J is

a proper ideal of B, prove that JB∗ is a proper ideal of B∗, where B∗ is the
x-adic completion of B.

(5) Assume the setting of Frontpiece Notation
4.5.4
17.7, and let W denote the set of

elements of R∗ that are regular on R∗/I. Prove that the natural homomorphism
π : R∗ → R∗/I extends to a homomorphism π :W−1R∗ →W−1(R∗/I).
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(6) Describe Example
11.4.3
17.28.4 in terms of Inclusion Construction

4.4.1
5.3. In particular,

determine the appropriate base ring R for this construction.



CHAPTER 18

Catenary local rings with geometrically normal
formal fibers May 29 2020catsec

This chapter concerns the catenary property for a Noetherian local ring (R,m)
having geometrically normal formal fibers.1 Recall that a ring R is catenary if, for
every pair of comparable prime ideals P ⊂ Q of R, every saturated chain of prime
ideals from P to Q has the same length. The ring R is universally catenary if
every finitely generated R-algebra is catenary. From Definition

3.389
3.39, the ring R has

geometrically normal, respectively, geometrically regular, formal fibers if, for each
prime P of R and for each finite algebraic extension k′ of the field k(P ) := RP /PRP ,
the ring R̂ ⊗R k′ is normal, respectively, regular. By Remark

reghomnormal
3.42, regular fibers

are normal.
By Corollary

15.2.3
18.6.1, if the ring (R,m) has geometrically normal formal fibers,

then the Henselization Rh of R is universally catenary.2 Relations among the
catenary and universally catenary properties of R and the fibers of the map R ↪→ Rh

are given in Section
15.2
18.2. For each integer n ≥ 2, Example

15.4.3
18.20 of Section

15.4
18.5

provides an example of a catenary Noetherian local integral domain of dimension
n that has geometrically regular formal fibers and is not universally catenary. A
more detailed summary of this chapter is given in Section

15.1
18.1.

We thank M. Brodmann and R. Sharp for raising a question on catenary and
universally catenary rings that motivated our work in this chapter.

18.1. History, terminology and summary
15.1

Krull proves in
Krull
[108] that every integral domain that is a finitely generated al-

gebra over a field is catenary. Cohen proves in
Co
[36] that every complete Noetherian

local ring is catenary. These results motivated the question of whether every Noe-
therian ring (or equivalently every Noetherian local integral domain) is catenary.
Nagata answers this question by giving an example of a family of non-catenary
Noetherian local domains in

N4
[135]; see also

N2
[138, Example 2, pages 203-205]. Each

domain in this family is not integrally closed and has the property that its integral
closure is catenary and Noetherian.

These examples of Nagata motivated the question of whether the integral clo-
sure of a Noetherian local domain is catenary. Work on this question continued

1The material in this chapter comes from a paper we wrote that is included in a volume
dedicated to Shreeram S. Abhyankar in celebration of his seventieth birthday. In his mathematical
work Ram has opened up many avenues. In this chapter we are pursuing one of these related to
power series and completions.

2The terms “Henselization” and “Henselian” are defined in Remarks
Hensrmks
3.32.

Hzation
1 and Defini-

tion
Hensel
3.30.

231
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for over 20 years with Ratliff being a leading researcher in this area,
Ra
[152],

Ra2
[153].

. The following terminology is used in
N2
[138, page 122] and

Ra2
[153, page 5]:

Definition 18.1. A ring R satisfies the chain condition for prime ideals if for
every pair p ( q of prime ideals in R and every integral extension R′ of Rq/pRq

every maximal chain of prime ideals in R′ has length equal to dimR′

Ratliff in
Ra2
[153, (3.3.2), page 23] states the chain conjecture as follows:

chainconj The Chain Conjecture 18.2. Let A′ be the derived normal ring of a Noe-
therian integral domain A. Then A′ satisfies the chain condition for prime ideals.

In 1980, T. Ogoma resolved this question by establishing the existence of a
3-dimensional Nagata local domain that is integrally closed but not catenary

O1
[147].

Heitmann in
H4
[99] later gives an alternate presentation of Ogoma’s Example. We

present a version of Ogoma’s Example in Example
ogomaeg
19.13.

Heitmann in
H2
[97] obtains the following notable characterization of the complete

Noetherian local rings that are the completion of a UFD. He proves that every
complete Noetherian local ring (T, n) that has depth at least two 3 and has the
property that no element in the prime subring of T is a zerodivisor on T is the
completion of a Noetherian local UFD. Let x, y, z, w be indeterminates over a field
k, and let T := k[[x, y, z, w]]/(xy, xz). Heitmann uses his result to establish the
existence of a 3-dimensional Noetherian local UFD (R,m) having completion T . It
follows that R is catenary but not universally catenary

H2
[97, Theorem 9].

Section
15.2
18.2 includes conditions for a Noetherian local ring (R,m) to be uni-

versally catenary. Theorem
15.2.6
18.8 asserts that R is universally catenary if and only

if the set ΓR is empty, where
ΓR := {P ∈ Spec(Rh) | dim(Rh/P ) < dim(R/(P ∩R))}.

Moreover the subset ΓR of SpecRh is stable under generalization in the sense that,
if Q ∈ ΓR and P ∈ SpecRh is such that P ⊆ Q, then P ∈ ΓR. Thus ΓR satisfies a
“strong” Going-down property.

Theorem
15.2.7
18.9 states that a Noetherian local domain R having geometrically

normal formal fibers is catenary but is not universally catenary if and only if the
set ΓR is nonempty and dim(Rh/P ) = 1 for each prime ideal P in ΓR. In this
case, ΓR is a subset of the minimal primes of Rh. Since Rh is Noetherian, ΓR is
finite. Thus, as observed in Corollary

15.2.8
18.10, if R is catenary but not universally

catenary, then there exists a minimal prime q̂ of the m-adic completion R̂ of R
such that dim(R̂/q̂) = 1. If R is catenary, each minimal prime q̂ of R̂ such that
dim(R̂/q̂) 6= dim(R) must have dim(R̂/q̂) = 1.

Theorem
15.3.6
18.12 gives conditions such that the flatness and Noetherian properties

for the integral domains associated with ideals I1, . . . , In of an ideal-adic completion
R∗ in Homomorphic Image Construction

4.4.2
17.2 transfer to the integral domain asso-

ciated with their intersection I = I1 ∩ · · · ∩ In. Similarly, Theorem
15.5.2
18.14 contains

conditions so that geometrically regular formal fibers for the constructed ring of
ideals I1, . . . , In transfer to rings constructed using the intersection I = I1∩· · ·∩In
have geometrically regular formal fibers. In Section

15.4
18.5, Theorem

15.3.6
18.12 is applied

to produce Noetherian local domains that are not universally catenary. Section
15.5
18.6

concerns the depths of the constructed rings.

3See Definition
depthM
3.35.
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18.2. Geometrically normal formal fibers and the catenary property15.2

Throughout this section (R,m) is a Noetherian local ring with m-adic comple-
tion R̂. The ring R is formally equidimensional, or in other terminology quasi-
unmixed, provided dim(R̂/q̂) = dim R̂ for every minimal prime q̂ of R̂. Ratliff’s
Equidimension Theorem

15.2.1
3.26, that R is universal catenary if and only if R is for-

mally equidimensional, is crucial for our work. We use Theorem
15.2.1
3.26 to prove:

15.2.2 Theorem 18.3. Let (R,m) be a Henselian Noetherian local ring having geo-
metrically normal formal fibers. Then:

(1) For each prime ideal P of R, the extension PR̂ to the m-adic completion
of R is also a prime ideal.

(2) The ring R is universally catenary.

Proof. Item 2 follows from item 1 and Theorem
15.2.1
3.26. In order to prove item 1,

observe that the completion of R/P is R̂/P R̂, and R/P is a Noetherian Henselian
local integral domain having geometrically normal formal fibers. Pass from R to
R/P ; then for item 1 it suffices to prove: If R is a Henselian Noetherian local
integral domain having geometrically normal formal fibers, then the completion R̂
of R is an integral domain.

For this, assume that R as above is an integral domain. By Definition
3.389
3.39,

geometrically normal formal fibers are geometrically reduced. Let U be the nonzero
elements of R; then the ring U−1R̂ is reduced. Every element of U is a regular
element of R̂ by the flatness of R̂ over R, and so U−1R̂ has the same total quotient
ring as R̂. Thus R̂ is reduced. By Theorem

naglocequiv
8.19, R is Nagata, and so the integral

closure R of R is a finitely generated R-module by Definition
Nag
2.20. Moreover, since

R is Henselian, R is local; see Remark
Hensrmks
3.32.5. Since R is an integrally closed integral

domain, R is normal. The completion R̂ of R is R̂⊗R R by
N2
[138, (17.8)].

The assumption that the formal fibers of R are normal implies that the formal
fibers of R are normal: To see this, let P ∈ SpecR and let P = P ∩R. Since R is a
finite R-module, k(P ) = RP /PRP is a finite k(P )-module, where k(P ) = RP /PRP .
Thus k(P ) is a finite field extension of k(P ). Since R has generically normal formal
fibers,

R̂⊗R k(P )⊗k(P ) k(P ) = R̂⊗R k(P ) = R̂⊗R R⊗R k(P ) = R̂⊗R k(P )

is a normal ring. That is, for each P ∈ SpecR, the fiber ring of the map ϕ : R→ R̂
over P is normal. Since R is a normal ring and ϕ is a flat local homomorphism with
normal fibers, it follows that R̂ is normal by Theorem

forextreg
3.33.3. Since R̂ is local, R̂ is

an integral domain, by Remark
normalnoeth
2.3. Also R̂ is a flat R-module, and so R̂ = R̂⊗RR

is a subring of R̂ = R̂ ⊗R R. Therefore R̂ is an integral domain, as desired for the
completion of the proof of Theorem

15.2.2
18.3. □

15.2.5 Remark 18.4. Let (R,m) be a Noetherian local domain. An interesting result
proved by Nagata establishes the existence of a one-to-one correspondence between
the minimal primes of the Henselization Rh of R and the maximal ideals of the
integral closure R of R; see Remarks

Hensrmks
3.32.

Hid3
9. Moreover, if a maximal ideal m of R

corresponds to a minimal prime q of Rh, then the integral closure of the Henselian
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local domain Rh/q is the Henselization of Rm; see
N2
[138, Ex. 2, page 188],

N3
[132].

Therefore ht(m) = dim(Rh/q).

15.2.55 Remark 18.5. Let (R,m) be a Noetherian local ring, let R̂ denote the m-adic
completion of R, and let Rh denote the Henselization of R. The canonical map
f : R ↪→ Rh is a regular map with zero-dimensional fibers by Remarks

Hensrks
8.28.2, and

R̂ is also the completion of Rh with respect to its unique maximal ideal mh = mRh

by Remarks
Hensrmks
3.32.

Hzation
1. The canonical maps are displayed below:

R
f
↪→ Rh

g
↪→ R̂,

Then g ◦ f : R ↪→ R̂ has (geometrically) normal fibers if and only if g : Rh ↪→ R̂
has (geometrically) normal fibers.

To see this, let P be a prime ideal of R and let U = R \ P . Then
PRh = P1 ∩ · · · ∩ Pn

where the Pi are the minimal prime ideals of PRh. Since R̂ is faithfully flat over
Rh, finite intersections distribute over this extension, and so PR̂ = ∩ni=1(PiR̂).
Let S = U−1(R̂/P R̂) denote the fiber over P in R̂ and let qi = PiS. The ideals
q1, . . . , qn of S intersect in (0) and are pairwise comaximal because for i 6= j,
(Pi + Pj) ∩ U 6= ∅. Therefore S ∼=

∏n
i=1(S/qi). By Remark

normalnoeth
2.3, a Noetherian ring

is normal if and only if it is a finite product of normal Noetherian domains. Thus
the fiber over P in R̂ is normal if and only if the fiber over each of the Pi in R̂ is
normal.

To see g ◦ f : R ↪→ R̂ has geometrically normal fibers if and only if g : Rh ↪→ R̂
has geometrically normal fibers, observe that a geometrically normal morphism is
an example of a P -morphism, in the sense of Grothendieck in

G
[63, Vol. 24, Example

(7.3.8) (vii′), p. 194]. Thus, since f is a regular morphism and is faithfully flat, it
follows by

G
[63, Vol. 24, (7.3.4), (PI) and (PII), p. 193] that g has geometrically

normal fibers if and only if g ◦ f has geometrically normal fibers.

15.2.3 Corollary 18.6. Let R be a Noetherian local domain having geometrically
normal formal fibers. Then

(1) The Henselization Rh of R is universally catenary.
(2) If the integral closure R of R is again local, then R is universally catenary.

In particular, if R is a normal Noetherian local domain having geometrically normal
formal fibers, then R is universally catenary.

Proof. For item 1, the Henselization Rh of R is a Noetherian local ring having
geometrically normal formal fibers by Remark

15.2.55
18.5, and so Theorem

15.2.2
18.3 implies

that Rh is universally catenary. For item 2, if the integral closure of R is local, then,
by Remark

15.2.5
18.4, the Henselization Rh has a unique minimal prime. Since Rh is uni-

versally catenary, the completion R̂ is equidimensional by Ratliff’s Equidimensional
Theorem

ratliff
3.25, and hence R is universally catenary. □

Theorem
15.2.4
18.7 relates the catenary property of R to the height of maximal ideals

in the integral closure of R.

15.2.4 Theorem 18.7. Let (R,m) be a Noetherian local domain of dimension d and
let R denote the integral closure of R. If R contains a maximal ideal m such that
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ht(m) = r 6∈ {1, d}, then R has a saturated chain of prime ideals of length ≤ r.
Hence R is not catenary in this case.

Proof. Since R has only finitely many maximal ideals
N2
[138, (33.10)], there

exists b ∈ m such that b is in no other maximal ideal of R. Let R′ = R[b] ⊆ R and
let m′ = m ∩ R′. Notice that m is the unique prime ideal of R that contains m′.
We show that htm′ = r: Let S = R′ \m′. The extension R′m′ ↪→ S−1R is integral.
Since b ∈ m′ and the only maximal ideal of R that contains b is m, the ring S−1R is
local with maximal ideal m(S−1R). Since S ⊆ R \m and S−1R is integrally closed,
we have S−1R = Rm. Thus R′m′ ↪→ Rm is integral, and so dim(R′m′) = dim(Rm),
by the Going-up Theorem

M
[123, Theorem 9.4]. Therefore htm′ = r.

Since R′ is a finitely generated R-module and is birational over R, there exists
a nonzero element a ∈ m such that aR′ ⊆ R. It follows that R[1/a] = R′[1/a]. The
maximal ideals of R[1/a] have the form PR[1/a], where P ∈ SpecR is maximal
with respect to not containing a. For P ∈ SpecR such that PR[1/a] is maximal
in R[1/a], there are no prime ideals strictly between P and m by Theorem

krullpit
2.23. If

htP = h, then there exists a saturated chain (0) ( · · · ( P ( m of prime ideals
of R of length h + 1. Thus, to show R is not catenary, it suffices to establish the
existence of a maximal ideal of R[1/a] having height different from d − 1. Since
R[1/a] = R′[1/a], the maximal ideals of R[1/a] correspond to the prime ideals P ′
in R′ maximal with respect to not containing a. Since htm′ > 1, there exists c ∈ m′

such that c is not in any minimal prime of aR′ nor in any maximal ideal of R′ other
than m′. Hence there exist prime ideals of R′ containing c and not containing a.
Let P ′ ∈ Spec(R′) be maximal with respect to c ∈ P ′ and a 6∈ P ′. Then P ′ ⊂ m′,
so htP ′ ≤ r − 1 < d − 1. It follows that there exists a saturated chain of prime
ideals of R of length ≤ r, and hence R is not catenary. □

15.2.6 Theorem 18.8. Let (R,m) be a Noetherian local integral domain having geo-
metrically normal formal fibers and let Rh denote the Henselization of R. Consider
the set

ΓR := {P ∈ Spec(Rh) | dim(Rh/P ) < dim(R/(P ∩R))}.
Then the following statements hold.

(1) For p ∈ Spec(R), the ring R/p is not universally catenary if and only if
there exists P ∈ ΓR such that p = P ∩R.

(2) The set ΓR is empty if and only if R is universally catenary.
(3) If Q ∈ ΓR, then each prime ideal P of Rh such that P ⊆ Q is also in ΓR,

that is, the subset ΓR of SpecRh is stable under generalization.
(4) If p ⊂ q are prime ideals in R and if there exists Q ∈ ΓR with Q∩R = q,

then there also exists P ∈ ΓR with P ∩R = p and P ⊆ Q.

Proof. The map of R/p to its m-adic completion R̂/pR̂ factors through the
Henselization Rh/pRh. Since R ↪→ R̂ has geometrically normal fibers, so does the
map Rh ↪→ R̂ by Remark

15.2.55
18.5. Theorem

15.2.2
18.3 implies that each prime ideal P

of Rh extends to a prime ideal PR̂. Therefore, by Theorem
15.2.1
3.26, the ring R/p is

universally catenary if and only if Rh/pRh is equidimensional if and only if there
does not exist P ∈ ΓR with P ∩R = p. This proves items 1 and 2.



236 18. CATENARY RINGS AND NORMAL FIBERS

For item 3, let P ∈ SpecRh be such that P ⊂ Q, and let ht(Q/P ) = n. Since
the fibers of the map R ↪→ Rh are zero-dimensional, the contraction to R of an
ascending chain of primes

P = P0 ( P1 ( · · · ( Pn = Q

of Rh is a strictly ascending chain of primes from p := P ∩R to q := Q∩R. Hence
ht(q/p) ≥ n. Since Rh is catenary, we have

dim(Rh/P ) = n+ dim(Rh/Q) < n+ dim(R/q) ≤ dim(R/p),

where the strict inequality is because Q ∈ ΓR. Therefore P ∈ ΓR.
It remains to prove item 4. The extension R ↪→ Rh is fairhfully flat, and so the

extension satisfies the Going-down property, by Remark
remflat
2.37.

flgd
10. Thus there exists

a prime ideal P of Rh such that P ⊆ Q and P ∩R = p. By item 3, P ∈ ΓR. □

Recall that the dimension of a prime ideal p of a ring R refers to the Krull
dimension of the factor ring, that is, the dimension of p is dim(R/p).

15.2.7 Theorem 18.9. Let (R,m) be a Noetherian local integral domain having geo-
metrically normal formal fibers and let ΓR be defined as in Theorem

15.2.6
18.8. The ring

R is catenary but not universally catenary if and only if
(i) the set ΓR is nonempty, and
(ii) dim(Rh/P ) = 1, for each prime ideal P ∈ ΓR.

If these conditions hold, then each P ∈ ΓR is a minimal prime of Rh, and ΓR is a
finite nonempty open subset of SpecRh.

Proof. Assume that R is catenary but not universally catenary. By Theo-
rem

15.2.6
18.8, the set ΓR is nonempty and there exist minimal primes P of Rh such that

dim(Rh/P ) < dim(Rh). By Remark
15.2.5
18.4, if a maximal ideal m of R corresponds

to a minimal prime P of Rh, then ht(m) = dim(Rh/P ). Since R is catenary, Theo-
rem

15.2.4
18.7 implies that the height of each maximal ideal of the integral closure R of

R is either one or dim(R). Therefore dim(Rh/P ) = 1 for each minimal prime P of
Rh for which dim(Rh/P ) 6= dim(Rh). Item 4 of Theorem

15.2.6
18.8 implies each P ∈ ΓR

is a minimal prime of Rh and dim(Rh/P ) = 1.
For the converse, assume that ΓR is nonempty and each prime ideal W ∈ ΓR

has dimension one. Then R is not universally catenary by item 2 of Theorem
15.2.6
18.8.

By item 3 of Theorem
15.2.6
18.8, if W ∈ ΓR and V ∈ Spec(Rh) with V ( W , then

V ∈ ΓR. But then dim(Rh/W ) = 1 = dim(Rh/V ) is a contradiction. Therefore
every element of ΓR is a minimal prime ideal of Rh; by item 4 of Theorem

15.2.6
18.8

every element of ΓR lies over (0) in R.
To show R is catenary, it suffices to show for each nonzero nonmaximal prime

ideal p of R that ht(p) + dim(R/p) = dim(R)
M
[123, Theorem 31.4]. Let P be a

minimal prime ideal of pRh in Rh. Since Rh is flat over R with zero-dimensional
fibers, ht(p) = ht(P ). Thus P is nonzero and non-maximal. Let Q be a minimal
prime of Rh with Q ⊆ P . Then Q ∩ R = (0). We show Q 6∈ ΓR: If Q ∈ ΓR, then
dim(Rh/Q) = 1 by assumption. Thus 0 6= dim(Rh/P ≤ dim(Rh/Q) = 1, and so
Q = P . But P ∩ R = p 6= 0 and Q ∩ R = (0), a contradiction. Thus Q 6∈ ΓR, and
so dim(Rh/Q) = dim(Rh). Since Rh is catenary, ht(P ) + dim(Rh/P ) = dim(Rh).
Also P 6∈ ΓR, since P ∩ R 6= (0). Therefore dim(R/p) = dim(Rh/P ), and so
ht(p) + dim(R/p) = dim(R). Thus R is catenary. □
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15.2.8 Corollary 18.10. If R has geometrically normal formal fibers and is catenary
but not universally catenary, then there exist minimal prime ideals q of the m-adic
completion R̂ of R such that dim(R̂/q) = 1.

Proof. By Theorem
15.2.7
18.9, each prime ideal Q ∈ ΓR has dimension one and

is a minimal prime of Rh. Moreover, QR̂ := q is a minimal prime of R̂. Since
dim(Rh/Q) = 1, we have dim(R̂/q) = 1. □

18.3. Flatness for the intersection of finitely many ideals15.3

Assume the setting and notation of Homomorphic Image Construction
4.4.2
17.2 and

Noetherian Flatness Theorem
11.3.2
17.13:

homimnftset Setting and Notation 18.11. Let R be an integral domain with field of frac-
tions K := Q(R). Let x ∈ R be a nonzero nonunit such that

⋂
n≥1 x

nR = (0), the
x-adic completion R∗ is Noetherian, and x is a regular element of R∗. Let I be an
ideal of R∗ having the property that p ∩ R = (0) for each p ∈ Ass(R∗/I). As in
Frontpiece Notation

4.5.4
17.7.2 and Definition

4.5.5
17.10.1, let

U :=

∞⋃
n=1

Un, B :=

∞⋃
n=1

Bn = (1 + xU)−1U, and A := K ∩ (R∗/I).

As shown in Noetherian Flatness Theorem
11.3.2
17.13, flatness of a certain map

is equivalent to B = A and B is Noetherian, for the ring B of Setting
homimnftset
18.11.

Theorem
15.3.6
18.12 gives conditions for this flatness and the Noetherian property to

transfer to an integral domain associated with an intersection of ideals.

15.3.6 Theorem 18.12. Assume Setting
homimnftset
18.11 for each of n ideals of R∗; thus R is an

integral domain with field of fractions K := Q(R), the element x ∈ R be a nonzero
nonunit such that

⋂
n≥1 x

nR = (0), the x-adic completion R∗ is Noetherian, and
x is a regular element of R∗, and I1, . . . , In are ideals of R∗ such that, for each
i ∈ {1, . . . , n}, each associated prime of R∗/Ii intersects R in (0). Also assume
the map R ↪→ (R∗/Ii)[1/x] is flat for each i and that the localizations at x of the
Ii are pairwise comaximal; that is, for all i 6= j, (Ii + Ij)R

∗[1/x] = R∗[1/x]. Let
I := I1 ∩ · · · ∩ In, A := K ∩ (R∗/I) and, for i ∈ {1, 2, . . . n}, let Ai := K ∩ (R∗/Ii).
Then

(1) Each associated prime of R∗/I intersects R in (0).
(2) The map R ↪→ (R∗/I)[1/x] is flat, and so the ring A is Noetherian and is

equal to its associated approximation ring B. The x-adic completion A∗ of
A is R∗/I, and the x-adic completion A∗i of Ai is R∗/Ii, for i ∈ {1, . . . , n}.

(3) The ring A∗[1/x] ∼= A∗1[1/x]× · · · ×A∗n[1/x]. If Q ∈ Spec(A∗) and x 6∈ Q,
then A∗Q is a localization of precisely one of the A∗i .

(4) A ⊆ A1∩· · ·∩An and ∩ni=1Ai[1/x] ⊆ AP for each P ∈ SpecA with x /∈ P .
Thus A[1/x] = ∩ni=1Ai[1/x].

Proof. By Construction Properties Theorem
11.2.4
17.11.4, the x-adic completion

A∗i of Ai is R∗/Ii. Since Ass(R∗/I) ⊆
⋃n
i=1 Ass(R∗/Ii), the condition on associated

primes of Noetherian Flatness Theorem
11.3.2
17.13 holds for the ideal I, so item 1 holds.

For item 2, the natural R-algebra homomorphism π : R∗ →
⊕n

i=1(R
∗/Ii) has

kernel I. Since (Ii + Ij)R
∗[1/x] = R∗[1/x], for all i 6= j, the localization of π at
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x is onto. Thus (R∗/I)[1/x] ∼=
⊕n

i=1(R
∗/Ii)[1/x] =

⊕n
i=1(A

∗
i )[1/x] is flat over R.

Therefore A is Noetherian and is equal to its associated approximation ring B, by
Noetherian Flatness Theorem

11.3.2
17.13, and A∗ = R∗/I is the x-adic completion of A,

by Theorem
11.2.4
17.11.4.

For item 3, if Q ∈ Spec(A∗) and x /∈ Q, then A∗Q is a localization of

A∗[1/x] ∼= A∗1[1/x]⊕ · · · ⊕ A∗n[1/x].

Every prime ideal of
⊕n

i=1A
∗
i [1/x] has the form QiA

∗
i [1/x]⊕

⊕
j ̸=iA

∗
j [1/x], where

Qi ∈ Spec(A∗i ) for a unique i ∈ {1, . . . , n}. It follows that A∗Q is a localization of
A∗i for precisely this i. That is, A∗Q = (A∗i )Qi

.
Since R∗/Ii is a homomorphic image of R∗/I, the ring A ⊆ Ai, for each i; see

Exercise
exer5.4
2 of Chapter

constrhomim
17. Let P ∈ SpecA with x /∈ P . Since A∗ = R∗/I is faithfully

flat over A, there exists P ∗ ∈ Spec(A∗) with P ∗ ∩ A = P . Then x /∈ P ∗ implies
A∗P∗ = (A∗i )P∗

i
, where P ∗i ∈ Spec(A∗i ) for some i ∈ {1, . . . , n}. Let Pi = P ∗i ∩ Ai.

Since AP ↪→ A∗P∗ and (Ai)Pi
↪→ (A∗i )P∗

i
are faithfully flat,

AP = A∗P∗ ∩K = (A∗i )P∗
i
∩K = (Ai)Pi ⊇ (Ai)[1/x],

by Remark
remflat
2.37.

ffint
9. It follows that

⋂n
i=1Ai[1/x] ⊆ AP . Thus

n⋂
i=1

Ai[1/x] ⊆
⋂
{AP | P ∈ SpecA and x /∈ P} = A[1/x].

Since A[1/x] ⊆ Ai[1/x], for each i, we have A[1/x] =
⋂n
i=1Ai[1/x]. □

18.4. Regular maps and geometrically regular formal fibers
15.6

Proposition
15.5.1
18.13 shows that certain regularity conditions on the base ring R

and the extension R ↪→ R∗/I in Noetherian Flatness Theorem
11.3.2
17.13 (Homomorphic

Image Version) yield geometrically regular formal fibers for the constructed ring A.

15.5.1 Proposition 18.13. Let R, x, R∗, A, B and I be as in Setting and Nota-
tion

homimnftset
18.11. Assume that the map ψP : RP∩R ↪→ (R∗/I)P is regular, for each

P ∈ Spec(R∗/I) with x /∈ P . Then A = B and moreover:
(1) A is Noetherian and the map A −→ A∗ = R∗/I is regular.
(2) If R is Noetherian semilocal with geometrically regular formal fibers and

x is in the Jacobson radical of R, then A has geometrically regular formal
fibers.

Proof. By Remark
remflat
2.37.

floc
1, flatness is a local property. Since regularity of a

map includes flatness, the map ψx : R ↪→ (R∗/I)[1/x] is flat. By Theorem
11.3.2
17.13,

the intersection ring A is Noetherian with x-adic completion A∗ = R∗/I. Hence
A −→ A∗ is flat.

Let Q ∈ Spec(A), let q = Q ∩R, let k(Q) denote the field of fractions of A/Q,
and let A∗QA∗ = (A \Q)−1A∗.

Case 1: x ∈ Q. Then R/q = A/Q = A∗/QA∗. By Equation
3.21d
3.29.0,

A∗ ⊗A k(Q) =
A∗QA∗

QA∗QA∗
=

AQ
QAQ

= k(Q).

Thus regularity holds in this case.
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Case 2: x /∈ Q. Let L be a finite algebraic field extension of k(Q). We show
the ring A∗⊗AL is regular. There is a natural embedding A∗⊗A k(Q) ↪→ A∗⊗AL.
Let W ∈ Spec(A∗ ⊗A L) and let W ′ =W ∩ (A∗ ⊗A k(Q)). We have maps

Spec(A∗ ⊗A k(Q))
θ,∼=→ Spec

( A∗QA∗

QA∗QA∗

)
and Spec

( A∗QA∗

QA∗QA∗

) ρ→ SpecA∗,

since A∗QA∗/QA∗QA∗ = A∗ ⊗A k(Q) by Equation
3.21d
3.29.0, and A∗ → A∗QA∗/QA∗QA∗ .

Let P be the prime ideal P := ρ(θ(W ′)) ∈ Spec(A∗); then P ∩A = Q.
By assumption the map

Rq ↪→ (R∗/I)P = A∗P

is regular. Since x /∈ Q, it follows that Rq = UQ∩U = AQ and that k(q) = k(Q).
Thus the ring A∗P ⊗AQ

L is regular. Therefore the localization(A∗ ⊗A L)W of
A∗P ⊗AQ

L is also regular.
For item 2, use a theorem of Rotthaus

R3
[158, (3.2), p. 179]: If R is a Noetherian

semilocal ring with geometrically regular formal fibers and I0 is an ideal of R
contained in the Jacobson radical of R, then the I0-adic completion of R also has
geometrically regular formal fibers; see also

M
[123, Remark 2, p. 260]. Thus R∗ has

geometrically regular formal fibers. Since the formal fibers of R∗/I are a subset of
the formal fibers of R∗, the map A∗ = R∗/I −→ Â = ̂(R∗/I) is regular. By item 1,
the map A→ A∗ is regular. The composition of two regular maps is regular

M
[123,

Thm. 32.1 (i)]. Therefore A has geometrically regular formal fibers, that is, the
map A −→ Â is regular. □

Theorem
15.5.2
18.14 describes conditions such that the property of regularity of

formal fibers for a Noetherian domain A = B of Setting
homimnftset
18.11 transfers to an

integral domain associated with an intersection of ideals.

15.5.2 Theorem 18.14. Let n be a positive integer, let R be a Noetherian integral
domain with field of fractions K, let x be a nonzero nonunit of R, and let R∗ denote
the x-adic completion of R. Let I1, . . . , In be ideals of R∗ and let I := I1 ∩ · · · ∩ In.
Assume that

(1) For each associated prime ideal P of each R∗/Ii, we have P ∩R = (0).
(2) R is semilocal with geometrically regular formal fibers and x is in the

Jacobson radical of R.
(3) Each (R∗/Ii)[1/x] is a flat R-module and, for each i 6= j, the ideals

IiR
∗[1/x] and IjR∗[1/x] are comaximal in R∗[1/x].

(4) For i = 1, . . . , n, Ai := K∩(R∗/Ii) has geometrically regular formal fibers.
Then A := K ∩ (R∗/I) is Noetherian and is equal to its approximation domain B,
and A has geometrically regular formal fibers.

Proof. Since R has geometrically regular formal fibers, it suffices to show, for
W ∈ Spec(R∗/I) with x 6∈W and W0 :=W ∩R, that RW0

−→ (R∗/I)W is regular,
by Proposition

15.5.1
18.13.2. As in Theorem

15.3.6
18.12,

(R∗/I)[1/x] = (R∗/I1)[1/x] ⊕ · · · ⊕ (R∗/In)[1/x].

It follows that (R∗/I)W is a localization of R∗/Ii for some i ∈ {1, . . . , n}. If
(R∗/I)W = (R∗/Ii)Wi , where Wi ∈ Spec(R∗/Ii), then RW0 = (Ai)Wi∩Ai and
(Ai)Wi∩Ai

−→ (R∗/Ii)Wi
is regular. Thus RW0

−→ (R∗/I)W is regular. □
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18.5. Examples that are not universally catenary15.4

This section includes non-excellent examples obtained using Inclusion Con-
struction Prototypes that are adjusted to the terminology of Homomorphic Image
Construction

4.4.2
17.2 as in Remark

incprothi
17.25.

The ring A of Example
11.4.5
18.15 is a two-dimensional Noetherian local domain

that birationally dominates a three-dimensional RLR. The ring A has geometrically
regular formal fibers, and is not universally catenary. This example is obtained via
an intersection of two ideals.

11.4.5 Example 18.15. Let k be a field of characteristic zero, and let x, y and z be
indeterminates over k. Let R = k[x, y, z](x,y,z), let K denote the field of fractions
of R, and let τ1, τ2, τ3 ∈ xk[[x]] be algebraically independent over K = k(x, y, z).
Let R∗ = k[y, z](y,z)[[x]], the x-adic completion of R. Apply Proposition

incprothip
17.26.2,

where the ideal I is the height-two prime ideal Q := (z − τ1, y − τ2)R∗, and then
where I is P := (z− τ3)R∗, a height-one prime ideal. Then A1 := K ∩ (R∗/P ) and
A2 := K ∩ (R∗/Q) are Noetherian domains of the form described in Remark

incprothi
17.25.

Thus (R∗/P )[1/x] and (R∗/Q)[1/x] are both flat over R. Here R∗/P ∼= k[y](y)[[x]]
and R∗/Q ∼= k[[x]]. The ring V := k[[x]] ∩ k(x, τ3) is a DVR, and the Intersection
Domain A1

∼= V [y](x,y) is a two-dimensional regular local domain that is a directed
union of three-dimensional RLRs. The Intersection Domain A2 is a DVR. By
Remark

incprothi
17.25.1d and the characteristic zero assumption, the intersection rings A1

and A2 are excellent.
Since τ1, τ3 ∈ xk[[x]], the ideal (z−τ1, z−τ3)R∗ has radical (x, z)R∗. Hence the

ideal P +Q is primary for the maximal ideal (x, y, z)R∗, and so, in particular, P is
not contained in Q. Let I be the ideal P ∩Q of R∗; the representation I = P ∩Q
is irredundant and Ass(R∗/I) = {P,Q}. Since P ∩ R = Q ∩ R = (0), the ring R
injects into R∗/I. Let A := K ∩ (R∗/I).

By Theorem
15.3.6
18.12.1, the inclusion R ↪→ (R∗/I)[1/x] is flat, the ring A is

Noetherian, A equals its Approximation Domain B and A is a localization of a
subring of R[1/x]. The map A ↪→ Â of A into its completion factors through
the map A ↪→ A∗ = R∗/I. Since R∗/I has minimal primes P/I and Q/I with
dimR∗/P = 2 and dimR∗/Q = 1, and since Â is faithfully flat over A∗ = R∗/I,
the ring Â is not equidimensional. It follows that A is not universally catenary
by Ratliff’s Equidimension Theorem

ratliff
3.25. By Remark

ucathom
3.27, every homomorphic

image of a regular local ring, or even of a Cohen-Macaulay local ring, is universally
catenary; thus A is not a homomorphic image of a regular local ring.

Finally we show that the ring A of Example
11.4.5
18.15 has geometrically regular

formal fibers; that is, the map φ : A ↪→ Â is regular. By the definition of R and
the observations above, A = B and A1 and A2 are excellent. Thus the hypotheses
of Theorem

15.5.2
18.14 are satisfied, and so A has geometrically regular formal fibers.

11.5.3 Remarks 18.16. The completion Â of the ring A of Example
11.4.5
18.15 has two

minimal primes, one of dimension one and one of dimension two. As we observe
above, A is not universally catenary by Ratliff’s Equidimension Theorem

15.2.1
3.26.

Another example of a Noetherian local domain that is not universally catenary but
has geometrically regular formal fibers is given by Grothendieck in

G
[63, (18.7.7),

page 144] using a gluing construction; also see Greco’s article
Greco
[62, (1.1)]. We obtain

rings similar to the ring A of Example
11.4.5
18.15 that have any finite number of minimal

prime ideals and that are not universally catenary in Examples
15.4.1
18.18-

15.4.3
18.20.
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ratnlaiexc Notes 18.17. We outline the general procedure used for the remaining exam-
ples of this section and give some justification here. Let n ∈ N and let R be a
localized polynomial ring R over a field in n + 1 variables, where x is one of the
variables. Use Proposition

incprothip
17.26.2 to obtain, for each i with 1 ≤ i ≤ n, a suitable

ideal Ii of the x-adic completion R∗ of R and an integral domain Ai inside R∗

associated to Ii so that the Ii and the Ai fit the hypotheses of Theorem
15.3.6
18.12, and

so that the ring A of Theorem
15.3.6
18.12 associated to the intersection I =

⋂n
i=1 Ii has

the desired properties. By Construction Properties Theorem
11.2.4
17.11.4, the x-adic

completion A∗i of Ai is R∗/Ii.
If char k = 0, the rings Ai are excellent by Remark

incprothi
17.25.1d. Thus the Ai

have generically regular formal fibers if char k = 0. By Theorem
15.5.2
18.14, A has

geometrically regular formal fibers. On the other hand, If k is a perfect field with
char k 6= 0, it follows from Remark

perfnexc
10.5 that each Ai is not a Nagata ring, and is

not excellent.

We construct in Example
15.4.1
18.18 a two-dimensional Noetherian local domain

having geometrically regular formal fibers such that the completion has any desired
finite number of minimal primes of dimensions one and two.

15.4.1 Example 18.18. Let r and s be positive integers and let R be the localized
polynomial ring in three variables R := k[x, y, z](x,y,z), where k is a field of char-
acteristic zero and the field of fractions of R is K := k(x, y, z). Then the x-adic
completion of R is R∗ := k[y, z](y,z)[[x]]. Let τ1, . . . , τr,β1, β2, . . . , βs, γ ∈ xk[[x]] be
algebraically independent power series over k(x). Define, as in Proposition

incprothip
17.26.2,

Qi := (z − τi, y − γ)R∗ and Pj := (z − βj)R∗,

for i ∈ {1, . . . , r} and j ∈ {1, . . . , s}. Apply Theorem
15.3.6
18.12 with Ii = Qi, for

1 ≤ i ≤ r, and Ir+j = Pj , for 1 ≤ j ≤ s. Then {Iℓ | 1 ≤ ` ≤ r + s} satisfies the
comaximality condition of Theorem

15.3.6
18.12 at the localization at x. As in Notes

ratnlaiexc
18.17,

Remark
incprothi
17.25 implies that each map R ↪→ (R∗/Iℓ)[1/x] is flat and each Aℓ :=

K ∩ (R∗/Iℓ) is excellent. Let I := I1 ∩ · · · ∩ Ir+s and A := K ∩ (R∗/I). By
Theorem

15.3.6
18.12, the map R ↪→ (R∗/I)[1/x] is flat and A is Noetherian. Since

I =
⋂

1≤ℓ≤r+s Iℓ and R̂ is the completion of R∗, we have IR̂ =
⋂

1≤ℓ≤r+s(IℓR̂), by
Remark

remflat
2.37.

flidint
11. Since each R∗/Iℓ is a regular local ring, the extension IℓR̂ is a

prime ideal. Then

Â = Â∗ = R̂∗/IR̂∗ = R̂/IR̂ = R̂/(∩1≤ℓ≤r+sIℓR̂).

Thus the minimal primes of Â all have the form pℓ := IℓÂ.
For J an ideal of R∗ containing I, let J̄ denote the image of J in R∗/I. Then,

for each i with 1 ≤ i ≤ r, dim( (R∗/I)/Q̄i) = dim(R∗/Qi) = 1 and, for each j with
1 ≤ j ≤ s, dim( (R∗/I)/P̄j) = 2. Thus A∗ contains r minimal primes of dimension
one and s minimal primes of dimension two. Since A∗ modulo each of its minimal
primes is a regular local ring, the completion Â of A also has precisely r minimal
primes of dimension one and s minimal primes of dimension two.

We show that the stated properties hold for the integral domain A. The for-
mat of the general Homomorphic Image Construction

4.4.2
17.2 and the details of the

construction of the integral domain A imply that A birationally dominates the 3-
dimensional regular local domain R and that A is birationally dominated by each
of the Ai.
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By the definition of R and the observations given in Proposition
15.5.1
18.13, the

hypotheses of Theorem
15.5.2
18.14 are satisfied. Theorem

15.5.2
18.14 implies that A has

geometrically regular formal fibers. Since dim(A) = 2, A is catenary, but not
universally catenary.

Example
15.4.2
18.19 shows, for every integer n ≥ 2, that there is a Noetherian local

domain (A,m) of dimension n that has geometrically regular formal fibers and is
catenary but not universally catenary.

15.4.2 Example 18.19. Let R = k[x, y1, . . . , yn](x,y1,...,yn) be a localized polynomial
ring of dimension n+1 where k is a field of characteristic zero. Let σ, τ1, . . . , τn be
n+ 1 elements of xk[[x]] that are algebraically independent over k(x) and consider
the ideals

I1 = (y1 − σ)R∗ and I2 = (y1 − τ1, . . . , yn − τn)R∗.

of the ring R∗ = k[y1, . . . , yn](y1,...,yn)[[x]]. Then the ring

A = k(x, y1, . . . , yn) ∩ (R∗/(I1 ∩ I2))

is the desired example. As in Notes
ratnlaiexc
18.17, each ring k(x, y1, . . . , yn) ∩ R∗/Ii is

excellent. This implies that A is Noetherian with geometrically regular fibers. By
an argument similar to that of Example

15.4.1
18.18, the completion Â of A has two

minimal primes, I1Â having dimension n and I2Â having dimension one. Therefore
the Henselization Ah has precisely two minimal prime ideals. Label these two
prime ideals P and Q, where PÂ = I1Â and QÂ = I2Â. Thus dim(Ah/P ) = n and
dim(Ah/Q) = 1. By Theorem

15.2.7
18.9, A is catenary but not universally catenary. By

Theorem
15.5.2
18.14, A has geometrically regular formal fibers.

Example
15.4.3
18.20 is a construction, for each positive integer t and specified non-

negative integers n1, . . . , nt with n1 ≥ 1, of a t-dimensional Noetherian local do-
main A with geometrically regular formal fibers. The domain A birationally domi-
nates a (t+1)-dimensional regular local domain, and the completion Â of A contains
exactly nr minimal primes prj of dimension t + 1 − r, for each r with 1 ≤ r ≤ t.
Moreover, each Â/prj is a regular local ring of dimension t + 1 − r. If ni > 0 for
some i 6= 1, then A is not universally catenary and is not a homomorphic image of
a regular local domain. It follows from Remark

15.2.5
18.4 that the derived normal ring

A of A has exactly nr maximal ideals of height t+1− r for each r with 1 ≤ r ≤ t.

15.4.3 Example 18.20. Let t be a positive integer and let nr be a nonnegative integer
for each r with 1 ≤ r ≤ t. Assume that n1 ≥ 1. We construct a t-dimensional
Noetherian local domain A that has geometrically regular formal fibers such that
Â has exactly nr minimal primes of dimension t+ 1− r for each r. Let x, y1 . . . , yt
be indeterminates over a field k of characteristic zero.

Let R = k[x, y1, . . . , yt](x,y1,...,yt), let R∗ = k[y1, . . . , yt](y1,...,yt)[[x]] denote the
x-adic completion of R, and let K denote the field of fractions of R. For every r
with 1 ≤ r ≤ t and nr = 0, define Pr0 := R∗.

For every r, j, i ∈ N such that 1 ≤ r ≤ t, 1 ≤ j ≤ nr and 1 ≤ i ≤ r, choose ele-
ments {τrji} of xk[[x]] so that the set

⋃
{τrji} is algebraically independent over k(x).

For every r, j with 1 ≤ r ≤ t and 1 ≤ j ≤ nr, let Prj := (y1 − τrj1, . . . , yr − τrjr),
a prime ideal of height r in R∗. If nr > 0, then R∗/Prj is a regular local ring
of dimension t + 1 − r. Theorem

11.2.4
17.11.4 implies that Arj := K ∩ (R∗/Prj) has
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x-adic completion R∗/Prj , and Theorem
11.2.4
17.11.4 implies that Arj is local. Proposi-

tion
incprothip
17.26.2 applies to this situation, with R, y1, . . . , yr, yr+1, . . . yt, and Prj taking

the place of S, t1, . . . , ts, y1, . . . , yr, and I respectively in Setting
11.4.1sethi
17.24. Thus,

by Remark
incprothi
17.25, the extension R ↪→ (R∗/Prj)[1/x] is flat and Arj is an RLR of

dimension t+ 1− r that has x-adic completion R∗/Prj .
Let I :=

⋂
Prj be the intersection of all the prime ideals Prj . Since the elements

τrji of xk[[x]] are algebraically independent over k(x), the sum Prj+Pmi has radical
(x, y1, . . . , ym)R∗, for every r,m, i, j with r ≤ m ≤ t and (r, j) 6= (m, i). Thus
(Prj + Pmi)R

∗[1/x] = R∗[1/x], the representation of I as the intersection of the
Prj is irredundant, and Ass(R∗/I) = {Prj | 1 ≤ r ≤ t, 1 ≤ j ≤ nr}. Since each
Prj ∩ R = (0), we have R ↪→ R∗/I, and the intersection domain A := K ∩ (R∗/I)
is well defined. Moreover the x-adic completion A∗ of A is R∗/I by Construction
Properties Theorem

11.2.4
17.11.4.

By Theorem
15.3.6
18.12.2, the map R ↪→ (R∗/I)[1/x] is flat, A is Noetherian and A

is a localization of a subring of R[1/x]. Since I =
⋂
Prj and R̂ is the completion

of R∗, we have IR̂ =
⋂
PrjR̂ by Remark

remflat
2.37.

flidint
11. Since R∗/Prj is a regular local

ring, the extension PrjR̂ is a prime ideal. Then

Â = Â∗ = R̂∗/IR̂∗ = R̂/IR̂ = R̂/(∩PrjR̂∗).

Thus the minimal primes of Â all have the form prj := PrjÂ. Since R∗/Prj is
a regular local ring of dimension t + 1 − r, each Â/prj is a regular local ring of
dimension t + 1 − r. The ring A birationally dominates the (t + 1)-dimensional
regular local domain R. By Theorem

15.5.2
18.14, A has geometrically regular formal

fibers.

15.4.4 Remarks 18.21. (1) Examples
15.4.1
18.18 and

15.4.2
18.19 are special cases of Exam-

ple
15.4.3
18.20. By Theorem

15.2.7
18.9, the ring A constructed in Example

15.4.3
18.20 is catenary

if and only if each minimal prime of Â has dimension either one or t. By taking
nr = 0 for r 6∈ {1, t} in Example

15.4.3
18.20, we obtain additional examples of catenary

Noetherian local domains A of dimension t having geometrically regular formal
fibers for which the completion Â has precisely nt minimal primes of dimension one
and n1 minimal primes of dimension t; thus A is not universally catenary.

(2) Let (A, n) be a Noetherian local domain constructed as in Example
15.4.3
18.20,

let Ah denote the Henselization of A, and let A∗ denote the x-adic completion of
A. Since each minimal prime of Â is the extension of a minimal prime of Ah and
also the extension of a minimal prime of A∗, the minimal primes of Ah and A∗

are in a natural one-to-one correspondence. Let P be the minimal prime of Ah
corresponding to a minimal prime p of A∗. Since the minimal primes of A∗ extend
to pairwise comaximal prime ideals of A∗[1/x], for each prime ideal Q ⊃ P of Ah
with x 6∈ Q, the prime ideal P is the unique minimal prime of Ah contained in Q.
Let q := Q∩A. Then ht q = htQ, and either dim(A/q) > dim(Ah/Q) or else every
saturated chain of prime ideals of A containing q has length less than dimA.

In connection with Remark
15.4.4
18.21.2, we ask:

15.4.46 Question 18.22. Let (A, n) be a Noetherian local domain constructed as in
Example

15.4.3
18.20. If A is not catenary, what can be said about the cardinality of the

set
ΓA := {P ∈ Spec(Ah) | dim(Ah/P ) < dim(A/(P ∩A))}?
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Is the set ΓA ever infinite?

18.6. The depth of the constructed rings15.5

We thank Lucho Avramov for suggesting we consider the depth of the rings
constructed in Example

15.4.3
18.20; “depth” is defined in Definition

depthM
3.35.

15.4.5 Remark 18.23. The catenary rings that arise from the construction in Exam-
ple

15.4.3
18.20 all have depth one. However, Example

15.4.3
18.20 can be used to construct, for

each integer t ≥ 3 and integer d with 2 ≤ d ≤ t− 1, an example of a non-catenary
Noetherian local domain A of dimension t and depth d having geometrically regular
formal fibers. The x-adic completion A∗ of A has precisely two minimal primes,
one of dimension t and one of dimension d. To establish the existence of such an
example, with notation as in Example

15.4.3
18.20, we set m = t− d+1 and take nr = 0

for r 6∈ {1,m} and n1 = nm = 1. Let
P1 := P11 = (y1 − τ111)R∗ and Pm := Pm1 = (y1 − τm11, . . . , ym − τm1m)R∗.

Consider A∗ = R∗/(P1 ∩ Pm) and the short exact sequence

0 −→ P1

P1 ∩ Pm
−→ R∗

P1 ∩ Pm
−→ R∗

P1
−→ 0.

Since P1 is principal and not contained in Pm, we have P1 ∩ Pm = P1Pm and
P1/(P1 ∩ Pm) ∼= R∗/Pm. It follows that depthA∗ = depth(R∗/Pm) = d ;

Kap
[104,

page 103, ex 14] or
BH
[30, Prop. 1.2.9, page 11]. Since the local ring A and its x-adic

completion have the same completion Â with respect to their maximal ideals, we
have depthA = depth Â = depthA∗

M
[123, Theorem 17.5]. By Remark

15.2.5
18.4, the

derived normal ring A of A has precisely two maximal ideals one, of height t and
one of height d.

Exercises
(1) Let (R,m) be a three-dimensional Noetherian local domain such that each

height-one prime ideal of R is the radical of a principal ideal. Prove that R is
catenary.

(2) Let (R,m) be a catenary Noetherian local domain having geometrically normal
formal fibers. If R is not universally catenary, prove that R has depth one.
Suggestion: Use Theorem

15.2.7
18.9 and the following theorem:

Theorem 18.24.
M
[123, Theorem 17.2] Let (R,m) be a Noetherian local

ring and M 6= (0) a finite R-module. Then depthM ≤ dimR/p, for every
prime ideal p of R associated to M .

(3) Let R be an integral domain with field of fractions K and let R′ be a subring
of K that contains R. If P ∈ SpecR is such that R′ ⊆ RP , prove that there
exists a unique prime ideal P ′ ∈ SpecR′ such that P ′ ∩R = P .

(4) For the rings A and A∗ of Example
11.4.5
18.15, prove that A∗ is universally catenary.



CHAPTER 19

An Ogoma-like exampleogoma

In this chapter we present an example that has the same properties as Ogoma’s
famous example of a normal Noetherian local domain that is not catenary. The
example is constructed using Homomorphic Image Construction

4.4.2
17.2.

If a Noetherian local ring A dominates an excellent local subring R and A has
the same completion as R, then A has Cohen-Macaulay formal fibers; see Corol-
lary

13.3.2
19.2. This applies to examples obtained by Inclusion Construction

4.4.1
5.3, but

not to examples obtained by Homomorphic Image Construction
4.4.2
17.2. Construc-

tion
4.4.2
17.2 is useful for creating examples where the formal fibers are not Cohen-

Macaulay.
Section

13.3
19.1 features integral domains B and A arising from Inclusion Con-

struction
4.4.1
5.3 and an integral domain C obtained with Homomorphic Image Con-

struction
4.4.2
17.2. Theorems

13.4.2
19.8 and

13.4.3
19.9 show that A and B are non-Noetherian and

B ( A. By Theorem
13.4.5
19.11, C is a 2-dimensional Noetherian local domain that is a

homomorphic image of B and the generic formal fiber of C is not Cohen-Macaulay.
Section

13.4
19.2 features Example

ogomaeg
19.13, which is similar to Ogoma’s Example

13.3.4
19.4.

Theorem
ogomath
19.15 establishes that Example

ogomaeg
19.13 has the properties of Ogoma’s Ex-

ample.

19.1. Cohen-Macaulay formal fibers
13.3

Proposition
13.3.1
19.1 is analogous to

M
[123, Theorem 32.1(ii)]. The distinction is

that we are considering regular fibers rather than geometrically regular fibers. The
proof given in

M
[123, Theorem 32.1(ii)] applies to establish Proposition

13.3.1
19.1.

13.3.1 Proposition 19.1. Suppose R, S, and T are Noetherian commutative rings
and suppose we have maps R → S and S → T and the composite map R → T .
Assume

(i) R→ T is flat with regular fibers,
(ii) S → T is faithfully flat.

Then R→ S is flat with regular fibers.
Theorem

13.2.1p
7.4 and Proposition

13.3.1
19.1 imply the following result concerning Cohen-

Macaulay formal fibers.
13.3.2 Corollary 19.2. Let B be a Noetherian local ring that dominates an excellent

local subring R and has the same completion as R. Then B has Cohen-Macaulay
formal fibers. Thus every Noetherian ring A obtained via Inclusion Construction

4.4.1
5.3

with an excellent local domain R as the base ring has Cohen-Macaulay formal fibers.

Proof. Consider the inclusion maps R ↪→ B ↪→ B̂ = R̂. Since R is excellent,
the map R ↪→ R̂ is faithfully flat with regular fibers. Since B is Noetherian,

245
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the map B ↪→ B̂ is faithfully flat. By Proposition
13.3.1
19.1, the map R ↪→ B is

flat with regular fibers. Theorem
13.2.1p
7.4 implies that B has Cohen-Macaulay formal

fibers. The second statement follows from Construction Properties Theorem
11.2.51
5.14

and Proposition
11.2.52
5.17.5.a. □

Discussion 19.3. Let (A, n) be a Noetherian local domain that has a coefficient
field k and has the property that the field of fractions L of A is finitely generated
over k. Corollary

4.6.2
4.3 implies that there exists a local subring (R,m) of A such that

A birationally dominates R. The ring R is essentially finitely generated over k,
and there exists an ideal I of the completion R̂ of R such that A = L ∩ (R̂/I) and
Â = R̂/I. Depending on properties of the ideal I, the generic formal fiber of A is
or is not Cohen-Macaulay.

Corollary
13.3.2
19.2 is related to Ogoma’s famous example, described in Exam-

ple
13.3.4
19.4, of a Nagata local domain of dimension three whose generic formal fiber is

not equidimensional.

13.3.4 Example 19.4.
O1
[147] (Features of Ogoma’s construction) Let k be a count-

able field of infinite but countable transcendence degree over the field Q of rational
numbers, let x, y, z, w be variables over k, and let R = k[x, y, z, w](x,y,z,w) be the
localized polynomial ring with maximal ideal m = (x, y, z, w) and m-adic com-
pletion R̂ = k[[x, y, z, w]]. By a clever enumeration of the prime elements in R,
Ogoma constructs a “multi-adic” completion Rmulti inside R̂ and three power series
f, g, h in Rmulti such that the following five conditions hold for f, g, h and the ideals
I := (fg, fh)R̂ and P̂ := (f, g, h)R̂ of R̂: 1

(a) f, g, h are algebraically independent over K := k(x, y, z, w).

(b) f, g, h are part of a regular system of parameters for R̂ = k[[x, y, z, w]].
(c) P̂ ∩R = (0), i.e., P̂ is in the generic formal fiber of R.
(d) C := K ∩ (R̂/I) is a Nagata local domain2 with completion Ĉ = R̂/I.
(e) Ĉ = R̂/I has a minimal prime ideal fR̂/I of dimension 3 and a minimal

prime ideal (g, h)R̂/I of dimension 2. Thus C fails to be formally equidi-
mensional. By Ratliff’s Equidimension Theorem

15.2.1
3.26, C is not universally

catenary, and so C is a counterexample to Chain Conjecture
chainconj
18.2.

13.3.3 Remarks 19.5. (Cohen-Macaulay formal fibers) Luchezar Avramov pointed
out to us the following facts about formal fibers.

(1) Every homomorphic image R/I of a regular local ring R has the property
that every local ring in a formal fiber of R/I has the form R̂q/pR̂q, where
q is a prime ideal of R̂ with I ⊆ q and p = q∩R is a prime ideal of R with
I ⊆ p. Then R̂q is a regular local ring and the inclusion map R ↪→ R̂q

is flat and factors through the inclusion map Rp ↪→ R̂q that is faithfully
flat. Since Rp is regular, pRp is generated by ht p elements. Since the
map Rp ↪→ R̂q is faithfully flat, ht p = ht pR̂q. Therefore R̂q/pR̂q is a
homomorphic image of the regular local ring R̂q modulo the complete

1We have changed the elements to f, g, h instead of g, h, `, the notation used by Ogoma.
2Ogoma

O1
[147, page 158] actually constructs C as a directed union of birational extensions of

R. He proves that C is Noetherian and that Ĉ = R̂/I. It follows that C = K ∩ (R̂/I). Heitmann
observes in

H4
[99] that C is already normal.
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intersection ideal pR̂q. It follows that R̂q/pR̂q is Cohen-Macaulay
M
[123,

Theorem 17.4, p. 135].
(2) Every homomorphic image R/I of a Cohen-Macaulay local ring R has

Cohen-Macaulay formal fibers. Let p be a prime ideal of R with I ⊆ p

and let q ∈ Spec R̂ with q ∩ R = p. Since R is Cohen-Macaulay, R̂ is
Cohen-Macaulay

M
[123, Theorem 17.5]. It follows that Rp ↪→ R̂q is a

faithfully flat local map of Cohen-Macaulay local rings, and R̂q/pR̂q is
Cohen-Macaulay by

M
[123, Corollary, page 181].

It is interesting that while regular local rings need not have regular formal fibers,
they do have Cohen-Macaulay formal fibers.

In Example
oglike
19.6, the two forms of the basic construction technique (Inclusion

and Homomorphic Image Constructions
4.4.1
5.3 and

4.4.2
17.2) are used to obtain three rings

A, B and C. The ring B maps surjectively onto C, while A does not.

oglike Example 19.6. Let x, y, z be variables over a field k and let R be the localized
polynomial ring R = k[x, y, z](x,y,z). Let τ1, τ2 ∈ xk[[x]] be formal power series
in x that are algebraically independent over k(x). Consider the discrete valuation
domain

V := k(x, τ1, τ2) ∩ k[[x]] =
∞⋃
n=1

k[x, τ1n, τ2n](x,τ1n,τ2n),

where τ1n, τ2n are the endpieces of τ1 and τ2, for n ∈ N0, as in Notation
4.2.3
5.4. The

equality holds by Remark
dvrunique
4.20. Thus V is a nested union of localized polyno-

mial rings in 3 variables over k. Let D be the Local Prototype of Definition
prodef
4.28

associated to (τ1, τ2, x, y, z):

(
oglike
19.6.1) D := V [y, z](x,y,z) = U((x,y,z)D)∩U , where U :=

∞⋃
n=1

k[x, y, z, τ1n, τ2n].

By Prototype Theorems
11.4.1a
10.2 and

11.4.11ic
10.6 and Proposition

11.2.52
5.17.5a, the ring D is a

3-dimensional regular local ring; D is a localization of a nested union of polynomial
rings in 5 variables; D = k(x, y, z, τ1, τ2) ∩R∗, where R∗ = k[y, z](y,z)[[x]] is the x-
adic completion ofR; D has maximal ideal mD = (x, y, z)D and mD-adic completion
R̂ = k[[x, y, z]]; and D dominates the localized polynomial ring R.

Consider the following elements of R∗:
(
oglike
19.6.2)
s := y + τ1, t := z + τ2, ρ := s2 = (y + τ1)

2 and σ := st = (y + τ1)(z + τ2).

The elements s and t are algebraically independent over k(x, y, z) as are the elements
ρ and σ. Let ρn and σn denote the endpieces of ρ and σ as defined in Endpiece
Notation

4.2.3
5.4. Define the ideals I := (ρ, σ)R∗, P1 := sR∗ and P2 := (s, t)R∗.

ogliken Notes 19.7. (1) ht I = 1, I = P1P2, and P1 ∩R = P2 ∩R = (0).
(2) P1 and P2 are the associated prime ideals of I in R∗.
(3) The inclusion α : R ↪→ R∗/I extends to αQ : k(x, y, z) ↪→ Q(R∗/I), where

k(x, y, z) is the field of fractions of R, and Q(R∗/I) is the total quotient
ring of R∗/I.

(4) σ2/ρ = (z + τ2)
2 = t2 and D ∩ IR∗ = (σ, ρ)D = ID.

(5) The inclusion α : R ↪→ R∗/I factors into

R
β
↪→ D/ID

δ
↪→ R∗/I.
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(6) The image of t2 in D/ID is transcendental over R, considered in the
extension R ↪→ D/ID.

Proof. Items 1-5 follow from Equation
oglike
19.6.2 and the other definitions. For

item 6, since D = k(x, y, z, s, t)∩R∗, and s and t are algebraically independent over
k(x, y, z), they are also algebraically independent over R. Since the image of t is
transcendental over R as an element of D/sD and ID = (s2, st)D ⊆ sD, it follows
that the image of t2 is transcendental over R as an element of D/ID. □

To continue the notation for Example
oglike
19.6: Define rings A and C by:

A := k(x, y, z, ρ, σ) ∩R∗ C := k(x, y, z) ∩ (R∗/I).

In analogy with the rings D and U of Equation
oglike
19.6.1, there exist rings W ⊆ U

and B ⊆ D defined as follows:

W :=

∞⋃
n=1

k[x, y, z, ρn, σn], B :=

∞⋃
n=1

R[ρn, σn](x,y,z,ρn,σn) =W(x,y,z)W ,

where ρn, σn are the nth endpieces of ρ, σ, respectively, for each n ∈ N0. Also there
is a nested union Approximation Domain E associated to C from Equation

4.5.5
17.10.1:

E =

∞⋃
n=1

R[ρ̄n, σ̄n](x,y,z,ρ̄n,σ̄n),

where ρ̄n, σ̄n are the nth frontpieces of ρ and σ. By Proposition
11.2.52
5.17 and Theo-

rem
11.2.4
17.11.6, A, B and C are local domains with maximal ideals (x, y, z)B, (x, y, z)A

and (x, y, z)B, (x, y, z)C, respectively. Also B ⊆ A with A birationally dominat-
ing B.

Theorems
13.4.2
19.8 and

13.4.3
19.9 show A and B are non-Noetherian and B ( A. Theo-

rem
13.4.5
19.11 shows that C is a Noetherian local domain with completion Ĉ = R̂/IR̂

such that C has a non-Cohen-Macaulay formal fiber.

13.4.2 Theorem 19.8. Assume the notation of Example
oglike
19.6. The local integral do-

mains B ⊆ A both have x-adic completions R∗ and have completions R̂ with respect
to the powers of their maximal ideals. Let Q := I ∩B. Then:

(1) B is a UFD,
(2) Q = P1 ∩B = P2 ∩B,
(3) ht(P1 ∩B) > ht(P1) = 1,
(4) B fails to have Cohen-Macaulay formal fibers, and
(5) B is non-Noetherian.

Proof. It follows from Construction Properties Theorem
11.2.51
5.14 that R∗ is the

x-adic completion of both A and B, and R̂ is the completion of both A and B.
For item 1, Theorem

Bufd
5.24.1 implies B is a UFD.

For item 2, it suffices to show I ∩W = P1 ∩W = P2 ∩W . It is clear that
I ∩W ⊆ P1 ∩W ⊆ P2 ∩W . Let v ∈ P2 ∩W ; say v ∈ P2 ∩ k[x, y, z, ρn, σn], for
n ∈ N. Let σ =

∑∞
i=1 cix

i, where each ci ∈ k[x, y, z]. Then Equation
4.2.3
5.4.1 implies

σn =

∞∑
i=n+1

cix
i−n =⇒ xnσn =

∞∑
i=n+1

cix
i = σ −

n∑
i=1

cix
i =⇒ xnσn ∈ k[x, y, z, σ].
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Similarly ρn ∈ k[x, y, z, ρ, σ]. Since v is a polynomial in σn, ρn, it follows that
xtv ∈ k[x, y, z, ρ, σ] for some t ∈ N; say

xtv =
∑

bijρ
iσj , where bij ∈ k[x, y, z], for all i, j ∈ N.

Then b00 = 0, since ρ, σ ∈ P2 and P2 ∩ k[x, y, z] = (0). This implies that v ∈ P1.
Thus P1 ∩B = P2 ∩B, and so part of item 2 holds.

For item 3, Theorem
11.2.51
5.14 implies B[1/x] is a localization of the ring W0[1/x].

The ideal J = (ρ, σ)W0 is a prime ideal of height 2 and x /∈ J . Then BP1∩B = (W0)J
and x /∈ P1 ∩B. Therefore ht(P1 ∩B) = 2. Since P1 = sR∗ has height one, this
proves item 3. Moreover J [1/x] = (ρ, σ)W0[1/x] = (ρ, σ)Wn[1/x] is a prime ideal
of height 2 in W0[1/x] =Wn[1/x], for every n ∈ N0, and (ρ, σ)Wn ⊆ I ∩Wn. Thus
I ∩W contains and is contained in the height-two prime ideal JW = P1 ∩W of W ,
and so Q = I ∩W = P1 ∩W . Hence item 2 holds.

Item 3 implies item 5, since ht(P1 ∩ B) > htP1 implies that B → R̂ fails to
satisfy the Going-down property, so R̂ is not flat over B and B is not Noetherian.

For item 4, as above, Qk[[x, y, z]]P2
= (ρ, σ)P2

= IP2
. Thus R̂P2

/IR̂P2
is

a formal fiber of B. Since k[y, z](y,z)[[x]]/I = k[s, t](s,t)[[x]]/(s
2, st), we see that

P2R̂/IR̂ = (s, t)k[[x, y, z]]/(s2, st)k[[x, y, z]] is an embedded associated prime of
the ring R̂/IR̂. Hence (R̂/IR̂)P2R̂

is not Cohen-Macaulay and the embedding
B −→ k[[x, y, z]] fails to have Cohen-Macaulay formal fibers. 3 □

13.4.3 Theorem 19.9. Assume the notation of Example
oglike
19.6. Then:

(1) A is a local Krull domain with maximal ideal (x, y, z)A and completion R̂,
(2) P1 ∩A ( P2 ∩A, so B ( A,
(3) A is non-Noetherian.

Proof. For item 1, it follows from Construction Properties Theorem
11.2.51
5.14 that

(x, y, z)A is the maximal ideal of A. By definition, A is the intersection of a field
with the Krull domain R∗; thus A is a Krull domain.

For item 2, let Qi := Pi ∩A, for i = 1, 2. Then σ2/ρ = t2 ∈ (Q2 \ B) \ Q1,
by Note

ogliken
19.7.4.

For item 3, assume A is Noetherian. Then A is a regular local ring, since the
maximal ideal is (x, y, z)A, and so the embedding A ↪→ R∗ = k[y, z](y,z)[[x]] is
faithfully flat. In particular, A is a UFD and the ideal Q1 = sR∗ ∩ A = P1 ∩ A
is a prime ideal of height one in A. Thus Q1 is principal; write Q1 = vA. By
Equation

oglike
19.6.2, ρ = s2 ∈ Q1 and σ = st ∈ Q1. Write ρ = s2 = bv and σ = st = cv

for some b, c ∈ A. Then

tbv = s2t = scv =⇒ tb = sc

Since s = y + τ1 and t = z + τ2 are non-associate prime elements of the UFD D, it
follows that b = sd and c = td for some d ∈ D. Thus s2 = bv = sdv =⇒ s = dv,
where d ∈ D. Since D is a Prototype (and so Noetherian), the extension D ↪→ R∗

is faithfully flat. Therefore

vA = Q1 = sR∗ ∩A ⊆ sR∗ ∩D = sD =⇒ v = sa,

3This also implies that B is non-Noetherian by Corollary
13.3.2
19.2.
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for some a ∈ D. Since also s = dv, where d ∈ D, it follows that a is a unit in
D ⊆ k[y, z](y,z)[[x]]. Write:
(
13.4.3
19.9.a) v = sa = h(ρ, σ)/g(ρ, σ), where h(ρ, σ), g(ρ, σ) ∈ k[x, y, z][ρ, σ].

Now a ∈ D = U((x,y,z)D)∩U , so a = g1/g2, where g1, g2 ∈ k[x, y, z, τ1n, τ2n], for
some n ∈ N, and g2 as a unit in R∗ = k[y, z](y,z)[[x]] has nonzero constant term.
There exists m ∈ N such that xmg1 := f1 and xmg2 := f2 are in the polynomial ring
k[x, y, z, τ1, τ2] = k[x, y, z][s, t]. Regard f2(s, t) as a polynomial in s and t with coef-
ficients in k[x, y, z]. Then f2k[y, z](y,z)[[x]] = xmk[y, z](y,z)[[x]] = xmk[s, t](s,t)[[x]].
Since g2 is a unit in R∗, f2 6∈ (s, t)k[s, t](s,t)[[x]]. It follows that the constant term
of f2(s, t) ∈ k[x, y, z][s, t] is a nonzero element of k[x, y, z]. Since

(
13.4.3
19.9.b) a =

xmg1
xmg2

=
f1
f2
,

and a is a unit of D, the constant term of f1(s, t) ∈ k[x, y, z][s, t] is also nonzero.
Equations

13.4.3
19.9.a and

13.4.3
19.9.b together yield

(
13.4.3
19.9.c) sf1(s, t)g(s

2, st) = f2(s, t)h(s
2, st).

The term of lowest total degree in s and t on the left hand side of Equation
13.4.3
19.9.c has

odd degree, while the term of lowest total degree in s and t on the right hand side
has even degree, a contradiction. Therefore the assumption that A is Noetherian
leads to a contradiction. We conclude that A is not Noetherian. □

13.4.4 Remarks 19.10. (i) Although A is not Noetherian, the proof of Theorem
13.4.3
19.9

does not rule out the possibility that A is a UFD. The proof does show that if
A is a UFD, then ht(P1 ∩ A) > ht(P1). It would be interesting to know whether
the non-flat map A → Â = R̂ has the property that ht(Q̂ ∩ A) ≤ ht(Q̂), for each
Q̂ ∈ Spec R̂. It would also be interesting to know the dimension of A.
(ii) We observe the close connection of the integral domains A ⊆ D of Example

oglike
19.6.

The extension of fields Q(A) ⊆ Q(D) has degree two and A = Q(A) ∩D, yet A is
non-Noetherian, while D is Noetherian.

13.4.5 Theorem 19.11. Assume the notation of Example
oglike
19.6. Then:

(1) C∗ = R∗/I and Ĉ = R̂/IR̂.
(2) C is a two-dimensional Noetherian local domain.
(3) C = E.
(4) The generic formal fiber of C is not Cohen-Macaulay.

Proof. Item 1 follows from Construction Properties Theorem
11.2.4
17.11. Hence,

if C is Noetherian, then dimC = dim Ĉ = dim(R̂/IR̂) = 2. To show that C is a
Noetherian Limit Intersection Domain, by the Noetherian Flatness Theorem

11.3.2
17.13,

it suffices to show that the canonical map ϕ is flat, where:

R = k[x, y, z](x,y,z)
φ
↪→(R∗/I)[1/x] = (k[y, z](y,z)[x]]/I)[1/x]

= (k[s, t](s,t)[[x]]/(s
2, st)k[s, t](s,t)[[x]])[1/x],

since k[[x]][s, t](s,t) = k[[x]][y, z](y,z) ⊆ k[y, z](y,z)[[x]] = k[[x]][y, z](y,z)[[x]]. Thus it
suffices to show for every prime ideal Q∗ of R∗ with x /∈ Q∗ that the map

ϕQ∗ : R ↪→ R∗Q∗/IR∗Q∗ = (R∗/I)Q∗

is flat, where I = P1P2 ⊆ Q∗.
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If Q∗ = P2 = (s, t)R∗, then ϕQ∗ is flat, since P2 ∩ R = (0) implies RP2∩R is a
field.

If Q∗ 6= P2, then P2R
∗
Q∗ = R∗Q∗ , because htP2 = 2 and
dimR∗Q∗ ≤ dimR∗[1/x] = 2.

Hence IR∗Q∗ = P1R
∗
Q∗ = sR∗Q∗ . Thus it suffices to show
ϕQ∗ : R −→ R∗Q∗/sR∗Q∗ = (R∗/sR∗)Q∗

is flat. To see that ϕQ∗ is flat, since R ⊆ DQ∗∩D ⊆ R∗Q∗ and sR∗ ∩ R = (0), the
map ϕQ∗ factors through a homomorphic image of D = V [y, z](x,y,z). That is, ϕQ∗

is the composition of the following maps:

R
γ−−−−→ (D/sD)D∩Q∗

ψQ∗
−−−−→ (R∗/sR∗)Q∗ .

By Theorem
insforhi
17.35.1, the map ϕQ∗ is flat ⇐⇒ γ is flat. To show that γ is

flat, observe that the ring (D/sD)D∩Q∗ is a localization of (D/sD)[1/x], since
x /∈ Q∗. By Construction Properties Theorem

11.2.51
5.14.

Rt1/z
4, it follows that (D/sD)D∩Q∗

is a localization of the polynomial ring:
k[x, y, z, τ1, τ2]/sk[x, y, z, τ1, τ2] = k[x, y, z, s, t]/sk[x, y, z, s, t],

which is clearly flat over R. This implies that γ is flat, and so C is Noetherian and
C = E. Thus items 2 and 3 hold.

For item 4, P2R̂/IR̂ = p is an embedded associated prime of (0) of Ĉ, and so
Ĉp is not Cohen-Macaulay. Since p ∩ C = (0), the generic formal fiber of C is not
Cohen-Macaulay. □

13.4.6 Proposition 19.12. The canonical map B ↪→ R∗/I factors through C, and
B/Q ∼= C, where Q = I ∩ B = sR̂ ∩ B. On the other hand, the canonical map
A ↪→ R∗/I fails to factor through C.

Proof. By Proposition
inclontohi
17.30, the restriction of the canonical map R∗ → R∗/I

is a map ϕ : B ↠ C such that the following diagram commutes:

(
13.4.6
19.12.1)

B −−−−→ R∗

φ

y y
C −−−−→ R∗/I.

Thus C ∼= B/Q is a homomorphic image of B.
Suppose that the canonical map ζ : A ↪→ R∗/I factors through C. Then there

is a map ψ : A→ C such that ϕ = i2 ◦ ψ, that is:

R
i1
↪→ A

ψ→ C
i2
↪→ R∗/I,

where i1 and i2 are inclusion maps and ψ |R is inclusion. Thus ker(ψ) = ker(ζ).
As in Notes

ogliken
19.7.5, the map ζ factors through D as δ ◦ γ, since I ∩D = (ρ, σ)D:

R
i1
↪→ A

γ−−−−→ D/(ρ, σ)D
δ−−−−→ R∗/I,

where δ is inclusion and so injective. Then ker(γ) = ker(ζ) = ker(ψ), Thus
A/ ker(ψ) embeds in D/ID. By Notes

ogliken
19.7.4 and

ogliken
19.7.6, the image under the

map γ of the element (σ2/ρ) = t2 of A in D/(ρ, σ)D is transcendental over R.
Hence A/ ker(γ) is transcendental over R. Since C is a birational extension of R,
the map A −→ R∗/I fails to factor through C. □



252 19. AN OGOMA-LIKE EXAMPLE

19.2. Constructing the Ogoma-like example
13.4

Example
ogomaeg
19.13 provides a ring having the features of Ogoma’s Example outlined

in Example
13.3.4
19.4. The setting is similar to that of Example

oglike
19.6 with one more

variable.

ogomaeg Example 19.13. (Ogoma-like example) Let x, y, z, w be variables over a field
k of characteristic 0, let R = k[x, y, z, w](x,y,z,w) be the localized polynomial ring,
let m = (x, y, z, w)R and let R∗ = k[y, z, w](y,z,w)[[x]] be the x-adic completion of
R. Let σ, τ, ρ be elements of xk[[x]] that are algebraically independent over k(x).
Set

f := y + σ, g := z + τ, h := w + ρ;

D := k(x, y, z, w, σ, τ, ρ) ∩R∗, I = (fg, fh)R[f, g, h] and T := R[f, g, h]/I.

Thus D is a Local Prototype over a field of characteristic zero, and so D is an
excellent local domain, by Theorem

11.4.11ic
10.6.2. If P is an associated prime ideal of

IR∗ in R∗, then fg, fh ∈ P =⇒ fR∗ ⊆ P or (g, h)R∗ ⊆ P ; that is, P = fR∗

or P = (g, h)R∗, since fR∗ and (g, h)R∗ are prime ideals. Thus P ∩ R = (0), for
every associated prime ideal of IR∗. Therefore Setting

setconstr
17.1 and the conditions of

Homomorphic Image Construction
4.4.2
17.2 hold for the ideal IR∗.

Define C and E to be the Intersection Domain of Homomorphic Image Con-
struction

4.4.2
17.2 and the associated Approximation Domain as in Definition

4.5.5
17.10:

C := k(x, y, z, w) ∩ (R∗/IR∗),

E :=

∞⋃
n=1

k[x, y, z, w, (fg)n, (fh)n](x,y,z,w,σ,τ,ρ,(fg)n,(fh)n),

where the (fg)n, (fh)n are the nth frontpieces of fg, fh, respectively.

Proposition
ogomaprop
19.14 records properties of the rings in Example

ogomaeg
19.13.

ogomaprop Proposition 19.14. Assume notation as in Example
ogomaeg
19.13. Then:

(1) R[f, g, h] = R[σ, τ, ρ].
(2) θ : R[σ, τ, ρ] ↪→ R∗[1/x] is flat, and D is an excellent local domain.
(3) IR∗ ∩R[f, g, h] = IR∗ ∩R[σ, τ, ρ] = IR[σ, τ, ρ] = I.
(4) ϕ = λ ◦ ψ, where

R
ψ
↪→ T = R[f, g, h]/I

λ
↪→ (R∗/IR∗)[1/x]

and the map λ is flat.
(5) D/ID is excellent with x-adic completion

(D/ID)∗ = R∗/IR∗.

Proof. Item 1 follows from the definitions of f, g and h. Item 2 holds by
Prototype Theorem

11.4.11ic
10.6.

For item 3, by item 2, R[f, g, h][1/x] ↪→ R∗[1/x] is faithfully flat. Since
the elements f, g, h generate maximal ideals of R∗[1/x] and R[f, g, h][1/x], and
R[f, g, h](f,g,h)R[f,g,h] = R[f, g, h][1/x](f,g,h)R[f,g,h][1/x],

R[f, g, h](f,g,h)R[f,g,h] ↪→ R∗[1/x](f,g,h)R∗[1/x] = R∗(f,g,h)R∗

is faithfully flat, and so item 3 follows.
Item 4 follows from items 3 and 2.
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For item 5, D is excellent and so D/ID is excellent. Since R∗ is the x-adic
completion of D and D/ID ↪→ R∗/IR∗, item 5 follows. □

Theorem 19.15. Assume the setting of Example
ogomaeg
19.13. Then C is a 3-ogomath

dimensional normal Nagata integral domain that is not catenary. Therefore C is a
counterexample to Chain Conjecture

chainconj
18.2.

The proof of Theorem
ogomath
19.15 is given in several steps. The first step is to show

that C = E is Noetherian. For this, we use the Elkik ideal H of T as an R-algebra;
see Equation

16.2.5gen
7.13.b and Theorem

16.2.7thm
7.15.4.

ogclm Proposition 19.16. Assume notation as in Example
ogomaeg
19.13, and let H be the

Elkik ideal of T as an R-algebra. Then
(1) H = (f, g, h)T .
(2) The map ϕ : R ↪→ (R∗/IR∗)[1/x] is flat.
(3) C = E is Noetherian with x-adic completion E∗ = R∗/IR∗.

Proof. For item 1, the Jacobian matrix associated to the R-algebra T of
fg, fh with respect to the indeterminates f, g, h over R is M :=

[
g f 0
h 0 f

]
; see

Definition
16.2.5gen
7.13.2. The 2× 2 minors of M are:

det

[
g f
h 0

]
= −fh, det

[
g 0
h f

]
= fg, det

[
f 0
0 f

]
= f2.

Since fg, fh generate I, the colon ideal [(fg, fh) :R[f,g,h] I] from Definition
16.2.5gen
7.13.3

is all of R[f, g, h]. It follows that the images in T of the 2 × 2 minors of M are
elements in H. In particular, f2T ⊆ H. Since H is a radical ideal, fT ⊆ H.

In addition, the Elkik ideal H contains the images in T of
∆(fg) · [fg :R[f,g,h] I] and ∆(fh) · [fh :R[f,g,h] I],

where ∆(fg) is the ideal of T generated by the 1×1 minors of the Jacobian matrix
J ((fg); f, g, h) of fg with respect to the indeterminates f, g, h, and ∆(fh) is the
ideal of T generated by the 1 × 1 minors of the Jacobian matrix J ((fh); f, g, h)
of fh with respect to the indeterminates f, g, h. It is straightforward to see that
J ((fg); f, g, h) = [g, f, 0] and J ((fh); f, g, h) = [h, 0, f ]. Thus

∆(fg) = (g, f)T and ∆(fh) = (h, f)T.

Also [fg :R[f,g,h] I] = gR[f, g, h] and [fh :R[f,g,h] I] = hR[f, g, h]. Thus

g2T ⊆ ∆(fg) · [fg :R[f,g,h] I] and h2T ⊆ ∆(fh) · [fh :R[f,g,h] I],

and both of these ideals are in H. Since H is a radical ideal, (g, h)T ⊆ H.
Let P := (f, g, h)T . The arguments above show that P ⊆ H. Since TP has two

minimal prime ideals, TP is not an integral domain and so is not an RLR. Hence
the map ψP : R → TP is not smooth. Since H * P implies that ψP is smooth, it
follows that P ⊆ H, and so H = P . This establishes item 1.

For item 2, to show ϕ is flat, it suffices to show ϕQ : R → (R∗/IR∗)[1/x]Q is
flat for each Q ∈ Spec(R∗/IR∗)[1/x]. Proposition

ogomaprop
19.14.4 gives ϕ = λ ◦ ψ, where

R
ψ
↪→ T = R[f, g, h]/I

λ
↪→ (R∗/IR∗)[1/x].

Since λ is flat, it suffices to show ψQ∩T : R → TQ∩T is flat, for each Q ∈
Spec(R∗/IR∗)[1/x].
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If H * Q∩T , then ψQ∩T is smooth, and hence flat. Assume H ⊆ Q∩T . Then
(f, g, h)R∗/IR∗ ⊆ Q. Since (f, g, h)R∗[1/x] is a maximal ideal of R∗[1/x], it follows
that (f, g, h)(R∗/IR∗)[1/x] is a maximal ideal. Thus Q = (f, g, h)(R∗/IR∗)[1/x]
and Q ∩ T = H. To complete the proof, it suffices to prove that ψH : R ↪→ TH is
flat. Since (f, g, h)T ∩R = (0), the map ψH factors

R
α
↪→ R(0) = Q(R)

β
↪→ TH .

The map β is an extension of a field; hence β is flat. The map α is a localization
and so is flat. Thus ψH is flat. This proves that ϕ is flat.

For item 3, Noetherian Flatness Theorem
11.3.2
17.13.1(a ⇐⇒ d) implies C = E is

Noetherian, and Construction Properties Theorem
11.2.4
17.11.4 implies C∗ = R∗/IR∗.

□

ogclm2 Proposition 19.17. Assume notation as in Example
ogomaeg
19.13. Let Ĉ denote the

completion of C with respect to its maximal ideal mC , let q1 := (x, f)Ĉ and let
q2 := (x, g, h)Ĉ. Also, set p1 = q1 ∩ C and p2 = q2 ∩ C. Then

(1) Ĉ is not equidimensional. Thus C is not universally catenary.
(2) The ideals q1, q2 are height 1 prime ideals of Ĉ with xĈ = q1 ∩ q2.
(3) The ideals p1, p2 are height 1 prime ideals of C with xC = p1 ∩ p2.
(4) Ĉq1 , Ĉq2 , Cp1

and Cp2
are DVRs with maximal ideal generated by x.

(5) There exist saturated chains of prime ideals in C of length 2 and 3. Hence
C is not catenary.

(6) The formal fibers of C are reduced.
(7) Assume Q ∈ Spec Ĉ, x /∈ Q, H * Q and P := Q ∩ R 6= (0). Then the

formal fiber of P is a Noetherian regular ring.
(8) C is a Nagata integral domain.

Proof. For item 1, the m-adic completion R̂ of R is the 4-dimensional RLR
k[[x, y, z, w]]. By Theorem

11.2.4
17.11.6, mC = mC. Since Ĉ = Ĉ∗ = R̂∗/IR∗, it follows

that Ĉ = R̂/IR̂, by
M
[123, Theorem 8.11]. Since f = y+σ, g = z+τ , and h = w+ρ

are part of a regular system of parameters for R̂, the ideals fR̂ and (g, h)R̂ are
prime ideals with ht(fR̂) = 1, and ht(g, h)R̂ = 2, and their intersection is equal to
their product. Thus

IR̂ = (fg, fh)R̂ = (fR̂)((g, h)R̂) = (fR̂) ∩ ((g, h)R̂).

It follows that Ĉ = R̂/(fR̂∩(g, h)R̂), has two minimal prime ideals fĈ and (g, h)Ĉ,
dim(Ĉ/fĈ) = 3, and dim(Ĉ/(g, h)Ĉ) = 2. Thus dim Ĉ = 3 and Ĉ is not equidi-
mensional.

The second statement of item 1 follows by Ratliff’s Equidimension Theorem
ratliff
3.25.

Items 2, 3, 4, and 5 follow from the fact that q1 and q2 are the images in
Ĉ = R̂/IR̂ of the prime ideals (x, f)R̂ and (x, g, h)R̂ and Ĉ is faithfully flat over
C. In more detail, we have:

Ĉ =
R̂

(fg, fh)R̂
=

k[[x, y, z, w]]

(fg, fh)k[[x, y, z, w]]
.

Since q1 = (x, f)Ĉ = (x, y)Ĉ, we have p1 = (x, y)C and dim(C/p1) = 2. Hence
(0) ( p1 ( (x, y, z)C ( mC
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is a saturated chain of prime ideals in C of length 3.
Since q2 = (x, g, h)Ĉ = (x, z, w)Ĉ, we have p2 = (x, z, w)C and dim(C/p2) = 1.

Hence
(0) ( p2 ( mC

is a saturated chain of prime ideals in C of length 2.
For item 6, for every P ∈ SpecC, the formal fiber at P is (C \ P )−1(Ĉ/P Ĉ).

It follows that the formal fiber at P is reduced if and only if PĈ is a radical ideal.
Assume P ∈ SpecC and consider the following cases:
Case i: x ∈ P . Then C/xC = R∗/(xR∗ + IR∗), by Construction Proper-

ties Theorem
11.2.4
17.11.3. Hence P/xC = P ∗/(xR∗ + IR∗), for a prime ideal P ∗ of

R∗ with (x, I)R∗ ⊆ P ∗. Then P ∗/IR∗ = PR∗/IR∗ is a prime ideal of R∗/IR∗.
Since R∗/IR∗ is an excellent ring, R∗/IR∗ is Nagata; see Remarks

3.435
3.48. By Theo-

rem
naglocequiv
8.19, the formal fiber in Ĉ = R̂/IR̂ over the prime ideal PR∗/IR∗ is reduced.

It follows that the formal fiber of Ĉ = R̂/IR̂ over P is reduced.
Case ii: x /∈ P . Let Q ∈ Spec(Ĉ) = Spec(R̂/IR̂) with Q∩C = P . By Construc-

tion Properties Theorem
11.2.4
17.11.5c, it follows that CP = RP∩R. By Construction

Properties Theorem
11.2.51
5.14.4, D[1/x] is a localization of R[σ, τ, ρ] = R[f, g, h] and so

(D/ID)[1/x] is a localization of T . Thus (D/ID)Q∩(D/ID) = TQ∩T . Consider the
maps
(
ogclm2
19.17.1) CP = RP∩R ↪→ TQ∩T = (D/ID)Q∩(D/ID) ↪→ (R∗/IR∗)Q∩(R∗/IR∗).

Case iia: Assume in addition thatH ⊆ Q. ThenQ∩(R∗/IR∗)[1/x] is a maximal
ideal of (R∗/IR∗)[1/x] and so is equal to H(R∗/IR∗)[1/x]. Thus HĈ = Q and
Q ∩ T = H. Hence P ∩R = Q ∩R = H ∩R = (0). As above, CP = RP∩R = R(0).
Since the field of fractions of C is the same as the field of fractions of R, the prime
ideal P = (0). By the proof of item 1, (0)Ĉ = (fĈ)∩ ((g, h)Ĉ) is an intersection of
two prime ideals. Therefore the formal fiber of C over (0) is reduced.

Case iia′: Assume x /∈ Q, H * Q and Q ∩ R = (0). Then the computation
from case iia shows the formal fiber of C over (0) is reduced.

Thus the final case for item 2 of Proposition
ogclm2
19.17 is Case iib.

Case iib: Assume x /∈ Q, H * Q and P := Q ∩R 6= (0).
Consider the maps

CP = RP∩R
α
↪→ TQ∩T = (D/ID)Q∩(D/ID)

β
↪→ ĈQ

Since Q ∩ T does not contain the Elkik ideal H, α is smooth. Since D/ID is an
excellent local ring with completion Ĉ, it follows that the extension D/ID ↪→ Ĉ
and so also the extension β is faithfully flat and regular. The composition of
regular maps is regular. Thus β ◦ α is regular. Therefore the formal fiber of P is a
Noetherian regular ring.

This completes the proof of item 6 of Proposition
ogclm2
19.17 and also proves item 7.

For item 8 of Proposition
ogclm2
19.17, the formal fibers of C are reduced, by item 6.

Since the characteristic of k is 0, the formal fibers of C are also geometrically
reduced; see Remark

3.38r
3.40. By Theorem

naglocequiv
8.19, C is Nagata. □

Proposition
ogclm3
19.18 gives an additional important property of the Ogoma-like

example.

ogclm3 Proposition 19.18. Assume notation as in Example
ogomaeg
19.13. Then C is inte-

grally closed.
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Proof. By item 2 of Remark
normalnoeth
2.3, or

N2
[138, (12.9), p. 41] or

Kap
[104, Theorem 54,

p. 35], to prove that C is integrally closed, it suffices to show:
(a) Cp is a DVR for each p ∈ SpecC with ht p = 1, and
(b) If p is an associated prime of a nonzero principal ideal aC, then ht p = 1.

Let p ∈ SpecC with ht p = 1. If x ∈ p, then item 4 of Proposition
ogclm2
19.17 implies

that Cp is a DVR. If x 6∈ p , then Theorem
11.2.4
17.11.5c implies that Cp = Rp∩R. Since

R is an RLR, Cp is a DVR. This establishes item a.
If p is an associated prime of a nonzero principal ideal aC, then by

N2
[138, (12.5)]

or
Kap
[104, Theorem 121], p is an associated prime of bC for every nonzero element

b ∈ p. If x ∈ p, then p an associated prime of xC implies ht p = 1. If x 6∈ p,
then Theorem

11.2.4
17.11.5c implies that Cp = Rp∩R. Hence Cp is an RLR and p an

associated prime of a principal ideal implies ht p = 1. □
almCM Remark 19.19. M. C. Kang has shown that every Noetherian normal integral

domainA of dimension 3 is almost Cohen-Macaulay; see
Kang
[103, Ex.2]. Almost Cohen-

Macaulay is defined by grade(P,R) = grade(PRP , RP ), for every P ∈ SpecA;
equivalently, depthPA = depthPAP

AP , for every P ∈ SpecA. Thus, as Cristodor
Ionescu observes in

Ion
[102, Example 2.9], Example

ogomaeg
19.13 provides a commutative

Noetherian ring that is almost Cohen-Macaulay, but is not catenary.



CHAPTER 20

Multi-ideal-adic completions of Noetherian rings
(multsec), May 28 2020multsec

In this chapter we consider a variation of the usual ideal-adic completion of a
Noetherian ring R.1 Instead of successive powers of a fixed ideal I, we use a multi-
adic filtration formed from a more general descending sequence {In}∞n=0 of ideals.
We develop the mechanics of a multi-ideal-adic completion R∗ of R, abbreviated
multi-adic completion. With additional hypotheses on the ideals of the filtration,
we show that R∗ is Noetherian. In the case where R is local, we prove that R∗ is
excellent, or Henselian or universally catenary if R has the stated property.

20.1. Ideal filtrations and completions
multintro

Let R be a commutative ring with identity. A filtration on R is a descending
sequence {In}∞n=0 of ideals of R. As stated in Chapter

ptools2
3, associated to a filtration

there is a well-defined completion
R∗ = lim←−

n

R/In,

and a canonical homomorphism ψ : R → R∗. If
⋂∞
n=0 In = (0), then ψ is injective

and R may be regarded as a subring of R∗. A filtration {In}∞n=0 is said to be
multiplicative if I0 = R and InIm ⊆ In+m, for all m ≥ 0, n ≥ 0. A. well-known
example of a multiplicative filtration on R is the I-adic filtration {In}∞n=0, where I
is a fixed ideal of R.

In this chapter we consider filtrations of ideals of R that are not multiplicative,
and examine the completions associated to these filtrations. We assume the ring
R is Noetherian. Instead of successive powers of a fixed ideal I, we use a filtration
formed from a more general descending sequence {In}∞n=0 of ideals. We require that,
for each n > 0, the nth ideal In is contained in the nth power of the Jacobson radical
of R, and that Ink ⊆ Ikn for all k, n ≥ 0. We call the associated completion a multi-
adic completion, and denote it by R∗. The basics of the multi-adic construction
and the relationship between this completion and certain ideal-adic completions are
considered in Section

multmech
20.2. In Sections

multNoeth
20.3 and

multhens
20.4, we prove that the multi-adic

completion R∗ with respect to such ideals {In} has the properties stated above.
The process of passing to completion gives an analytic flavor to algebra. Often

we view completions in terms of power series, or in terms of coherent sequences
as in

AM
[16, pages 103-104]. Sometimes results are established by demonstrating for

each n that they hold at the nth stage in the inverse limit.

1The material in this chapter is adapted from our paper
multi
[90] dedicated to Melvin Hochster

on the occasion of his 65th birthday. Hochster’s brilliant work has had a tremendous impact on
commutative algebra.
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Multi-adic completions are interesting from another point of view. Many ex-
amples in commutative algebra can be considered as subrings of R∗/J , where R∗ is
a multi-adic completion of a localized polynomial ring R over a countable ground
field and J is an ideal of R∗. In particular, certain counterexamples of Brodmann
and Rotthaus, Heitmann, Nishimura, Ogoma, Rotthaus and Weston can be inter-
preted in this way, see

BR1
[27],

BR2
[28],

H4
[99],

Ni
[141],

Ni2
[144],

O1
[147],

O2
[148],

R2
[157],

R3
[158],

W
[184].

For many of these examples, a particular enumeration, {p1, p2, . . . }, of countably
many non-associate prime elements is chosen and the ideals In are defined to be
In := (p1p2 . . . pn)

n. The Noetherian property in these examples is a trivial conse-
quence of the fact that every ideal of R∗ that contains a power of one of the ideals
In is extended from R. An advantage of R∗ over the In-adic completion R̂n is that
an ideal of R∗ is more likely to be extended from R than is an ideal of R̂n.

20.2. Basic mechanics for the multi-adic completion
multmech
22.1.05 Setting 20.1. Let R be a Noetherian ring with Jacobson radical J , and let N

denote the set of positive integers. For each n ∈ N, let qn be an ideal of R. Assume
that the sequence {qn} is descending, that is qn+1 ⊆ qn, and that qn ⊆ J n, for
each n ∈ N. Also assume, for each pair of integers k, n ∈ N, that qnk ⊆ qkn.

Let F = {qk}k≥0 be a filtration
R = q0 ⊇ q1 ⊇ · · · ⊇ qk ⊇ qk+1 ⊇ · · ·

of R satisfying the conditions in the previous paragraph and let
(
22.1.05
20.1.1) R∗ := lim←−

k

R/qk

denote the completion of R with respect to F .
Let R̂ := lim←−

k

R/J k denote the completion of R with respect to the powers of

the Jacobson radical J of R, and, for each n ∈ N, let

(
22.1.05
20.1.2) R̂

qn

:= lim←−
k

R/qkn

denote the completion of R with respect to the powers of qn. 2

multipstd Remark 20.2. Assume Setting
22.1.05
20.1. Then:

(1) If each ideal qj = bjR, for some bj ∈ R, then every element γ of R∗ may
be expressed as an infinite sum γ =

∑∞
j=0 ajbj , where each aj ∈ R.

(2) If R is countable, then R∗ has infinite transcendence degree over R.
To see the first item, let γ ∈ R∗. Then

γ = {a1, a2, . . .} ∈ lim←−
t

R/qt = R∗,

where a1 ∈ R/q1, a2 ∈ R/q2 and a2 + q1/q2 = a1 in R/q1, · · · , and so forth, is a
coherent sequence as in

AM
[16, pp. 103-104]. This leads to an expression for γ as

(
multipstd
20.2.a) γ =

∞∑
j=0

ajbj ,

where each aj ∈ R. The justification is analogous to that of Remarks
3.1.2
3.5.1.

2In this chapter we allow the use of “̂” with annotations to indicate completions other than
a completion with respect to powers of the maximal ideal of a local ring
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For item 2, again use that the elements γ of R∗ are in one-to-one correspondence
with coherent sequences {an}∞n=1. For every n, there are at least two distinct choices
for an in the nth position of such a sequence. Thus there are at least 2ℵ0 coherent
sequences. □

22.1r Remark 20.3. Assume notation as in Setting
22.1.05
20.1. For each fixed n ∈ N,

R∗ = lim←−
k

R/qk = lim←−
k

R/qnk,

where k ∈ N varies. This holds because the limit of a subsequence is the same as
the limit of the original sequence.

We establish in Proposition
22.1.2
20.4 canonical inclusion relations among R̂

J and
the completions defined in Equations

22.1.05
20.1.1 and

22.1.05
20.1.2.

22.1.2 Proposition 20.4. Let the notation be as in Setting
22.1.05
20.1. For each n ∈ N, we

have canonical inclusions
R ⊆ R∗ ⊆ R̂

qn ⊆ R̂
qn−1 ⊆ · · · ⊆ R̂

q1 ⊆ R̂.

Proof. The inclusion R ⊆ R∗ is clear since the intersection of the ideals qk is
zero. For the inclusion R∗ ⊆ R̂

qn , by Remark
22.1r
20.3, R∗ = lim←−

k

R/qnk. Notice that

qnk ⊆ qkn ⊆ qkn−1 ⊆ · · · ⊆ J k.
□

To complete the proof of Proposition
22.1.2
20.4, we state and prove a general result

about completions with respect to ideal filtrations (see also
Nor
[145, Section 9.5]). We

define the respective completions using coherent sequences as in
AM
[16, pages 103-104].

22.1.5 Lemma 20.5. Let R be a Noetherian ring with Jacobson radical J and let
{Hk}k∈N, {Ik}k∈N and {Lk}k∈N be descending sequences of ideals of R such that,
for each k ∈ N, we have inclusions

Lk ⊆ Ik ⊆ Hk ⊆ J k.
We denote the families of natural surjections arising from these inclusions as:

δk : R/Lk → R/Ik, λk : R/Ik → R/Hk and θk : R/Hk → R/J k,
and the completions with respect to these families as:

R̂
L

= lim←−
k

R/Lk, R̂
I

:= lim←−
k

R/Ik R̂
H

:= lim←−
k

R/Hk and R̂ := lim←−
k

R/J k.

Then
(1) These families of surjections induce canonical injective maps ∆, Λ and Θ

among the completions as shown in the diagram below.
(2) For each positive integer k we have a commutative diagram as displayed

below, where the vertical maps are the natural surjections.

R/Lk
δk−−−−→ R/Ik

λk−−−−→ R/Hk
θk−−−−→ R/J kx x x x

R̂
L ∆−−−−→ R̂

I Λ−−−−→ R̂
H Θ−−−−→ R̂
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(3) The composition Λ · ∆ is the canonical map induced by the natural sur-
jections λk · δk : R/Lk → R/Hk. Similarly, the other compositions in
the bottom row are the canonical maps induced by the appropriate natural
surjections.

Proof. By the universal property of inverse limits,3 in each case there is a
unique homomorphism of the completions. For example, the family of homomor-
phisms {δk}k∈N induces a unique homomorphism

R̂
L ∆−−−−→ R̂

I

.

To define ∆, let x = {xk}k∈N ∈ R̂
L be a coherent sequence, where each xk ∈ R/Lk.

Then δk(xk) ∈ R/Ik and we define ∆(x) := {δk(xk)}k∈N ∈ R̂
I .

To show the maps on the completions are injective, consider for example the
map ∆. Suppose x = {xk}k∈N ∈ lim←−

k

R/Lk with ∆(x) = 0. Then δk(xk) = 0 in

R/Ik, that is, xk ∈ IkR/Lk, for every k ∈ N. For v ∈ N, consider the following
commutative diagram:

(20.1)

R/Lk
δk−−−−→ R/Ik

βk,kv

x αk,kv

x
R/Lkv

δkv−−−−→ R/Ikv

where βk,kv and αk,kv are the canonical surjections associated with the inverse
limits. We have xkv ∈ IkvR/Lkv. Therefore

xk = βk,kv(xkv) ∈ Ikv(R/Lk) ⊆ J kv(R/Lk),

for every v ∈ N. Since J (R/Lk) is contained in the Jacobson radical of R/Lk and
R/Lk is Noetherian, we have ⋂

v∈N

J kv(R/Lk) = (0).

Therefore xk = 0 for each k ∈ N, and so ∆ is injective. The remaining assertions
are clear. □

22.3l Lemma 20.6. With R∗ and R̂
qn as in Setting

22.1.05
20.1, we have

R∗ =
⋂
n∈N

R̂
qn

.

Proof. The inclusion “⊆” is shown in Proposition
22.1.2
20.4. For the reverse in-

clusion, fix positive integers n and k, and let Lℓ = qnkℓ, Iℓ = qℓnk and Hℓ = qℓn for
each ` ∈ N. Then Lℓ ⊆ Iℓ ⊆ Hℓ ⊆ J ℓ, as in Lemma

22.1.5
20.5 and

R̂
L

:= lim←−
ℓ

R/qnkℓ = R∗, R̂
I

:= lim←−
ℓ

R/qℓnk = R̂nk
qnk

, R̂
H

:= lim←−
ℓ

R/qℓn = R̂
qn

.

3See, for example,
M
[123, pages 271-272].
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As above, R̂ := lim←−
ℓ

R/J ℓ. Thus the diagram in Lemma
22.1.5
20.5.2 becomes

R/qnkℓ
δℓ−−−−→ R/qℓnk

λℓ−−−−→ R/qℓn
θℓ−−−−→ R/J ℓx x x x

R̂
L

:= R∗
∆−−−−→ R̂

I

:= R̂
qnk Λ−−−−→ R̂

H

:= R̂
qn Θ−−−−→ R̂.

Consider the commutative diagram below where the maps named ∆,Λ and Θ
are renamed ∆nk,Λnk,n and Θn to identify the subscripts of the completions that
are used for the maps. Let Ωn = Λnk ◦ ∆nk and Γ := Θn ◦ Λnk ◦ ∆nk. Then
Ωn : R∗ → R̂

qn is the map on the inverse limit induced by the maps λℓ ◦ δℓ and
Γ : R∗ → R̂ is the map on the inverse limit induced by the maps θℓ ◦ λℓ ◦ δℓ.

R̂ R̂
qnΘn

R∗ R̂
qnk

(
22.3l
20.6.1)

Γ Λnk,n
Ωn

∆nk

Let ŷ ∈
⋂
n∈N R̂

qn . We show there is an element ξ ∈ R∗ such that Γ(ξ) =
Θn(ŷ). This is sufficient to ensure that ŷ ∈ R∗, since the maps Θn are injective and
Diagram

22.3l
20.6.1 is commutative.

First, we define ξ: For each t ∈ N,

ŷ = {y1,t, y2,t, . . . , } ∈ lim←−
ℓ

R/qℓt = R̂
qt

,

where y1,t ∈ R/qt, y2,t ∈ R/q2t and (y2,t + qt)/q
2
t = y1,t in R/qt, · · · , is a coherent

sequence as in
AM
[16, pp. 103-104]. Choose zt ∈ R so that zt + qt = y1,t. Then

ŷ − zt ∈ qt R̂
qt . If s and t are positive integers with s ≥ t, then qs ⊆ qt. Therefore

zt − zs ∈ qt R̂
qt ∩R = qtR. Thus ξ := {zt}t∈N ∈ R∗. It follows that, for all t ∈ N,

ŷ − zt ∈ qt R̂
qt ⊆ J tR̂. Hence Γ(ξ) = Θn(ŷ). This completes the proof of Lemma22.3l

20.6. □

The following special case of Setting
22.1.05
20.1 is used by Brodmann, Heitmann,

Nishimura, Ogoma, Rotthaus, and Weston for the construction of numerous exam-
ples.

22.1.0 Setting 20.7. Let R be a Noetherian ring with Jacobson radical J . For each
i ∈ N, let pi ∈ J be a non-zero-divisor (that is, a regular element) on R.

For each n ∈ N, let qn = (p1 · · · pn)n. Let F0 = {(qk)}k≥0 be the filtration

R ⊇ (q1) ⊇ · · · ⊇ (qk) ⊇ (qk+1) ⊇ · · ·

of R and define R∗ := lim←−
k

R/(qk) to be the completion of R with respect to F0.

22.2.7 Remark 20.8. In Setting
22.1.0
20.7, assume further thatR = K[x1, . . . , xn](x1,...,xn),

a localized polynomial ring over a countable field K, and that {p1, p2, . . .} is an
enumeration of all the prime elements (up to associates) in R. As in

22.1.0
20.7, let

R∗ := lim←−
n

R/(qn), where each qn = (p1 · · · pn)n.
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The ring R∗ is often useful for the construction of Noetherian local rings with
a bad locus (regular, Cohen-Macaulay, normal). In particular, Brodmann, Heit-
mann, Nishimura, Ogoma, Rotthaus, and Weston make use of special subrings
of this multi-adic completion R∗ for their examples. The first such example was
constructed by Rotthaus in

R2
[157]. In this paper, Rotthaus obtains a regular local

Nagata ring A that contains a prime element ω so that the singular locus of the
quotient ring A/(ω) is not closed. This ring A is situated between the localized
polynomial ring R and its ∗-completion R∗; thus, in general R∗ is bigger than R.
In the Rotthaus example, the singular locus of (A/(ω))∗ is defined by a height one
prime ideal Q that intersects A/(ω) in (0). Since all ideals Q + (pn) are extended
from A/(ω), the singular locus of A/(ω) is not closed.

idealcomp Remark 20.9. For R and R∗ as in Remark
22.2.7
20.8, the ring R∗ is also the “ideal-

completion”, or “R-completion of R. This completion is defined and used in the
paper of Zelinsky

Zel
[195], the work of Matlis

Matlis1
[119] and

Matlis2
[120], and the book of Fuchs

and Salce
FS
[51]. The ideal-topology, or R-topology on an integral domain R is the

linear topology defined by letting the nonzero ideals of R be a subbase for the open
neighborhoods of 0. The nonzero principal ideals of R also define a subbase for
the open neighborhoods of 0. Recent work on ideal completions has been done by
Tchamna in

Tchamna
[180]. In particular, Tchamna observes in

Tchamna
[180, Theorem 4.1] that the

ideal-completion of a countable Noetherian local domain is also a multi-ideal-adic
completion.

20.3. Preserving Noetherian under multi-adic completion
multNoeth

r*noeth Theorem 20.10. Let the notation be as in Setting
22.1.05
20.1. Then the ring R∗

defined in Equation
22.1.05
20.1.1 is Noetherian.

Proof. It suffices to show each ideal I of R∗ is finitely generated. Since
R̂ is Noetherian, there exist f1, . . . , fs ∈ I such that IR̂ = (f1, . . . , fs)R̂. Since
R̂

qn

↪→ R̂ is faithfully flat, I R̂
qn

= IR̂ ∩ R̂
qn

= (f1, . . . , fs) R̂
qn , for each n ∈ N.

Let f ∈ I ⊆ R∗. Then f ∈ I R̂
q1 , and so

f =

s∑
i=1

b̂i0fi,

where b̂i0 ∈ R̂
q1 . Consider R as “q0”, and so b̂i0 ∈ q0 R̂

q1 . Since R̂1/q1 R̂
q1 ∼=

R/q1, for all i with 1 ≤ i ≤ s, we have b̂i0 = ai0 + ĉi1, where ai0 ∈ R = q0R and
ĉi1 ∈ q1 R̂

q1 . Then

f =

s∑
i=1

ai0fi +

s∑
i=1

ĉi1fi.

Notice that

d̂1 :=

s∑
i=1

ĉi1fi ∈ (q1I) R̂
q1 ∩R∗ ⊆ R̂

q2

.

By the faithful flatness of the extension R̂
q2

↪→ R̂
q1 , we see d̂1 ∈ (q1I) R̂

q2

, and
therefore there exist b̂i1 ∈ q1 R̂

q−2
with

d̂1 =

s∑
i=1

b̂i1fi.
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As before, using that R̂
q2

/q2 R̂
q2 ∼= R/q2, we can write b̂i1 = ai1 + ĉi2, where

ai1 ∈ R and ĉi2 ∈ q2 R̂
q2 . This implies that ai1 ∈ q1 R̂

q2 ∩R = q1. We have:

f =

s∑
i=1

(ai0 + ai1)fi +

s∑
i=1

ĉi2fi.

Now set

d̂2 :=

s∑
i=1

ĉi2fi.

Then d̂2 ∈ (q2I) R̂
q2 ∩ R∗ ⊆ R̂

q3 and, since the extension R̂
q3

↪→ R̂
q2 is faith-

fully flat, we have d̂2 ∈ (q2I) R̂
q3

. We repeat the process. By a simple induction
argument,

f =

s∑
i=1

(ai0 + ai1 + ai2 + . . .)fi,

where aij ∈ qj and ai0 + ai1 + ai2 + . . . ∈ R∗. Thus f ∈ (f1, . . . , fs)R
∗. Hence I is

finitely generated and R∗ is Noetherian. □
ff2011 Corollary 20.11. Assume Setting

22.1.05
20.1. Then the inclusion map R ↪→ R∗ is

faithfully flat.

Proof. Let R α
↪→ R∗

β
↪→ R̂∗ = R̂ with α and β the inclusion maps. By

Remark
N*Jff
4.4, β : R∗ ↪→ R̂∗ = R̂ and β ◦ α : R ↪→ R̂∗ are both faithfully flat. By

Remark
remflat
2.37.

tran4
14, α is faithfully flat. □

We use Proposition
22.2
20.12 in the next section on preserving excellence.

22.2 Proposition 20.12. Assume notation as in Setting
22.1.05
20.1, and let the ring R∗

be defined as in Equation
22.1.05
20.1.1. If M is a finitely generated R∗-module, then

M ∼= lim←−
k

(M/qkM),

that is, M is ∗-complete.

Proof. If F = (R∗)n is a finitely generated free R∗-module, then one can see
directly that

F ∼= lim←−
k

F/qkF,

and so F is ∗-complete.
Let M be a finitely generated R∗-module. Consider an exact sequence:

0 −→ N −→ F −→M −→ 0,

where F is a finitely generated free R∗-module. This induces an exact sequence:
0 −→ Ñ −→ F ∗ −→M∗ −→ 0,

where Ñ is the completion of N with respect to the induced filtration {qkF∩N}k≥0;
see

AM
[16, (10.3)].
This gives a commutative diagram:

0 −−−−→ N −−−−→ F −−−−→ M −−−−→ 0y ∼=
y γ

y
0 −−−−→ Ñ −−−−→ F ∗ −−−−→ M∗ −−−−→ 0



264 20. MULTI-IDEAL-ADIC COMPLETIONS

where γ is the canonical map γ : M −→ M∗. The diagram shows that γ is
surjective. We have

∞⋂
k=1

(qkM) ⊆
∞⋂
k=1

JkM = (0),

where the last equality is by
AM
[16, (10.19)]. Therefore γ is also injective. □

22.22 Remark 20.13. Let the notation be as in Setting
22.1.05
20.1, and let B be a finite

R∗-algebra. Let B̂
qn ∼= B ⊗R∗ R̂

qn denote the qn-adic completion of B. By
Proposition

22.1.2
20.4, and Corollary

ff2011
20.11, we have a sequence of inclusions:

B ↪→ · · · ↪→ B̂
qn+1

↪→ B̂
qn

↪→ . . . ↪→ B̂
q1

↪→ B̂
JB

,

where B̂JB denotes the completion of B with respect to JB. Let J0 denote the
Jacobson radical of B. Since every maximal ideal of B lies over a maximal ideal of
R∗, we have JB ⊆ J0.

22.3 Theorem 20.14. Assume the notation of Setting
22.1.05
20.1 and Remark

22.22
20.13. Thus

B is a finite R∗-algebra. Let Î be an ideal of B̂JB , let I := Î ∩ B, and, for each
n ∈ N, let In := Î ∩ B̂

qn . If Î = InB̂
JB , for all n, then Î = IB̂

JB .

Proof. By replacing B by B/I, we may assume that (0) = I = Î ∩ B. To
prove the theorem, it suffices to show that Î = 0.

For each n ∈ N, we define ideals cn of B̂
qn and an of B:

cn := In + qn B̂
qn

, an := cn ∩B.

Since B/qnB = B̂
qn

/qn B̂
qn , the ideals of B containing qn are in one-to-one

inclusion-preserving correspondence with the ideals of B̂
qn containing qn B̂

qn , and
so

(
22.3
20.14.1) an B̂

qn

= cn, an+1 B̂
qn

= an+1 B̂
qn+1

B̂
qn

= cn+1 B̂
qn

.

Since B̂JB is faithfully flat over B̂
qn and Î is extended,

(
22.3
20.14.2) In+1 B̂

qn

= (In+1B̂
JB

) ∩ B̂
qn

= Î ∩ B̂
qn

= In.

Thus Equations
22.3
20.14.1 and

22.3
20.14.2 and qn+1 B̂

qn ⊆ qn B̂
qn imply that:

an B̂
qn

= cn = In + qn B̂
qn

= In+1 B̂
qn

+ qn B̂
qn

= cn+1 B̂
qn

+ qn B̂
qn

= an+1 B̂
qn

+ qn B̂
qn

,

for all n ∈ N. Since B̂
qn is faithfully flat over B, the equation above implies that

(
22.3
20.14.3) an+1 + qnB = (an+1 B̂

qn

+ qn B̂
qn

) ∩B = an B̂
qn ∩B = an.

Thus also

(
22.3
20.14.4) anB̂

JB

⊆ an+1B̂
JB

+ qnB̂
JB

⊆ In+1B̂
JB

+ qnB̂
JB

= Î + qnB̂
JB

.

Now qn ⊆ J nB̂
JB , and J ⊆ J0, the Jacobson radical of B. Then⋂

n∈N

(anB̂
JB

) ⊆
⋂
n∈N

(Î + qnB̂
JB

) ⊆
⋂
n∈N

(Î + J nB̂
JB

) = Î ,
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by applying Equation
22.3
20.14.4. Since Î ∩B = (0), we have

0 = Î ∩B ⊇ (
⋂
n∈N

(anB̂
JB

)) ∩B ⊇
⋂
n∈N

((anB̂
JB

) ∩B) =
⋂
n∈N

an,

where the last equality is because B̂JB is faithfully flat over B. Thus
⋂
n∈N an = (0).

Claim. Î = (0).
Proof of Claim. Suppose Î 6= 0. Then there exists d ∈ N so that Î * J d0 B̂

JB . By
hypothesis, Î = IdB̂

JB , and so IdB̂
JB * J d0 B̂. Since B̂JB is faithfully flat over

B̂
qd , we have Id * J d0 B̂

qd . By Equation
22.3
20.14.1,

ad B̂
qd

= cd = Id + qd B̂
qd * J d0 B̂

qd

,

and so there exists an element yd ∈ ad with yd /∈ J d0 .
By Equation

22.3
20.14.3, ad+1 + qdB = ad. Hence there exists yd+1 ∈ ad+1 and

qd ∈ qdB so that yd+1 + qd = yd. Recursively construct sequences of elements
yn+1 ∈ an+1 and qn ∈ qnB such that yn+1 + qn = yn, for each n ≥ d.

The sequence ξ = (yn + qnB) ∈ lim←−
n

B/qnB = B corresponds to a nonzero

element y ∈ B such that, for every n ≥ d, there exists an element gn ∈ qnB with
y = yn + gn. This shows that y ∈ an, for all n ≥ d, and y /∈ J d0 B̂

JB . Therefore⋂
n∈N an 6= 0, a contradiction. Thus Î = (0). □

20.4. Preserving excellence or Henselian under multi-adic completion
multhens

The first four results of this section concern preservation of excellence.
22.1 Theorem 20.15. Assume notation as in Setting

22.1.05
20.1, and let the ring R∗ be

defined as in Equation
22.1.05
20.1.1. If (R,m) is an excellent local ring, then R∗ is

excellent.
The following result is crucial to the proof of Theorem

22.1
20.15.

matgr Lemma 20.16.
M
[123, Theorem 32.5, page 259] Let A be a semilocal Noetherian

ring. Assume, for every finite A-algebra C that is an integral domain and every
maximal ideal a of C, that the local domain B = Ca has the following property:
(B̂)Q is a regular local ring for every prime ideal Q of B̂ such that Q ∩ B = (0).
Then A is a G-ring, that is, Ap ↪→ Âp is regular for every prime ideal p of A.

We use Proposition
22.4
20.17 in the proof of Theorem

22.1
20.15.

22.4 Proposition 20.17. Assume Setting
22.1.05
20.1. Let R be a Noetherian semilocal

ring with geometrically regular formal fibers. Then R∗ has geometrically regular
formal fibers.

Proof. Let C be an integral domain that is a finite R∗-algebra, let a be a
maximal ideal of C and let B = Ca. Then C is semilocal; let a, a2, . . . , at be the
maximal ideals of C. By Theorem

3.38Chev
3.14, Ĉ = B̂ × Ĉa2

× · × Ĉat
. By Fact

R*hat
3.2,

R̂∗ = R̂. It follows that B̂ is a local integral domain that is a finite R̂-algebra. Let
P ∈ Sing(B̂), that is, B̂P is not a regular local ring. By Lemma

matgr
20.16, to prove that

R∗ has geometrically regular formal fibers, it suffices to prove that P ∩B 6= (0).
The Noetherian complete semilocal ring R̂ has the property J-2 in the sense of

Matsumura, that is, for every finite R̂-algebra, such as B̂ = B ⊗R∗ R̂∗, the subset
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Reg(Spec(B̂)), of primes where the localization of B̂ is regular, is an open subset
in the Zariski topology; see

M1
[121, pp. 246–249]. Thus there is a reduced ideal Î in

B̂ that defines the singular locus; that is, Sing(B̂) = V(Î).
If Î = (0), then the nilradical

√
(0) = (0) in B̂ and so B̂ is a reduced ring.

Then the localization B̂Q is a field, for every minimal prime Q of B̂, a contradiction
to Q ∈ Sing(B̂. We conclude that Î 6= (0).

For every n ∈ N, B̂
qn ∼= R̂

qn ⊗R∗ B is a finite R̂
qn -algebra. Since R̂qn has

geometrically regular formal fibers so has B̂
qn ; see

R3
[158]. This implies that Î is

extended from B̂
qn , for every n ∈ N; see Exercise

singextend
3. By Theorem

22.3
20.14, Î is

extended from B, and so Î = IB̂, where 0 6= I := Î ∩ B. Since Î ⊆ P , we have
(0) 6= I ⊆ P ∩B. This completes the proof of Proposition

22.4
20.17. □

Proof of Theorem
22.1
20.15. It remains to show that R∗ is universally catenary. The

extensions R ↪→ R∗ ↪→ R̂ are injective local homomorphisms, R∗ is Noetherian, and
R̂∗ = R̂. Thus Proposition

ucint
20.18 below implies that R∗ is universally catenary. □

ucint Proposition 20.18. Let (A,m) be a Noetherian local universally catenary ring
and let (B, n) be a Noetherian local subring of the m-adic completion Â of A with
A ⊆ B ⊆ Â and B̂ = Â, where B̂ is the n-adic completion of B. Then B is
universally catenary.

Proof. By
M
[123, Theorem 31.7], it suffices to show for P ∈ Spec(B) that

Â/P Â is equidimensional. We may assume that P ∩ A = (0), and hence that A is
a domain.

Let Q and W in Spec(Â) be minimal primes over PÂ.

Claim: dim(Â/Q) = dim(Â/W ).

Proof of Claim: Since B is Noetherian, the canonical morphisms BP −→ ÂQ and
BP −→ ÂW are flat. By

M
[123, Theorem 15.1],

dim(ÂQ) = dim(BP ) + dim(ÂQ/PÂQ), dim(ÂW ) = dim(BP ) + dim(ÂW /PÂW ).

Since Q and W are minimal over PÂ, it follows that:

dim(ÂQ) = dim(ÂW ) = dim(BP ).

Let q ⊆ Q and w ⊆W be minimal primes of Â so that:

dim(ÂQ) = dim(ÂQ/qÂQ) and dim(ÂW ) = dim(ÂW /wÂW ).

Since we have reduced to the case where A is a universally catenary domain, its
completion Â is equidimensional and therefore:

dim(Â/q) = dim(Â/w).

Since a complete local ring is catenary
M
[123, Theorem 29.4], we have:

dim(Â/q) = dim(ÂQ/qÂQ) + dim(Â/Q),

dim(Â/w) = dim(ÂW /wÂW ) + dim(Â/W ).
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Since dim(Â/q) = dim(Â/w) and dim(ÂQ) = dim(ÂW ), it follows that

dim(Â/Q) = dim(Â/W ).

This completes the proof of Proposition
ucint
20.18. □

Remark 20.19. Let R be a universally catenary Noetherian local ring. Propo-
sition

ucint
20.18 implies that every Noetherian local subring B of R̂ with R ⊆ B and

B̂ = R̂ is universally catenary. Hence, for each ideal I of R, the I-adic completion
of R is universally catenary. Also R∗ as in Setting

22.1.05
20.1 is universally catenary.

Proposition
ucint
20.18 also implies that the Henselization of R is universally catenary.

Seydi shows that the I-adic completions of universally catenary rings are univer-
sally catenary in

S
[168]. Proposition

ucint
20.18 establishes this result for a larger class

of rings.

Proposition 20.20. With notation as in Setting
22.1.05
20.1, let (R,m, k) be a Noe-

therian local ring. If R is Henselian, then R∗ is Henselian.

Proof. Assume that R is Henselian. It is well known that every ideal-adic
completion of R is Henselian, see

R2
[157, p.6]. Thus R̂qn is Henselian for all n ∈ N.

Let n denote the nilradical of R̂. Then n∩R∗ is the nilradical of R∗, and to prove R∗
is Henselian, it suffices to prove that R′ := R∗/(n∩R∗) is Henselian

N2
[138, (43.15)].

To prove R′ is Henselian, by
R2
[157, Prop. 3, page 76], it suffices to show:

If f ∈ R′[x] is a monic polynomial and its image f̄ ∈ k[x] has a simple root,
then f has a root in R′.

Let f ∈ R′[x] be a monic polynomial such that f̄ ∈ k[x] has a simple root.
Since R̂qn

/(n∩ R̂qn
) is Henselian, for each n ∈ N, there exists α̂n ∈ R̂

qn
/(n∩ R̂qn

)

with f(α̂n) = 0. Since f is monic and R̂/n is reduced, f has only finitely many
roots in R̂/n. Thus there is an α so that α = α̂n, for infinitely many n ∈ N. By
Lemma

22.3
20.14, R∗ =

⋂
n∈N R̂

qn . Hence

R′ = R∗/(n ∩R∗) =
⋂
n∈N

R̂
qn
/(n ∩ R̂

qn
),

and so there exists α ∈ R′ such that f(α) = 0. □

Exercises
(1) Let R be a Noetherian semilocal ring, let S be an R-algebra, and let ϕ : R→ S

be the canonical R-algebra homomorphism of R into S. Assume that S is a
finite R-algebra, and therefore that ϕ(R) ↪→ S is a finite integral extension.
(a) Prove that a prime ideal P of S is maximal in S if and only if P ∩ ϕ(R) is

maximal in ϕ(R).
(b) Let m be a maximal ideal of ϕ(R). Prove that there exists at least one and

at most finitely many prime ideals of S lying over m.
(c) Prove that S is a Noetherian semilocal ring.
(d) Let J (S) and J (ϕ(R)) denote the Jacobson radicals of S and ϕ(R). Prove

that there exists a positive integer n such that J (S)n ⊆ J (ϕ(R))S.
(e) Prove that Ŝ is also the J (ϕ(R))S-adic completion of S.
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Id-top (2) Let R denote the ring and {qn} the family of ideals given in Remark
22.2.7
20.8.

Consider the linear topology obtained by letting the ideals qn be a subbase for
the open neighborhoods of 0. Prove the ideals qn are also a subbase for the
ideal-topology on R.

singextend (3) Let R and S be Noetherian local rings and ϕ : R ↪→ S a faithfully flat local
homomorphism. Assume that ϕ has regular fibers and that SingS = V(I) for
a reduced ideal I of S. Then SingR = V(I ∩R).
Suggestion. Apply Theorem

forextreg
3.33; see also

M
[123, Theorem 23.9]. Since S is

Noetherian, I has finitely many minimal primes q1, . . . , qn and I = ∩ni=1qi. Let
pi = qi ∩ R. Then I ∩ R = ∩ni=1pi. Let p be a prime ideal of R. Since S is
faithfully flat over R, there exists a prime ideal q of S such that q∩R = p. By
Theorem

forextreg
3.33, Sq is regular if and only if Rp is regular. Since Sq is not regular

if and only if I ⊆ q, it follows that Rp is not regular if and only if I ∩R ⊆ p.



CHAPTER 21

Noetherian flatness and multi–adic constructions
(mult2), May 28 2020mult2

In this chapter we define a construction analogous to Inclusion Constructions
4.4.1
5.3

using the multi-adic completion of Chapter
multsec
20 in place of the x-adic completion.

The multi-adic version of the inclusion construction is in Sections
mc2
21.2.

21.1. Flatness lemmas
mcfl

This section contains expanded versions of two flatness lemmas that were crucial
for the results obtained for Inclusion Construction

4.4.1
5.3. Fortunately, it is rather

straightforward to extend Lemma
11.2.3ic
5.12 and Lemma

11.3.1
6.2 to the versions given in

Lemma
mclfl512
21.2 and Lemma

mclfl62
21.3. These versions are useful for results concerning the

multi-adic completion.

mclflset Setting 21.1. Let S ↪→ T be an extension of commutative rings and let ∆ be
a multiplicatively closed subset of S such that ∆ ⊆ { nonzerodivisors of T}.

mclfl512 Lemma 21.2. Assume Setting
mclflset
21.1. The following statements are equivalent:

(1) For every x ∈ ∆, (i) xS = xT ∩ S and (ii) S
xS = T

xT .
(2) For every x ∈ ∆, (i) S = S[ 1x ]∩T and (ii) T [ 1x ] = S[ 1x ]+T .
(3) For every nonunit x ∈ ∆, the x-adic completion of S equals the x-adic

completion of T .
(4) (i) S = ∆−1S ∩ T , and (ii) ∆−1T = ∆−1S + T .

Proof. Item 1 is equivalent to item 2 and to item 3 by Lemma
11.2.3ic
5.12. To show

item 1i implies item 4i, let a
b ∈ ∆−1S ∩ T, for some a ∈ S and b ∈ ∆. Then

a ∈ bT ∩ S = bS by item 1i. Thus a
b ∈ S. Since S ⊆ ∆−1S ∩ T is obvious, item 4i

holds.
To show item 1ii implies item 4ii, let t

b ∈ ∆−1T , where t ∈ T and b ∈ ∆.
Item 1ii implies that T = S + bT . It follows that t = s + bt′, for some s ∈ S and
t′ ∈ T . Thus

t

b
=
s

b
+ t′ ∈ ∆−1S + T.

Therefore item 4ii holds.
To show item 4i implies item 2i, observe that S ⊆ S[1/x] ∩ T . For the other

direction, let t = s
xn , for t ∈ T , s ∈ S and n ∈ N0. Then t = s

xn ∈ ∆−1S ∩ T = S.
For item 4 implies item 2ii: the inclusion S[ 1x ] + T ⊆ T [ 1x ] is clear. Let t ∈ T

and n ∈ N0. Then t
xn ∈ ∆−1T = ∆−1S + T , and so there exists b ∈ ∆, s ∈ S and

t′ ∈ T such that t
xn = s

b + t′ holds. Thus xns
b ∈ T ∩∆−1S = S, and so s

b ∈ S[1/x]
as desired. □

Lemma
mclfl62
21.3 extends parts of Lemma

11.3.1
6.2 to a multi-adic setting.

269
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mclfl62 Lemma 21.3. Assume Setting
mclflset
21.1 and the equivalent conditions of Lemma

mclfl512
21.2

hold. Let X ⊂ S be a set of generators of ∆, let W := {1 + xS | x ∈ X} and let
C =W−1S. Let J (S) denote the Jacobson radical of S. Then:

(1) ∆−1T is flat over S ⇐⇒ T is flat over S.
(2) If T is flat over S, then D =W−1T is faithfully flat over C.
(3) If T is Noetherian and T is flat over S, then C is Noetherian.
(4) Assume that X ⊆ J (S). If T is Noetherian and T is flat over S, then S

is Noetherian.
(4′) Assume that y ∈ X is such that X \ {y} ⊆ J (S).

(a) If C is Noetherian and S[1/y] is Noetherian, then S is Noetherian.
(b) If T is Noetherian, T is flat over S, and S[1/y] is Noetherian, then

S is Noetherian.

Proof. If T is flat over S, then, by transitivity of flatness, ∆−1T is flat over S.
For the converse, Lemma

mclfl512
21.2 implies that S = ∆−1S ∩T and ∆−1T = ∆−1S+T .

Thus the following sequence is exact.

0→ S = ∆−1S ∩ T α−−−−→ ∆−1S ⊕ T β−−−−→ ∆−1T = ∆−1S + T → 0,

where α(b) = (b,−b) for all b ∈ S and β(c, d) = c+d for all c ∈ ∆−1S, d ∈ T . Since
the two end terms are flat S-modules, the middle term ∆−1S ⊕ T is also S-flat by
Remark

remflat
2.37.

flses
12. By Definition

flat
2.36, a direct summand of a flat S-module is S-flat.

Hence T is S-flat. Thus item 1 holds.
For item 2, if T is flat over S, then D is flat over C. For every x ∈ ∆, 1 + xC

consists entirely of units of C, and xC is contained in the Jacobson radical of C.
Moreover C/xC is a localization of S/xS = T/xT with

C/xC =W−1(S/xS) =W−1(T/xT ) = D/xD.

Thus every maximal ideal of C is contained in a maximal ideal of D. It follows
that D is faithfully flat over C.

For item 3, D is Noetherian since D is a localization of T . By item 2, D is
faithfully flat over C. Hence C is Noetherian.

For item 4, since X ⊆ J (S), W consists of units of S. Thus W−1S = S, and
S is Noetherian by item 3.

For item 4′, item 3 implies it suffices to prove statement a of item 4′. For this,
let Vy = {1 + yS} and let W1 = {1 + xS | x ∈ X \ {y}}. Since X \ {y} ⊆ J (S),
it follows that W1 consists of units of S. Thus W1

−1S = S. Then W−1S =
Vy−1W1

−1S = Vy−1S is Noetherian. By Lemma
11.3.1
6.2, S is Noetherian. □

21.2. Multi-adic inclusion constructionsmc2

multcset Setting 21.4. Let (R,m) be a Noetherian local domain, let {pi}i∈N be an
infinite sequence of elements of m \ {0} that determine distinct principal ideals of
R, and let ∆ be the multiplicatively closed subset of R generated by the {pi}. For
every n ∈ N, set qn := p1 · . . . pn ∈ mn, and In := qnnR. Let

R∗ := lim←−
n

R/In,

the multi-adic completion of R with respect to the nested sequence of principal
ideals {In}, as defined in Equation

22.1.05
20.1.1.
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Definitions
multcdef
21.5 give the notation and conditions for the Multi-adic Inclusion

Construction.

multcdef Definitions 21.5. Assume Setting
multcset
21.4.

(1) By Remark
multipstd
20.2.1, every γ ∈ R∗ has a “power series” expression

(
multcdef
21.5.a) γ =

∞∑
j=0

cjq
j
j ,

where each cj ∈ R.
(2) Let γ ∈ R∗ be algebraically independent over Q(R); for every n ∈ N0,

define the nth endpiece γn of γ by

γn =

∞∑
j=n+1

cjq
j
j ·

1

qnn
.

(3) Let τ1, . . . , τs ∈ R∗ be algebraically independent over Q(R). Assume that
the elements of R[τ1, . . . , τs] are regular in R∗. As in Inclusion Construction

4.4.1
5.3,

define the Multi-adic Inclusion Intersection Domain
A = Q(R)(τ1, . . . , τs) ∩R∗.

(4) With τ1, . . . , τs ∈ R∗ as in item 3, write each τi =
∑∞
j=0 aijq

j
j , where each

aij ∈ R. As in item 2, for every n ∈ N0, the nth endpiece τin of τi is

τin =
1

qnn

∞∑
j=n+1

aijq
j
j .

(5) Define integral domains U and B associated to the Multi-adic Construction:

Un = R[τ1n, . . . , τsn]; U =
⋃
Un; Bn = (Un)(m,τ1n,...,τsn); B =

⋃
Bn.

Then B = U(m,τ1,...,τs) is called the Multi-adic Inclusion Approximation Domain.

Remark 21.6. The rings Un, Bn, U and B are independent of choice of ex-
pressions for the τi. This statement follows by an argument analogous to that of
Proposition

4.5.22
5.9, since qnnR = R ∩ qnnR∗.

multcendrel Remark 21.7. For each n ∈ N, the following relation holds for the nth and
(n+ 1)st endpieces of an element γ ∈ R∗. Let γ =

∑∞
j=0 ajq

j
j , where each aj ∈ R.

For this, write

γn = (

∞∑
j=n+1

aiq
j
j ) ·

1

qnn
= (an+1q

n+1
n+1) ·

1

qnn
+ (

∞∑
j=n+2

aiq
j
j ) · (

1

qnn
)

= (an+1q
n+1
n+1) ·

1

qnn
+ (γn+1) · (qn+1

n+1) · (
1

qnn
).

Lemma
incconsztmult
21.8 is an adaptation of Lemma

incconszt
5.13. The proof is similar to the proof

of Lemma
incconszt
5.13, but with the multi-adic notation.

incconsztmult Lemma 21.8. Assume Setting
multcset
21.4 and the notation of Definition

multcdef
21.5. Then:

(1) For every η ∈ U and every t ∈ N, there exist elements gt ∈ R and δt ∈ U
such that η = gt + qttδt.

(2) For each t ∈ N, qttR∗ ∩ U = qttU.
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Theorem
cptmultiI
21.9 gives properties of Multi-adic Inclusion Construction

multcdef
21.5 that

correspond to parts of Construction Properties Theorem
11.2.51
5.14.

cptmultiI Theorem 21.9. Assume Setting
multcset
21.4 and the notation of Definition

multcdef
21.5.

Then, for every n ∈ N:
znintAhi (1) qnnR

∗ ∩A = qnnA, qnnR
∗ ∩B = qnnB and qnnR

∗ ∩ U = qnnU .
Rmodznhi (2) R/qnnR = U/qnnU = B/qnnB = A/qnnA = R∗/qnnR

∗, and these rings
are all Noetherian.

compR*hi (3) The multi-adic completions of the rings U,B and A are all equal to R∗,
that is, R∗ = U∗ = B∗ = A∗.

(4) ∆−1B is a localization of R[τ1, . . . , τs].

Proof. The proofs of items 1 and 2 are similar to those of Theorem
11.2.51
5.14,

except they use Lemma
incconsztmult
21.8 in place of Lemma

incconszt
5.13.

Item 3 follows from items 1 and 2 and the definition of R∗.
For item 4, observe that the denominators of the endpieces in the construction

are all contained in ∆. Thus
R[τ1, . . . , τs] ⊆ U ⊆ ∆−1U ⊆ ∆−1R[τ1, . . . , τs].

Since B is a localization of U , the ring ∆−1B is a localization of R[τ1, . . . , τs]. □
Since the pi are regular on R∗ and hence on B, Theorem

cptmultiI
21.9 implies Proposi-

tion
cptmultiII
21.10:

cptmultiII Proposition 21.10. Assume Setting
multcset
21.4 and the notation of Definition

multcdef
21.5.

Define ∆ to be the multiplicatively closed subset of R generated by the elements
{pi}∞i=1. Then, for every x ∈ ∆:

(1) x is regular on R∗.
(2) xB = xR∗ ∩B.
(3) B/xB = R∗/xR∗.

multflatc Corollary 21.11. Assume Setting
multcset
21.4 and notation as in Definition

multcdef
21.5.

Then ∆−1R∗ is flat over B if and only if R∗ is flat over B.

Proof. In view of Proposition
cptmultiII
21.10, Lemmas

mclfl512
21.2 and

mclfl62
21.3 apply with S = B

and T = R∗. □
Corollary

multflatc
21.11 leads to a Noetherian Flatness Theorem

nftmult
21.12 for Multi-adic

Inclusion Construction
multcdef
21.5:

nftmult Noetherian Flatness Theorem 21.12. Assume Setting
multcset
21.4 and the nota-

tion of Definitions
multcdef
21.5. The following statements are equivalent:

(1) B
α
↪→ ∆−1R∗ is flat.

(2) B ↪→ R∗ is flat.
(3) B is Noetherian.
(4) R[τ1, . . . , τs] ↪→ ∆−1R∗ is flat.

Proof. By Corollary
multflatc
21.11 Item 1 ⇐⇒ item 2.

For item 1 =⇒ item 3, as in Section
mcfl
21.1, defineW =<

⋃
x∈∆(1+xB) > . Since

B is a local domain, W consists of units of B andW−1B = B. Thus Lemma
mclfl62
21.3.3

applies with C = B and T = R∗.
Item 3 =⇒ item 2 by Theorem

cptmultiI
21.9.3 and Corollary

ff2011
20.11. Thus items 1,2 and

3 are equivalent.
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For item 1 =⇒ item 4, observe that item 1 implies ∆−1B ↪→ ∆−1R∗ is flat.
By Theorem

cptmultiI
21.9.4, ∆−1B is a localization of R[τ1, . . . , τs]. Thus the composition

R[τ1, . . . , τs] ↪→ ∆−1B ↪→ ∆−1R∗ is flat.
To show item 4 =⇒ item 1, let Q ∈ Spec(∆−1R∗), let Q′ = Q ∩ R∗, let

q = Q ∩B, and let p = Q ∩R[τ1, . . . , τs]. Consider the extensions

(
nftmult
21.12.0) R[τ1, . . . , τs]p ↪→ Bq

αQ

↪→ (∆−1R∗)Q.

By Theorem
cptmultiI
21.9.4, ∆−1B is a localization of R[τ1, . . . , τs]. Since ∆ ∩ Q′ = ∅, it

follows that ∆ ∩ q = ∅, that ∆−1B ⊂ Bq, and hence that the ring Bq is a further
localization of R[τ1, . . . , τs]. Now R[τ1, . . . , τs] ⊆ R[τ1, . . . , τs]p ⊆ Bq implies that
Bq is a localization of R[τ1, . . . , τs]p that dominates R[τ1, . . . , τs]p. Since both are
local rings, they are equal. Hence Equation

nftmult
21.12.0 becomes

(
nftmult
21.12.1) R[τ1, . . . , τs]p = Bq

αQ

↪→ (∆−1R∗)Q.

By hypothesis, R[τ1, . . . , τs] ↪→ ∆−1R∗ is flat. Thus αQ is flat for every prime ideal
Q ∈ Spec(∆−1R∗), and so α is flat, as desired. □

Remark 21.13. Assume Setting
multcset
21.4 and the notation of Definition

multcdef
21.5 If

x ∈ ∆, then every τi, as an element of the x-adic completion R̂x of R, is a sum
of form τi = Σ∞n=0binx

n, where each bin ∈ R. If B′ is formed using endpieces
τin := Σ∞k=n+1bkx

k−n, then B′ ⊆ B. If B′ is Noetherian, then B is Noetherian
with B = B′ = A.





CHAPTER 22

Idealwise algebraic independence,idwisec

Let (R,m) be an excellent normal local domain with field of fractions K and
completion (R̂, m̂). In this chapter, we consider the case where Inclusion Construc-
tion

4.4.1
5.3 yields a localized polynomial ring over the original ring R. That is, for

elements τ1, . . . , τn ∈ m̂ that are algebraically independent over K, the intersection
domain A = K(τ1, . . . , τn) ∩ R̂ = R[τ1, . . . , τn](m,τ1,...,τn). In this case the elements
τ1, . . . , τn are said to be idealwise independent. We analyze idealwise independence
in some depth, find parallels with other concepts in this book, and present results
related to this situation.

If R is countable with dim(R) > 1, we show in Theorem 6.4.5 the existence of
an infinite sequence of elements τ1, τ2, . . . of m̂ such that τ1, . . . , τn are idealwise
independent over R for each positive integer n. Then the subfield K(τ1, τ2, . . . )

of Q(R̂) has the property that the intersection domain A = K(τ1, τ2, . . . ) ∩ R̂ is
a localized polynomial ring in infinitely many variables over R. In particular, this
intersection domain A is not Noetherian.

22.1. Idealwise independence, weakly flat and PDE extensions6.2

We use the following setting throughout this chapter and Chapter
idwisec2
23.

6.2.1 Setting and Notation 22.1. Let (R,m) be an excellent normal local domain
with field of fractions K and completion (R̂, m̂). By Theorem

excel8.23
8.23, R̂ is also a

normal domain. Let t1, . . . , tn, . . . be indeterminates over R, and assume that
τ1, τ2, . . . , τn, . . . ∈ m̂ are algebraically independent over K. For each integer n ≥ 0
and ∞, we consider the following localized polynomial rings:

Sn := R[t1, . . . , tn](m,t1,...,tn),
Rn := R[τ1, . . . , τn](m,τ1,...,τn),
S∞ := R[t1, . . . , tn, . . . ](m,t1,...,tn,... ) and
R∞ := R[τ1, . . . , τn, . . . ](m,τ1,...,τn,... ).

For n = 0, we define R0 = R = S0. Of course, Sn is R-isomorphic to Rn and
S∞ is R-isomorphic to R∞ with respect to the R-algebra homomorphism taking
ti → τi for each i. When working with a particular n or ∞, we sometimes define S
to be Rn or R∞.

The completion Ŝn of Sn is R̂[[t1, . . . , tn]]. Let λ : Ŝn → R̂ be the R̂-algebra
surjection with p := ker(λ) = (t1 − τ1, . . . , tn − τn)Ŝn, and let λ1 be the restriction

275
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of λ to Sn. The following diagram commutes.

(
6.2.1
22.1.0)

Sn = R[t1, . . . , tn](m,t1,...,tn)
⊆−−−−→ Ŝn = R̂[[t1, . . . , tn]]

λ1,∼=
y λ

y
R

⊆−−−−→ Rn = R[τ1, . . . , τn](m,τ1,...,τn)
⊆−−−−→ R̂.

The map λ1 takes ti → τi, and λ1 is an R-algebra isomorphism because p∩Sn = (0).
Moreover

(
6.2.1
22.1.1) R̂ =

Ŝn

(t1 − τ1, . . . , tn − τn)Ŝn
.

The central definition of this chapter is the following:
6.2.2 Definition 22.2. Let (R,m) and τ1, . . . , τn ∈ m̂ be as in Setting

6.2.1
22.1. We say

that τ1, . . . , τn are idealwise independent over R if
R̂ ∩ K(τ1, . . . , τn) = Rn.

Similarly, an infinite sequence {τi}∞i=1 in m̂ as in Setting
6.2.1
22.1 is idealwise independent

over R if R̂ ∩K({τi}∞i=1) = R∞.
6.2.3 Remarks 22.3. Assume Setting and Notation

6.2.1
22.1.

(1) A subset of an idealwise independent set {τ1, . . . , τn} over R is also idealwise
independent over R. For example, to see that τ1, . . . , τm are idealwise independent
over R for m ≤ n, let K denote the field of fractions of R and observe that

R̂∩K(τ1, . . . , τm) = R̂ ∩K(τ1, . . . , τn) ∩K(τ1, . . . , τm)

=R[τ1, . . . , τn](m,τ1,...,τn) ∩K(τ1, . . . , τm) = R[τ1, . . . , τm](m,τ1,...,τm).

(2) Idealwise independence is a strong property of the elements τ1, . . . , τn and
of the embedding map ϕ : Rn ↪→ R̂. It is often difficult to compute R̂ ∩ L for an
intermediate field L between the field K and the field of fractions of R̂. In order
for R̂∩L to be the localized polynomial ring Rn, there can be no new quotients in
R̂ other than those in ϕ(Rn); that is, if f/g ∈ R̂ and f, g ∈ Rn, then f/g ∈ Rn.
This does not happen, for example, if one of the τi is in the completion of R with
respect to a principal ideal; in particular, if dim(R) = 1, then there do not exist
idealwise independent elements over R.

The following example, considered in Chapter
fex
4, illustrates Remark

6.2.3
22.3.2.

This is Example
4.1.4
4.11; other details are given in Remarks

4.1.5
4.12.

6.2.4 Example 22.4. Let R = Q[x, y](x,y), the localized ring of polynomials in two
variables over the rational numbers. The elements τ1 = ex − 1, τ2 = ey − 1, and
ex−ey= τ1 − τ2 of R̂ = Q[[x, y]] belong to completions of R with respect to principal
ideals (and so are not idealwise independent). If R2 = Q[x, y, τ1, τ2](x,y,τ1,τ2) and
L is the field of fractions of R2, then the elements (ex − 1)/x, (ey − 1)/y, and
(ex − ey)/(x − y) are certainly in L ∩ R̂ but not in R2. Valebrega’s Theorem

4.1.2
4.9

implies that L ∩ R̂ is a two-dimensional regular local ring with completion R̂.
Recall the concepts PDE, weakly flat and height-one preserving from Defini-

tions
PDE
2.14 in Chapter

3tools
2 and

7.3.4fc
9.1 in Chapter

flatcon
9. We state the definitions again here

for Krull domains.
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PDEetc Definitions 22.5. Let S ↪→ T be an extension of Krull domains.
• T is a PDE extension of S if for every height-one prime ideal Q in T , the

height of Q ∩ S is at most one.
• T is a height-one preserving extension of S if for every height-one prime

ideal P of S with PT 6= T there exists a height-one prime ideal Q of T
with PT ⊆ Q.

• T is weakly flat over S if every height-one prime ideal P of S with PT 6= T
satisfies PT ∩ S = P .

We summarize the results of this chapter.

chsum Summary 22.6. Let (R,m) be an excellent normal local domain of dimension d
with field of fractions K and completion (R̂, m̂). In Section

6.2
22.1 we consider ideal-

wise independent elements as defined in Definition
6.2.2
22.2. We show in Theorem

6.2.16
22.11

that τ1, . . . , τn ∈ m̂ are idealwise independent over R if and only if the extension
R[τ1, . . . , τn] ↪→ R̂ is weakly flat in the sense of Definition

PDEetc
22.5. If R has the addi-

tional property that every height-one prime ideal of R is the radical of a principal
ideal, we show Section

6.2
22.1 that a sufficient condition for τ1, . . . , τn to be idealwise

independent over R is that the extension R[τ1, . . . , τn] ↪→ R̂ satisfies PDE (“pas
d’éclatement”, or in English “no blowing up”), defined in Definitions

PDEetc
22.5; see The-

orem
6.2.1
22.1.2. Diagram

6.2.12
22.9.0, at the end of Section

6.2
22.1 displays the relationships

among these concepts and some others, for extensions of Krull domains.
In Sections

6.3
22.2 and

6.4
22.3 we present two methods for obtaining idealwise inde-

pendent elements over a countable ring R. The method in Section
6.3
22.2 is to find ele-

ments τ1, . . . , τn ∈ m̂ so that (1) τ1, . . . , τn are algebraically independent over R, and
(2) for every prime ideal P of Rn = R[τ1, . . . , τn](m,τ1,...,τn) with dim(Rn/P ) = n,
the ideal PR̂ is m̂-primary. In this case, we say that τ1, . . . , τn are primarily in-
dependent over R. If R is countable and dim(R) > 2, we show in Theorem

6.4.5
22.31

the existence over R of idealwise independent elements that fail to be primarily
independent.

The main theorem of this chapter is Theorem
6.3.9
22.20: For every countable ex-

cellent normal local domain R of dimension at least two, there exists an infinite
sequence τ1, τ2, . . . of elements of m̂ that are primarily independent over R. It
follows that A = K(τ1, τ2, . . . ) ∩ R̂ is an infinite-dimensional non-Noetherian local
domain. Thus, for the example R = k[x, y](x,y) with k a countable field, there
exists for every positive integer n and n =∞, an extension An = Ln ∩ R̂ of R such
that dim(An) = dim(R) + n. In particular, the canonical surjection Ân → R̂ has a
nonzero kernel.

In Section
6.4
22.3 we define τ ∈ m̂ to be residually algebraically independent over

R if τ is algebraically independent over R and, for each height-one prime ideal P
of R̂ such that P ∩ R 6= 0, the image of τ in R̂/P is algebraically independent
over R/(P ∩ R). We extend the concept of residual algebraic independence to a
finite or infinite number of elements τ1, . . . , τn, . . . ∈ m̂; Theorem

6.4.3
22.27 shows the

equivalence of residual algebraic independence to the extension R[τ1, . . . , τn] ↪→ R̂
satisfying PDE.

Theorem
6.4.4
22.30.1 shows that that primary independence implies residual al-

gebraic independence and that primary independence implies idealwise indepen-
dence. If every height-one prime ideal of R is the radical of a principal ideal,
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Theorem
6.4.4
22.30.3 shows that residual algebraic independence implies idealwise in-

dependence.
For R of dimension two, Theorem

6.4.4
22.30.2 shows that primary independence is

equivalent to residual algebraic independence. Hence residual algebraic indepen-
dence implies idealwise independence if dimR = 2. As remarked above, if R has
dimension greater than two, then primary independence is stronger than residual
algebraic independence. Theorems

6.4.7
22.35 and

6.4.9
22.37 show the existence of idealwise

independent elements that fail to be residually algebraically independent.
The following diagram summarizes some relationships among the independence

concepts for one element τ of m̂, over a local normal excellent domain (R,m). In
the diagram we use “ind.” and “resid.” to abbreviate “independent” and “residually
algebraic”.

R Henselian
dim(R) = 2

τ primarily ind.

τ resid. ind.

τ idealwise ind.∗

∗ In order to conclude that the idealwise independent set contains the residually
algebraically independent set for dimR > 2, we assume that every height-one prime
ideal of R is the radical of a principal ideal.

Diagram
6.7.6
23.25.Section

6.8
23.4.0 displays many more relationships among the in-

dependence concepts and other related properties.
In the remainder of this section we discuss some properties of extensions of

Krull domains related to idealwise independence. A diagram near the end of this
section displays the relationships among these properties.

6.2.6 Remark 22.7. Let S ↪→ T be an extension of Krull domains. If S is a UFD,
or more generally, if every height-one prime ideal of S is the radical of a principal
ideal, then T is a height-one preserving extension of S. This is clear from the fact
that every minimal prime of a principal ideal in a Krull domain has height one.
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6.2.7 Remark 22.8. Let (R,m) and τ1, . . . , τn ∈ m̂ be as in Setting
6.2.1
22.1. Also as-

sume that each height-one prime ideal of R is the radical of a principal ideal. This
property is preserved in a polynomial ring extension, by Fact

Krullradprinc
2.19 and Proposi-

tion
dcgKrullpoly
2.17. Thus Remark

6.2.6
22.7 implies that the embedding

ϕ : Rn = R[τ1, . . . , τn](m,τ1,...,τn) ↪→ R̂

is a height-one preserving extension.

Corollary
6.2.12
22.9 is immediate from Remark

6.2.7
22.8 and Proposition

6.2.11
9.16.

6.2.12 Corollary 22.9. Let (R,m) and τ1, . . . , τn ∈ m̂ be as in Setting
6.2.1
22.1. Assume

that each height-one prime ideal of R is the radical of a principal ideal. Let Rn =

R[τ1, . . . , τn](m,τ1,...,τn). If Rn ↪→ R̂ satisfies PDE, then R̂ is weakly flat over Rn.

Let S ↪→ T be an extension of Krull domains, and let F be the field of fractions
of S. Throughout the diagram “Q” denotes a prime idealQ ∈ Spec(T ) with ht(Q) =
1, and “P” denotes P ∈ Spec(S) with ht(P ) = 1. Diagram

6.2.12
22.9.0. illustrates the

relationships among the terms in Definitions
PDEetc
22.5 using the results (

6.2.11
9.16), (

6.2.14fc
9.4),

(
6.2.9fc
9.6), and (

6.2.10fc
9.11):

(
6.2.9fc
9.6.b)

(
6.2.11
9.16)

(
6.2.9fc
9.6.a)

(
PDEetc
22.5)

(
PDEetc
22.5)

(
PDEetc
22.5)

(
6.2.11
9.16)

(
6.2.14fc
9.4)

(
6.2.9fc
9.6a)

(
6.2.10fc
9.11)

(
6.2.10fc
9.11)

S ↪→ T flat

S ↪→ T ht-1 pres., PDE,
(
PDEetc
22.5) and PT 6= T, ∀P

S ↪→ T w.f. (
PDEetc
22.5)

and PT 6= T, ∀P
S ↪→ T ht-1 pres.,
and PDE (

PDEetc
22.5)

T ∩ F = S ∀P, ∃Q|Q ∩ S = P

S ↪→ T w.f. (
PDEetc
22.5) PT 6= T =⇒ PT ∩ S = P

S ↪→ T PDE (
PDEetc
22.5)

PT 6= T =⇒ ∃Q|Q ∩ S = P

∀Q,ht(Q ∩ S) ≤ 1 S ↪→ T ht-1 pres. (
PDEetc
22.5) PT 6= T =⇒ ∃Q|PT ⊆ Q

Diagram
6.2.12
22.9.0. The relationships among properties

of an extension S ↪→ T of Krull domains.
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6.2.15 Remark 22.10. Let S ↪→ T be an extension of Krull domains. If PT 6= T for
every height-one prime ideal P of S, then Corollary

6.2.14fc
9.4.2 states that S ↪→ T is

weakly flat if and only if S = Q(S) ∩ T . If S and T are local Krull domains with
T dominating S, then PT 6= T for each height one prime ideal of S. Therefore, for
Rn = R[τ1, . . . , τn](m,τ1,...,τn) and R̂ as in Setting

6.2.1
22.1, Rn ↪→ R̂ is weakly flat if

and only if Rn = Q(Rn) ∩ R̂.

6.2.16 Theorem 22.11. Let (R,m) be an excellent normal local domain with m-adic
completion (R̂, m̂) and let τ1, . . . , τn ∈ m̂ be algebraically independent elements over
R. Then:

(1) τ1, . . . , τn are idealwise independent over R ⇐⇒ R[τ1, . . . , τn] ↪→ R̂ is
weakly flat.

(2) If R[τ1, . . . , τn] ↪→ R̂ satisfies PDE and each height-one prime ideal of R
is the radical of a principal ideal, then R[τ1, . . . , τn] ↪→ R̂ is weakly flat.

In view of Remark
6.2.9fc
9.6.b, these assertions also hold with R[τ1, . . . , τn] replaced by

its localization R[τ1, . . . , τn](m,τ1,...,τn).

Proof. Item 1 is Remark
6.2.15
22.10, and item 2 is Corollary

6.2.12
22.9. □

In order to demonstrate idealwise independence we develop in the next two
sections the concepts of primary independence and residual algebraic independence.
Primary independence implies idealwise independence. If we assume that every
height-one prime ideal of the base ring R is the radical of a principal ideal, then
residual algebraic independence implies idealwise independence.

22.2. Primarily independent elements
6.3

In this section we introduce primary independence, a concept that implies ide-
alwise independence; see Proposition

6.3.4
22.15. Let R be a countable excellent normal

local domain of dimension at least two. Theorem
6.3.9
22.20 shows that there are infin-

itely many primarily independent elements over R.

6.3.1 Definition 22.12. Let (R,m) be an excellent normal local domain. Elements
τ1, . . . , τn ∈ m̂ that are algebraically independent over R are called primarily
independent over R, if the ideal PR̂ is m̂-primary, for every prime ideal P of
Rn = R[τ1, . . . , τn](m,τ1,...,τn) such that dim(Rn/P ) ≤ n. A countably infinite
sequence {τi}∞i=1 of elements of m̂ is primarily independent over R if τ1, . . . , τn are
primarily independent over R for each n.

6.3.2 Remarks 22.13. (1) By Diagram
6.2.1
22.1.1, primary independence of τ1, . . . , τn

as defined in Definition
6.3.1
22.12 is equivalent to the statement that for every prime

ideal P of Rn with dim(Rn/P ) ≤ n, the ideal λ−1(PR̂) = PŜn+ ker(λ) is primary
for the maximal ideal of Ŝn.

(2) A subset of a primarily independent set is again primarily independent. For
example, if τ1, . . . , τn are primarily independent over R, to see that τ1, . . . , τn−1 are
primarily independent, let P be a prime ideal of Rn−1 with dim(Rn−1/P ) ≤ n− 1.
Then PRn is a prime ideal of Rn with dim(Rn/PRn) ≤ n, and so PR̂ is primary
for the maximal ideal of R̂.

(3) Every prime ideal P ′ of Rn such that dim(Rn/P
′) ≤ n contains a prime

ideal P such that dim(Rn/P ) = n. Hence τ1, . . . , τn are primarily independent
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over R if and only if PR̂ is m̂-primary for every prime ideal P of Rn such that
dim(Rn/P ) = n.

6.3.3 Lemma 22.14. Assume Setting
6.2.1
22.1 with (R,m) an excellent normal local do-

main of dimension at least 2. Let Rn = R[τ1, . . . , τn](m,τ1,...,τn), where n is a positive
integer and τ1, . . . , τn are primarily independent over R. Let P be a prime ideal of
Sn = R[t1, . . . , tn](m,t1,...,tn) such that dim(Sn/P ) ≥ n+1 and let p = λ1(P ) be the
corresponding ideal of Rn. Then dim(Rn/p) = dim(Sn/P ) ≥ n+ 1, and

(1) The ideal pR̂ is not m̂-primary, and
(2) pR̂ ∩Rn = p.

Proof. For item 1, if dim(Rn/p) ≥ n + 1 and if pR̂ is primary for m̂, then
Diagram

6.2.1
22.1.1 shows that pR̂ = PŜn + ker(λ) is primary for the maximal ideal

of Ŝn. Hence the maximal ideal of Ŝn/P Ŝn is the radical of an n-generated ideal.
Also Ŝn/P Ŝn ∼= ̂(Sn/P ), the completion of Sn/P , and dim(Sn/P ) ≥ n+ 1 implies
that dim(Ŝn/P ) ≥ n+ 1. This is a contradiction by Theorem

krullpit
2.23.

For item 2, if dim(Rn/p) = n+1, and p ( (pR̂∩Rn), then dim( Rn

(pR̂∩Rn)
) ≤ n.

Thus pR̂ = (pR̂ ∩ Rn)R̂ is primary for m̂, a contradiction to item 1. Therefore
pR̂ ∩Rn = p for each p such that dim(Rn/p) = n+ 1.

Assume that dim(Rn/p) > n+ 1 and let

A := {q ∈ SpecRn | p ⊂ q and dim(Rn/q) = n+ 1}.

Proposition
forchap19
3.28 implies that p =

⋂
q∈A q. Since qR̂ ∩Rn = q, for each prime ideal

q ∈ A, it follows that

p ⊆ pR̂ ∩Rn = (
⋂
q∈A

q)R̂ ∩Rn ⊆
⋂
q∈A

(qR̂ ∩Rn) ⊆
⋂
q∈A

q = p.
□

6.3.4 Proposition 22.15. Let (R,m) be an excellent normal local domain of dimen-
sion at least 2.

(1) Let n be a positive integer, and let Rn = R[τ1, . . . , τn](m,τ1,...,τn), where
τ1, . . . , τn are primarily independent over R. Then Rn = L ∩ R̂, where L
is the field of fractions of Rn. Thus τ1, . . . , τn are idealwise independent
elements of R̂ over R.

(2) If {τi}∞i=1 is a countably infinite sequence of primarily independent ele-
ments of m̂ over R, then {τi}∞i=1 are idealwise independent over R.

Proof. Since item 2 is a consequence of item 1, it suffices to prove item 1. Let
p be a height-one prime ideal of Rn. Then dim(Rn/p) ≥ n+1, since Rn is catenary
and dimR ≥ 2. Lemma

6.3.3
22.14.2 implies that pR̂ ∩ Rn = p. Therefore R̂ is weakly

flat over Rn. Hence by Theorem
6.2.16
22.11.1, we have Rn = L ∩ R̂. □

6.3.5 Proposition 22.16. Let (R,m), τ1, . . . , τn ∈ m̂ and λ be as in Setting
6.2.1
22.1.

Thus λ restricts to an isomorphism

λ1 : Sn = R[t1, . . . , tn](m,t1,...,tn) → Rn = R[τ1, . . . , τn](m,τ1,...,τn),

where t1, . . . , tn are indeterminates over R. Then the following are equivalent:
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(1) For each prime ideal P of Sn such that dim(Sn/P ) ≥ n and each prime
ideal P̂ of Ŝn minimal over PŜn, the images of t1 − τ1, . . . , tn − τn in
Ŝn/P̂ generate an ideal of height n in Ŝn/P̂ .

(2) For each prime ideal P of Sn with dim(Sn/P ) ≥ n and each nonnegative
integer i ≤ n, the element ti − τi is outside every prime ideal Q̂ of Ŝn
minimal over (P, t1 − τ1, . . . , ti−1 − τi−1)Ŝn.

(3) For each prime ideal P of Sn such that dim(Sn/P ) = n, the images of
t1− τ1, . . . , tn− τn in Ŝn/P Ŝn generate an ideal primary for the maximal
ideal of Ŝn/P Ŝn.

(4) The elements τ1, . . . , τn are primarily independent over R.

Proof. Observe that items 1 and 2 are equivalent, and that item 1 and 2
imply item 3.

For the equivalence of items 3 and 4, Equation
6.2.1
22.1.1 implies

(
6.3.5
22.16.0) Sn

P
=

Rn
λ1(P )

, and Ŝn

(P, t1 − τ1, . . . , tn − τn)Ŝn
∼=

R̂

λ1(P )R̂
,

for every P ∈ SpecSn. Item 4 is equivalent to the ideal pR̂ being m̂-primary, for
every p ∈ Rn with dim(Rn/p) = n, by Definition

6.3.1
22.12 and Remark

6.3.2
22.13.3. Let

p ∈ Rn and P ∈ SpecSn be such that λ1(P ) = p. By Equation
6.3.5
22.16.0,

dim(Rn/p) = n and pR̂ is m̂-primary

⇐⇒ dim(Sn/P ) = n and (P, t1 − τ1, . . . , tn − τn)(Ŝn) is m̂-primary

⇐⇒ dim(Sn/P ) = n and (t1 − τ1, . . . , tn − τn)(
Ŝn

PŜn
) is (

m̂Ŝn

PŜn
)-primary.

Hence item 3 is equivalent to item 4.
It remains to show that item 3 implies item 1. For this, let P be a prime ideal

of Sn such that dim(Sn/P ) = n + h, where h ≥ 0. There exist s1, . . . , sh ∈ Sn
so that if I = (P, s1, . . . , sh)Sn, then for each minimal prime Q of I we have
dim(Sn/Q) = n. Item 3 implies that the images of t1 − τ1, . . . , tn − τn in Ŝn/QŜn
generate an ideal primary for the maximal ideal of Ŝn/QŜn. It follows that the
images of t1− τ1, . . . , tn− τn in Ŝn/IŜn generate an ideal primary for the maximal
ideal of Ŝn/IŜn, and therefore that the images of s1, . . . , sh, t1 − τ1, . . . , tn − τn in
Ŝn/P Ŝn are a system of parameters for the (n+h)-dimensional local ring Ŝn/P Ŝn.
Let P̂ be a minimal prime ideal of PŜn. By Ratliff’s equidimension Theorem

15.2.1
3.26,

dim(Ŝn/P̂ ) = n + h. Since the images of s1, . . . , sh, t1 − τ1, . . . , tn − τn in the
complete local domain Ŝn/P̂ are a system of parameters, it follows that the images
of t1 − τ1, . . . , tn − τn in Ŝn/P̂ generate an ideal of height n in Ŝn/P̂ . Therefore
item 1 holds. □

6.3.6 Corollary 22.17. With the notation of Setting
6.2.1
22.1 and Proposition

6.3.5
22.16,

assume that τ1, . . . , τn are primarily independent over R.
(1) Let I be an ideal of Sn such that dim(Sn/I) = n. It follows that the ideal

(I, t1 − τ1, . . . , tn − τn)Ŝn is primary to the maximal ideal of Ŝn.
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(2) Let P ∈ SpecSn be a prime ideal with dim(Sn/P ) > n. Then the ideal
Ŵ = (P, t1− τ1, . . . , tn− τn)Ŝn has ht(Ŵ ) = ht(P ) + n and Ŵ ∩Sn = P .

Proof. For item 1, let P ∈ Spec(Sn) be minimal over I. Then dim(Sn/P ) ≤ n.
By Remark

6.3.2
22.13.1, (P, t1 − τ1, . . . , tn − τn)Ŝn is primary to the maximal ideal of

Ŝn. Exercise
Idlenprmax
1 completes the proof of item 1.

For item 2, by Proposition
6.3.5
22.16.1, ht(Ŵ ) = ht(P ) + n. Let λ1 be the restric-

tion to Sn of the canonical homomorphism λ : Ŝn → R̂ from Setting
6.2.1
22.1. Then

λ1 : Sn
∼=→ Rn. Thus dim(Rn/λ1(P )) > n, and so λ1(P )R̂ ∩ Rn = λ1(P ), by

Lemma
6.3.3
22.14.2. Now

Ŵ ∩ Sn = λ−1(λ1(P )R̂) ∩ λ−11 (Rn) = λ−11 (λ1(P )R̂ ∩Rn) = λ−11 (λ1(P )) = P. □

To establish the existence of primarily independent elements, we use the fol-
lowing prime avoidance lemma over a complete local ring. (This is similar to

Bu
[31,

Lemma 3],
WW
[187, Lemma 10],

SV
[172] and

LW
[111, Lemma 14.2].) We also use this result

in two constructions given in Section
6.4
22.3.

6.3.7 Lemma 22.18. Let (T, n) be a complete Noetherian local ring of dimension at
least 2, and let t ∈ n \ n2. Assume that I is an ideal of T containing t, and that U
is a countable set of prime ideals of T each of which fails to contain I. Then there
exists an element a ∈ I ∩ n2 such that t− a 6∈

⋃
{Q | Q ∈ U}.

Proof. Let {Pi}∞i=1 be an enumeration of the prime ideals of U . We may
assume that there are no containment relations among the prime ideals of U . Choose
f1 ∈ n2∩I so that t−f1 6∈ P1. Then choose f2 ∈ P1∩n3∩I so that t−f1−f2 6∈ P2.
Note that f2 ∈ P1 implies t− f1 − f2 /∈ P1. Successively, by induction, choose

fn ∈ P1 ∩ P2 ∩ · · · ∩ Pn−1 ∩ nn+1 ∩ I

so that t − f1 − . . . − fn 6∈
⋃n
i=1Pi for each positive integer n. Then we have a

Cauchy sequence {f1+ · · ·+fn}∞n=1 in T that converges to an element a ∈ n2. Now

t− a = (t− f1 − . . . − fn) + (fn+1 + . . . ),

where (t− f1 − . . . − fn) /∈ Pn, (fn+1 + . . . ) ∈ Pn. Therefore t− a /∈ Pn, for all n,
and t− a ∈ I. □

6.3.8 Remark 22.19. Let A ↪→ B be an extension of Krull domains. If α is a
nonzero nonunit of B such that α /∈ Q, for each height-one prime Q of B such that
Q ∩ A 6= (0), then αB ∩ A = (0). In particular, such an element α is algebraically
independent over A.

6.3.9 Theorem 22.20. Let (R,m) be a countable excellent normal local domain of
dimension at least 2, and let (R̂, m̂) be the completion of R. Then:

(1) There exists τ ∈ m̂ that is primarily independent over R.
(2) Let n ∈ N. If τ1, . . . , τn−1 ∈ m̂ are primarily independent over R, then

there exists τn ∈ m̂ such that τ1, . . . , τn−1, τn are primarily independent
over R.

(3) There exists an infinite sequence τ1, . . . , τn, . . . ∈ m̂ of elements that are
primarily independent over R.
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Proof. Item 2 implies item 1 and item 3. To prove item 2, let t1, . . . , tn be
indeterminates over R, and let the notation be as in Setting

6.2.1
22.1. Thus we have

Sn−1 ∼= Rn−1, under the R-algebra isomorphism taking ti → τi. Let n̂ denote the
maximal ideal of Ŝn. We show the existence of a ∈ n̂2 such that:

(i) There is an R̂-algebra surjection : λa : Ŝn → R̂ with
kerλa = (t1 − τ1, . . . , tn−1 − τn−1, tn − a)Ŝn.

ii) The elements τ1, . . . , τn−1, together with the image τn of tn under the
map λa are primarily independent over R.

To see items i and ii: Let Î = (t1 − τ1, . . . , tn−1 − τn−1)Ŝn−1. Since Sn is
countable and Noetherian, enumerate

{Pj}∞j=1 = {p ∈ SpecSn | dim(Sn/Pj) ≥ n}.

Let U = {p̂ ∈ Spec Ŝn | p̂ is minimal over (Pj , Î)Ŝn, for some Pj}. Then U is
countable and n̂ /∈ U since (Pj , Î)Ŝn is generated by n− 1 elements over PjŜn and
dim(Ŝn/PjŜn) ≥ n. By Lemma

6.3.7
22.18 with the ideal I of Lemma

6.3.7
22.18 taken to be

n̂, there exists an element a ∈ n̂2 so that tn − a is not in Q̂, for every prime ideal
Q̂ ∈ U .

Then

Ŝn = Ŝn−1[[tn]] = Ŝn−1[[tn − a]],
Ŝn

(tn − a)Ŝn
= Ŝn−1, and Ŝn−1

Î
∼= R̂.

Let λa be the composition

Ŝn →
Ŝn

(tn − a)Ŝn
= Ŝn−1 →

Ŝn−1

Î
→ R̂ =

Ŝn

(Î , tn − a)Ŝn
.

Define λa(tn) = τn, an element in R̂.
The R̂-algebra surjection λa : Ŝn → R̂ has ker(λa) = (Î , tn−a)Ŝn. The kernel of

λa is also equal to (Î , tn−τn)Ŝn. Therefore the setting will be as in Diagram
6.2.1
22.1.0

after we establish Claim
6.3.9c1
22.21.

6.3.9c1 Claim 22.21. (Î , tn − τn)Ŝn ∩ Sn = (0).

Proof. (of Claim
6.3.9c1
22.21) Since τ1, . . . , τn−1 are algebraically independent over

R, we have Î∩Sn−1 = (0). Let R′n = Rn−1[tn](max(Rn−1),tn)). Consider the diagram:

Sn = Sn−1[tn](max(Sn−1),tn)
⊂−−−−→ Ŝn = Ŝn−1[[tn]]

∼=
y λ′

y
R′n = Rn−1[tn](max(Rn−1),tn)

⊂−−−−→ R̂[[tn]] ∼= (Ŝn−1/Î)[[tn]],

where λ′ restricted to Ŝn−1 is the canonical projection : Ŝn−1 → Ŝn−1/Î ∼= R̂, and
λ′(tn) = tn.

For Q̂ a prime ideal of Ŝn, we have Q̂ ∈ U ⇐⇒ λ′(Q̂) = P̂ , where P̂ is a
prime ideal of R̂[[tn]] ∼= (Ŝn−1/Î)[[tn]] minimal over λ′(Pj)R̂[[tn]] for some prime
ideal Pj of Sn such that dim(Sn/Pj) ≤ n. Since tn − a is outside every Q̂ ∈ U ,
tn − λ′(a) = λ′(tn − a) is outside every prime ideal P̂ of R̂[[tn]], such that P̂ is
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minimal over λ′(Pj)R̂[[tn]]. Since Sn is catenary and dim(Sn) = n+ dim(R),

{Pj}∞j=1 = {p ∈ SpecSn | dim(Sn/p) ≥ n} = {p ∈ SpecSn | ht(p) ≤ dim(R)}.

Suppose P̂ is a height-one prime ideal of R̂[[tn]] such that P := P̂ ∩R′n 6= (0). Then
P̂ is a minimal prime ideal of PR̂[[tn]]. Also P = λ′(Q), where Q is a height-one
prime ideal of Sn and dim(Sn/Q) = n+dim(R)−1 ≥ n. Therefore Q ∈ {Pj}∞j=1. By
choice of a, we have tn−λ′(a) /∈ P̂ . By Remark

6.3.8
22.19, (tn−λ′(a))R̂[[tn]])∩R′n = (0).

Hence (Î , tn − τn)Ŝn ∩ Sn = (0). □

6.3.9c2 Claim 22.22. Let P be a prime ideal of Sn such that dim(Sn/P ) = n. Then
the ideal (P, Î, tn − τn)Ŝn is n̂-primary.

Proof. (of Claim
6.3.9c2
22.22) Let Q = P ∩Sn−1. Either QSn = P , or QSn ( P . If

QSn = P , then dim(Sn−1/Q) = n−1 and the primary independence of τ1, . . . , τn−1
implies that (Q, Î)Ŝn−1 is primary for the maximal ideal of Ŝn−1. Therefore
(Q, Î, tn − τn)Ŝn = (P, Î, tn − τn)Ŝn is n̂-primary in this case. On the other
hand, if QSn ( P , then dim(Sn−1/Q) = n. Let Q̂′ be a minimal prime ideal of
(Q, Î)Ŝn−1. By Proposition

6.3.5
22.16, dim(Ŝn−1/Q̂

′) = 1, and hence dim(Ŝn/Q̂
′Ŝn) =

2. The primary independence of τ1, . . . τn−1 implies that Q̂′ ∩ Sn−1 = Q. There-
fore Q̂′Ŝn−1[[tn]] ∩ Sn = QSn ( P , so P is not contained in Q̂′Ŝn. Therefore
dim(Ŝn/(P, Î)Ŝn)) = 1 and our choice of a implies that (P, Î, tn − τn)Ŝn is n̂-
primary. □

This completes the proof of Theorem
6.3.9
22.20. □

6.3.10 Corollary 22.23. Let (R,m) be a countable excellent normal local domain
of dimension at least 2, and let K denote the field of fractions of R. Then there
exist τ1, . . . , τn, . . . ∈ m̂ such that A = K(τ1, τ2, . . .) ∩ R̂ is an infinite-dimensional
non-Noetherian local domain. In particular, for k a countable field, the localized
polynomial ring R = k[x, y](x,y) has such extensions inside R̂ = k[[x, y]].

Proof. By Theorem
6.3.9
22.20.3, there exist τ1, . . . , τn, . . . ∈ m̂ that are primarily

independent over R. By Proposition
6.3.4
22.15.2, primarily independent elements

are idealwise independent. It follows that A = K(τ1, τ2, . . .) ∩ R̂ is an infinite-
dimensional local domain. In particular, A is not Noetherian. □

22.3. Residually algebraically independent elements6.4

We introduce in this section a third concept, that of residual algebraic inde-
pendence. Residual algebraic independence is weaker than primary independence.
In Theorem

6.4.5
22.31 we show that over every countable normal excellent local domain

(R,m) of dimension at least three there exists an element residually algebraically
independent over R that is not primarily independent over R. In Theorems

6.4.7
22.35

and
6.4.9
22.37 we show the existence of idealwise independent elements that fail to be

residually algebraically independent.

6.4.1 Definition 22.24. Let (R̂, m̂) be a complete normal Noetherian local domain
and let A be a Krull subdomain of R̂ such that A ↪→ R̂ satisfies PDE.
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(1) An element τ ∈ m̂ is residually algebraically independent with respect to R̂
over A, if τ is algebraically independent over A and, for each height-one
prime P̂ of R̂ such that P̂ ∩A 6= (0), the image of τ in R̂/P̂ is algebraically
independent over the integral domain A/(P̂ ∩A).

(2) Elements τ1, . . . τn ∈ m̂ are said to be residually algebraically independent
over A, if τi+1 is residually algebraically independent over A[τ1, . . . , τi],
for each 0 ≤ i < n.

(3) An infinite sequence {τi}∞i=1 of elements of m̂ is residually algebraically
independent over A, if τ1, . . . τn are residually algebraically independent
over A, for each positive integer n.

6.4.1r Remark 22.25. Let τ1, . . . , τn ∈ m̂ be algebraically independent over R. If
the τi are residually algebraically independent over R, as in Condition 2 of Defini-
tion

6.4.1
22.24, then the τi satisfy:
(2′) For each height-one prime ideal P̂ of R̂ with P̂ ∩ R 6= 0, the images of

τ1, . . . , τn in R̂/P̂ are algebraically independent over R/(P̂ ∩R).
The proof that Condition 2 implies Condition 2′ is left to the reader in Exer-

cise
resalgind2imp2'
2. Construction

6.4.6c
22.32 shows that Condition 2′ does not imply Condition 2.

Proposition
6.4.2
22.26 relates residual algebraic independence for τ over A to the

PDE property of Definition
PDEetc
22.5 for A[τ ] ↪→ R̂. By Corollary

6.5.4
9.14, for an ex-

tension of Krull domains, the PDE property is equivalent to the LF1 property of
Definition

7.3.4fc
9.1.

Lfd12
3.

6.4.2 Proposition 22.26. Let (R,m) and τ ∈ m̂ be as in Setting
6.2.1
22.1. Let A be a

Krull subdomain of R̂ such that τ is algebraically independent over A and A ↪→ R̂

satisfies PDE. Then τ is residually algebraically independent with respect to R̂ over
A ⇐⇒ A[τ ] ↪→ R̂ satisfies PDE.

Proof. Assume A[τ ] ↪→ R̂ does not satisfy PDE. Then there exists a prime
ideal P̂ of R̂ of height one such that ht(P̂ ∩ A[τ ]) ≥ 2. Then P̂ ∩ A 6= 0, and
ht(P̂ ∩ A) = 1, since PDE holds for A ↪→ R̂. Thus, with p = P̂ ∩ A, we have
pA[τ ] ( P̂ ∩ A[τ ]; that is, there exists f(τ) ∈ (P̂ ∩ A[τ ]) \ pA[τ ], or equivalently
there is a nonzero polynomial f̄(x) ∈ (A/p)[x] so that f̄(τ̄) = 0̄ in A[τ ]/(P̂ ∩A[τ ]),
where τ̄ denotes the image of τ in R̂/P̂ . This means that τ̄ is algebraic over
A/(P̂ ∩ A). Hence τ is not residually algebraically independent with respect to R̂
over A.

For the converse, assume that A[τ ] ↪→ R̂ satisfies PDE and let P̂ be a height-
one prime ideal of R̂ such that P̂ ∩ A = p 6= 0. Since A[τ ] ↪→ R̂ satisfies PDE,
P̂ ∩A[τ ] = pA[τ ] and A[τ ]/(pA[τ ]) canonically embeds in R̂/P̂ . Hence the image of
τ in A[τ ]/pA[τ ] is algebraically independent over A/p. It follows that τ is residually
algebraically independent with respect to R̂ over A. □

6.4.3 Theorem 22.27. Let (R,m) be an excellent normal local domain with com-
pletion (R̂, m̂) and let τ1, . . . , τn ∈ m̂ be algebraically independent over R. The
following statements are equivalent:

(1) The elements τ1, . . . , τn are residually algebraically independent with re-
spect to R̂ over R.
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(2) For each integer i with 1 ≤ i ≤ n, if P̂ is a height-one prime ideal of R̂
such that P̂ ∩R[τ1, . . . , τi−1] 6= 0, then ht(P̂ ∩R[τ1, . . . , τi]) = 1.

(3) R[τ1, . . . , τn] ↪→ R̂ satisfies PDE.
If each height-one prime ideal of R is the radical of a principal ideal, then these
equivalent conditions imply the map R[τ1, . . . , τn] ↪→ R̂ is weakly flat.

Proof. The equivalence of the three items follows from Proposition
6.4.2
22.26.

The last sentence follows from Theorem
6.2.16
22.11) □

The equivalence of items 1 and 3 of Theorem
6.4.3
22.27 implies:

6.4.3c Corollary 22.28. Assume the notation of Theorem
6.4.3
22.27. If τ1, . . . , τn are

residually algebraically independent with respect to R̂ over R, then every permuta-
tion of τ1, . . . , τn is residually algebraically independent with respect to R̂ over R.

6.4.4p Proposition 22.29. Assume Setting
6.2.1
22.1. Also assume that dimR ≥ 2, and

that {τi}mi=1 ⊆ m̂ is primarily independent over R, where m is either a positive
integer or m = ∞. Let n be an integer with 0 ≤ n ≤ m and let P̂ be a height-one
prime ideal of R̂ such that p := P̂ ∩ Rn 6= 0. Let Ŵ = (p, t1 − τ1, . . . , tn − τn)Ŝn.
Then:

(1) ht p = 1.
(2) λ−1(P̂ ) = Ŵ .
(3) For every integer j with n ≤ j ≤ m, P̂ ∩Rj = pRj.
(4) For every integer j with 0 ≤ j ≤ m, ht(P̂ ∩Rj) ≤ 1.

Proof. It follows from Diagram
6.2.1
22.1.0 that λ(Ŵ ) = pR̂ ⊆ P̂ . By Corol-

lary
6.3.6
22.17.2, ht(Ŵ ) = ht(p) + n. Also, Ŵ ⊆ (P̂ , t1 − τ1, . . . , tn − τn) = λ−1(P̂ ) and

thus
1 + n ≤ ht(p) + n = ht(Ŵ ) ≤ ht(λ−1(P̂ )) ≤ ht(P̂ ) + n = 1 + n.

Therefore ht(p) = 1, λ−1(P̂ ) = Ŵ , and λ(Ŵ ) = P̂ . This proves items 1 and 2. If
n ≤ j ≤ m, then ht(P̂ ∩ Rj) = 1, by item 1. Since ht p = 1, the ideal pRj is a
height-one prime ideal, and pRj ⊆ P̂ ∩Rj . Thus pRj = P̂ ∩Rj . This proves item 3.
If P̂ ∩ Rj = (0), then ht(P̂ ∩ Rj) = 0. If P̂ ∩ Rj 6= (0), then ht(P̂ ∩ Rj) = 1, by
item 1. Thus item 4 holds. □

6.4.4 Theorem 22.30. Let (R,m) and {τi}mi=1 ⊆ m̂ be as in Setting
6.2.1
22.1, where

dimR ≥ 2 and m is either a positive integer or m =∞.
(1) If {τi}mi=1 is primarily independent over R, then {τi}mi=1 is residually

algebraically independent over R.
(2) If dimR = 2, then {τi}mi=1 is primarily independent over R if and only if
{τi}mi=1 is residually algebraically independent over R.

(3) If each height-one prime ideal of R is the radical of a principal ideal
and {τi}mi=1 is residually algebraically independent over R, then {τi}mi=1 is
idealwise independent over R.

Proof. Item 1 follows from Proposition
6.4.4p
22.29, and the equivalence of items 1

and 3 of Theorem
6.4.3
22.27. To prove item 2, assume that dimR = 2 and n ≤ m is

a positive integer such that τ1, . . . , τn are residually algebraically independent over
R. Let Rn = R[τ1, . . . , τn](m,τ1,...,τn). By Theorem

6.4.3
22.27, Rn ↪→ R̂ satisfies PDE.
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Let p be a prime ideal of Rn such that dim(Rn/p) ≤ n. Since dimRn = n + 2
and Rn is catenary, it follows that ht p ≥ 2. To show τ1, . . . , τn are primarily
independent over R, it suffices to show that pR̂ is m̂-primary. Since dim(R̂) = 2,
pR̂ is m̂-primary is equivalent to p is not contained in a height-one prime ideal of
R̂. This last statement holds since Rn ↪→ R̂ satisfies PDE.

Item 3 follows from Theorems
6.4.3
22.27 and

6.2.16
22.11. □

6.4.5 Theorem 22.31. Let (R,m) be a countable excellent normal local domain of
dimension d and let (R̂, m̂) be the completion of R. If d ≥ 3, then there exists an
element τ ∈ m̂ that is residually algebraically independent over R, but not primarily
independent over R.

Proof. The proof uses techniques similar to those in the proof of Theo-
rem

6.3.9
22.20. Let t be an indeterminate over R and set S1 = R[t](m,t). Thus

Ŝ1 = R̂[[t]]. Let n̂1 denote the maximal ideal of Ŝ1. Then

S1 = R[t](m,t) ↪→ Ŝ1 = R̂[[t]]

is the top line of a diagram similar to Diagram
6.2.1
22.1.0 for n = 1. We seek an

appropriate R̂-algebra homomorphism λ : Ŝ1 −→ R̂ to complete the diagram. For
this, let p0 be a prime ideal of R with ht p0 = d− 1, and let P̂0 be a minimal prime
ideal of p0R̂. Then ht P̂0 = d − 1. Define Q̂0 := (P̂0, t)Ŝ1 and Q0 := Q̂0 ∩ S1 =

(p0, t)S1. Then ht Q̂0 = d = htQ0. Let

U = {Q̂ ∈ Spec Ŝ1 | ht Q̂ ≤ d, ht(Q̂ ∩ S1) = ht Q̂ and Q̂ 6= Q̂0 }.

Then U is countable, since SpecS1 is countable, and each prime ideal of U is one of
the finitely many prime ideals of Spec Ŝ1 minimal over qŜ1, for some q ∈ SpecS1.
Apply Lemma

6.3.7
22.18 with T = Ŝ1, n = n̂1 and I = Q̂0, to obtain an element

a ∈ Q̂0 ∩ n̂1
2 so that t − a ∈ Q̂0, but t − a is not in any prime ideal in U . Since

a ∈ n̂1
2, it follows that R̂[[t]] = R̂[[t− a]]. Define λ to be the natural surjection

λ : Ŝ1 −→ Ŝ1/(t− a)Ŝ1 = R̂,

and define τ := λ(t) = λ(a).
By Remark

6.3.8
22.19, (t − a)Ŝ1 ∩ S1 = (0), and so the map λ restricted to S1 is

an isomorphism from S1 onto R1 := R[τ ](m,τ). The prime ideal λ(Q0) in R1 =
R[τ ](m,τ) has ht(λ(Q0)) = d. Thus dim(R1/λ(Q0)) = 1. Since Diagram

6.2.1
22.1.0

is commutative, λ(Q0)R̂ ⊆ λ(Q̂0). Since (t − τ)Ŝ1 = (t − a)Ŝ1 ⊆ Q̂0, the prime
ideal λ(Q̂0) has height d − 1. Therefore λ(Q0)R̂ is not m̂-primary. Hence τ is not
primarily independent.

To prove that τ is residually algebraically independent overR, by Theorem
6.4.3
22.27,

it suffices to show the extension R1 = R[τ ](m,τ) ↪→ R̂ satisfies PDE.
Let P̂ be a height-one prime ideal of R̂. If P̂ ∩ R = (0), then ht(P̂ ∩ R1) ≤ 1.

It remains to consider the case where P̂ ∩ R 6= 0. Then ht(P̂ ∩ R) = 1, and so
p := P̂ ∩R1 has ht p ≤ 2.

Let Q̂2 := λ−1(P̂ ) in Ŝ1. Then ht(Q̂2) = 2, since Q̂2 = (P̂ , t− a)Ŝ1.
Suppose that ht p = 2. Then, under the R-isomorphism of S1 to R1 taking t

to τ , p corresponds to a height-two prime ideal P of S1. Since Ŝ1 is flat over S1,
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ht(Q̂2 ∩ S1) ≤ 2. Hence P ⊆ Q̂2 ∩ S1 implies P = Q̂2 ∩ S1. The following diagram
illustrates this situation:

P = Q̂2 ∩ S1 (ht 2) ⊆−−−−→ Q̂2 = λ−1(P̂ ) = (P̂ , (t− a))Ŝ1 (ht 2)

∼=
y λ

y
p = P̂ ∩R1 (ht 2) ⊆−−−−→ P̂ (ht 1 in R̂).

Then htP = ht Q̂2 = 2 < d = ht Q̂0 implies Q̂2 ∈ U , a contradiction to t− a ∈ Q̂2.
Thus ht(P̂ ∩R1) = 1, so τ is residually algebraically independent over R. □

Construction
6.4.6c
22.32 shows that condition 2 of Definition

6.4.1
22.24 is stronger than

Condition 2′ of Remark
6.4.1r
22.25.

6.4.6c Construction 22.32. Let (R,m) be a countable excellent local unique fac-
torization domain (UFD) of dimension two and let (R̂, m̂) be the completion of R;
for example, R = Q[x, y](x,y) and R̂ = Q[[x, y]]. As in Theorem

6.3.9
22.20, construct

τ1 ∈ m̂ primarily independent over R. By Theorem
6.4.4
22.30.1, τ1 ∈ m̂ is residually

algebraic over R. Let t1, t2 be variables over R and let S2 := R[t1, t2](m,t1,t2).
Thus Ŝ2 = R̂[[t1, t2]]. Let n̂ denote the maximal ideal of Ŝ2. Consider the ideal
I := (t1, t2, t1 − τ1)Ŝ2 and define

U ={Q̂ ∈ Spec(Ŝ2) | I * Q̂ , ht Q̂ = ht(Q̂ ∩ S2), and Q̂ is minimal over

(P, t1 − τ1)Ŝ2, for some P ∈ SpecS2 with htP ≤ 2}.

If a prime ideal P of S2 occurs as Q̂ ∩ S2, for some Q̂ ∈ U , then (t1, t2)S2 * P ,
since otherwise

I = (t1, t2, t1 − τ1)Ŝ2 ⊆ (P, t1 − τ1)Ŝ2 ⊆ Q̂,

a contradiction. Thus t1, t2 /∈ P , for every prime ideal P of S2 in the description
of U . By Lemma

6.3.7
22.18, there exists a ∈ n̂2 ∩ I so that t2 − a /∈

⋃
{Q̂ : Q̂ ∈ U }.

Then Ŝ2 = R̂[[t1, t2]] = R̂[[t1 − τ1, t2 − a]]. Let λ denote the canonical R-algebra
surjection

λ : Ŝ2 −→ Ŝ2/(t1 − τ1, t2 − a)Ŝ2 = R̂,

with ht(ker(λ)) = 2. Define τ2 := λ(t2).

6.4.6cc1 Claim 22.33. The element τ2 is not residually algebraically independent over
R[τ1]; thus τ1, τ2 do not satisfy item 2 of Definition

6.4.1
22.24.

Proof. (of Claim
6.4.6cc1
22.33) Let Ŵ be a prime ideal of Ŝ2 that is minimal over

I = (t1, t2, t1 − τ1)Ŝ2. Then ht Ŵ ≤ 3, and t2 − a ∈ I ⊆ Ŵ , since t2 ∈ I and a ∈ I.
Thus ker(λ) ⊆ Ŵ . Let P̂ = λ(Ŵ ) ⊂ R̂. Then ht P̂ ≤ 1. Since 0 6= τ1 = λ(t1) ∈ P̂ ,
ht P̂ = 1. Since τ1 is residually algebraically independent over R, the extension
R[τ1] ↪→ R̂ satisfies PDE by Proposition

6.4.2
22.26. Therefore ht(P̂ ∩ R[τ1]) ≤ 1. But

τ1 ∈ P̂ ∩R[τ1], and so ht(P̂ ∩R[τ1]) = 1 and P̂ ∩R = (0). Also τ2 = λ(t2) ∈ P̂ ; thus
τ1, τ2 ∈ P̂ ∩ R[τ1, τ2], and so ht(P̂ ∩ R[τ1, τ2]) ≥ 2. Thus R[τ1, τ2] ↪→ R̂ does not
satisfy PDE. By Proposition

6.4.2
22.26, τ2 is not residually algebraically independent

over R[τ1]. □
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6.4.6cc2 Claim 22.34. For each height-one prime ideal P̂ of R̂ with P̂ ∩ R 6= 0, the
images of τ1 and τ2 in R̂/P̂ are algebraically independent over R/(P̂ ∩ R). That
is, τ1, τ2 satisfy item 2′ of Remark

6.4.1r
22.25.

Proof. (of Claim
6.4.6cc2
22.34) Suppose P̂ is a height-one prime ideal of R̂ with

P̂ ∩ R 6= (0) and let Q̂ = λ−1(P̂ ). Then ht(Q̂) = 3 and ht(P̂ ∩ R) = 1. Set
R1 := R[τ1](m,τ1) and R2 := R[τ1, τ2](m,τ1,τ2). By Proposition

6.4.2
22.26 and the residual

algebraic independence of τ1 over R, we have ht(P̂ ∩R1) = 1, and so ht(P̂ ∩R2) ≤ 2.
If ht(P̂ ∩R2) = 1, we are done by Proposition

6.4.2
22.26. Suppose ht(P̂ ∩R2) = 2. The

following diagram illustrates this situation:

Q̂ ∩ S1
⊆−−−−→ Q̂ ∩ S28 > ⊆ >> Q̂ = λ−1(P̂ )

⊆−−−−→ Ŝ2

∼=
y ∼=

y λ

y λ

y
P̂ ∩R ⊆−−−−→ P̂ ∩R1

⊆−−−−→ P̂ ∩R2
⊆−−−−→ P̂

⊆−−−−→ R̂.

Thus Q̂∩S2 = P is a prime ideal of height 2, and ht(Q̂∩S1) = 1. Also P 6= (t1, t2)S2

because (t1, t2)S2 ∩ R = (0). But this means that Q̂ ∈ U since Q̂ is minimal over
(P, t1−τ1)Ŝ2 where P is a prime ideal of S2 with dim(S2/P ) = 2 and P 6= (t1, t2)S2,
a contradiction to the choice of a. Thus item 2′ holds. □

Theorem
6.4.7
22.35 gives a method to obtain an idealwise independent element that

fails to be residually algebraically independent.

6.4.7 Theorem 22.35. Let (R,m) be a countable excellent local UFD of dimension at
least two. Assume there exists a height-one prime P of R such that P is contained
in at least two distinct height-one prime ideals P̂ and Q̂ of R̂. Also assume that
P̂ is not the radical of a principal ideal in R̂. Then there exists τ ∈ mR̂ that is
idealwise independent but not residually algebraically independent over R.

Proof. Let t be an indeterminate over R and S1 = R[t](m,t). Then Ŝ1 = R̂[[t]].
Let n̂1 denote the maximal ideal of Ŝ1. By Lemma

6.3.7
22.18 with I = (P̂ , t)Ŝ1 and

U = {p ∈ Spec(Ŝ1) | p 6= I, ht(p) ≤ 2, and p minimal over p ∩ S1},

there exists a ∈ (P̂ , t)Ŝ1 ∩ n̂1
2 such that

t− a ∈ (P̂ , t)Ŝ1 \ (
⋃
{p | p ∈ U}).

Thus, if t − a ∈ p, for some prime ideal p 6= (P̂ , t)Ŝ1 of Ŝ1 with ht(p) ≤ 2, then
ht(p) > ht(p ∩ S1). Furthermore the choice of t − a ensures that each height-one
prime ideal q̂ other than P̂ of R̂ has the property that ht(q̂ ∩R1) ≤ 1.

Let λ be the R̂-algebra surjection Ŝ1 → R̂ with kernel (t − a)Ŝ1. By Re-
mark

6.3.8
22.19, (t−a)Ŝ1∩S1 = (0). Define τ := λ(t) = λ(a) in mR̂. Then the restriction

of λ to S1 maps S1 isomorphically onto R1 := R[τ ](m,τ), and so τ is algebraically in-
dependent over R. Since a ∈ n21, it follows that Ŝ1 = R̂[[t−a]]. Also t−a ∈ (P̂ , t)Ŝ1

implies (P̂ , t− a)Ŝ1 ⊆ (P̂ , t)Ŝ1. Then ht((P̂ , t− a)R̂[[t− a]]) = 2 = ht((P̂ , t)R̂[[t]])

implies that (P̂ , t− a)Ŝ1 = (P̂ , t)Ŝ1. Thus τ = λ(t) ∈ λ((P̂ , t− a)Ŝ1) ⊆ P̂ ; that is,
the image of τ in R̂/P̂ is 0. Therefore τ is not residually algebraically independent
over R.
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To see that τ is idealwise independent over R, it suffices to show R1 ↪→ R̂ is
weakly flat, by Theorem

6.2.16
22.11.1. Since R1 ↪→ R̂ is a local map, this is equivalent to

showing that each height-one prime ideal of R1 is the contraction of a height-one
prime ideal of R̂. For q a height-one prime ideal of R1 and λ1 : S1 → R1 the
restriction of λ, let q1 := λ−11 (q) denote the corresponding height-one prime ideal
of S1. Consider separately the two cases: (i) q1 * (P̂ , t)Ŝ1, and (ii) q1 ⊆ (P̂ , t)Ŝ1.

In the first case, let w1 be a height-two prime ideal of Ŝ1 containing the height-
two ideal (q1, t− a)Ŝ1. Since q1 * (P̂ , t)Ŝ1, the choice of t− a implies w1 ∩ S1 has
height at most one. Therefore w1 ∩ S1 = q1. Let w = λ(w1). Then w is a height-
one prime ideal of R̂ and w ∩ R1 = q. Thus q is the contraction of a height-one
prime ideal of R̂, for every height-one prime ideal q of R1 such that q1 := λ−11 (q) is
not contained in (P̂ , t)Ŝ1.

For the second case, assume q1 ⊆ (P̂ , t)Ŝ1. Equivalently, q is a height-one
prime ideal of R1 such that q ⊆ (P, τ)R1, since λ((P̂ , t)Ŝ1) ∩ R1 = (P, τ)R1. First
consider the prime ideal q = PR1, which is contained in Q̂∩R1. By the hypothesis
and the choice of a,

ht(Q̂ ∩R1) ≤ htQ = 1 =⇒ PR1 = Q̂ ∩R1.

Thus PR1 is the contraction of a height-one prime ideal of R̂.
Finally, let q be a height-one prime ideal of R1 such that q ⊆ (P, τ)R1 and

q 6= PR1. Since R is a UFD, R1 is a UFD and q = fR1 for an element f ∈ q. Since
P̂ is not the radical of a principal ideal, there exists a height-one prime ideal q̂ 6= P̂

of R̂ such that f ∈ q̂. Since ht(q̂ ∩ R1) ≤ 1, we have q̂ ∩ R1 = fR1 = q. Therefore
τ is idealwise independent over R. □

6.4.8 Example 22.36. Let k be the algebraic closure of the field Q and z2 = x3+y7.
Then R = k[x, y, z](x,y,z) is a countable excellent local UFD having a height-one
prime ideal P satisfying the conditions in Theorem

6.4.7
22.35. That R is a UFD is

shown in
Sam
[163, page 32]. Since z − xy is an irreducible element of R, the ideal

P = (z − xy)R is a height-one prime ideal of R. It is observed in
HL
[68, pages 300-

301] that in the completion R̂ of R there exist distinct height-one prime ideals P̂ and
Q̂ lying over P . Moreover, the blowup of P̂ has a unique exceptional prime divisor
and this exceptional prime divisor is not the unique exceptional prime divisor on
the blowup of an m̂-primary ideal. Therefore P̂ is not the radical of a principal
ideal of R̂.

Theorem
6.4.9
22.37 gives an alternative method to obtain idealwise independent

elements that are not residually algebraically independent.

6.4.9 Theorem 22.37. Let (R,m) be a countable excellent local UFD of dimension
at least two. Assume there exists a height-one prime ideal P0 of R such that P0

is contained in at least two distinct height-one prime ideals P̂ and Q̂ of R̂. Also
assume that the Henselization (Rh,mh) of R is a UFD. Then there exists τ ∈ mR̂
that is idealwise independent but not residually algebraically independent over R.

Proof. Since R is excellent, P := P̂ ∩ Rh and Q := Q̂ ∩ Rh are distinct
height-one prime ideals of Rh with PR̂ = P̂ , and QR̂ = Q̂. Let x ∈ Rh be such
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that xRh = P . Theorem
6.3.9
22.20 implies there exists y ∈ mR̂ that is primarily

independent and hence residually algebraically independent over Rh.
We show that τ = xy is idealwise independent but not residually algebraically

independent over R. Since x is nonzero and algebraic over R, xy is algebraically
independent over R. Let R1 = R[xy](m,xy). Then P̂ ∩R1 = xR̂ ∩R1 ⊇ (P0, xy)R1

implies that ht(P̂ ∩ R1) ≥ 2. Since R1 is a UFD, Theorem
6.4.3
22.27 implies xy is not

residually algebraically independent over R.
Since y is idealwise independent over Rh, every height-one prime ideal of the

polynomial ring Rh[y] contained in the maximal ideal n = (mh, y)Rh[y] is the
contraction of a height-one prime ideal of R̂. To show xy is idealwise independent
over R, it suffices to show every prime element w ∈ (m, xy)R[xy] is such that
wR[xy] is the contraction of a height-one prime ideal of Rh[y] contained in n. If
w 6∈ (P, xy)Rh[xy], then the constant term of w as a polynomial in Rh[xy] is
in mh \ P . Thus w ∈ n and w 6∈ xRh[y]. Since Rh[xy][1/x] = Rh[y][1/x] and
xRh[y] ∩ Rh[xy] = (x, xy)Rh[xy], it follows that there is a prime factor u of w in
Rh[xy] such that u ∈ n \ xRh[y]. Then uRh[y] is a height-one prime ideal of Rh[y]
and uRh[y]∩Rh[xy] = uRh[xy]. Since Rh[xy] is faithfully flat over R[xy], it follows
that uRh[y] ∩R[xy] = wR[xy].

We have QRh[xy] = QRh[y]∩Rh[xy] and QRh[xy]∩R[xy] = P0R[xy]. Thus it
remains to show, for a prime element w ∈ (m, xy)R[xy] such that w ∈ (P, xy)Rh[xy]
and wR[xy] 6= P0R[xy], that wR[xy] is the contraction of a height-one prime ideal
of Rh[y] contained in n. Since (P, xy)Rh[xy] ∩ R[xy] = (P0, xy)R[xy], it follows
that w is a nonconstant polynomial in R[xy] and the constant term w0 of w is
in P0. In the polynomial ring Rh[y] we have w = xnv, where v 6∈ xRh[y]. If v0
denotes the constant term of v as a polynomial in Rh[y], then xnv0 = w0 ∈ P0 ⊆ R
implies xnv0 ∈ Q ⊆ Rh. Since x ∈ Rh \ Q, we must have v0 ∈ Q and hence
v ∈ n. Also v 6∈ xRh[y] implies there is a height-one prime ideal v of Rh[y] with
v ∈ v and x 6∈ v. Then, since Rh[y]v is a localization of Rh[xy], v ∩ Rh[xy] is
a height-one prime ideal of Rh[xy] that is contained in (mh, xy)Rh[xy]. It follows
that v ∩Rh[xy] = wRh[xy], which completes the proof of Theorem

6.4.9
22.37. □

Example
4.3.0
4.13 is a specific example fitting the hypothesis of Theorem

6.4.9
22.37. In

more generality, we have:

6.4.10 Example 22.38. Let R = k[s, t](s,t) be a localized polynomial ring in two
variables s and t over a countable field k where k has characteristic not equal
to 2. Let P0 = (s2 − t2 − t3)R. Then P0 is a height-one prime ideal of R and
P0R̂ = (s2 − t2 − t3)k[[s, t]] is the product of two distinct height-one prime ideals
of R̂.

wfnpde Remark 22.39. Let (R,m) be excellent normal local domain and let (R̂, m̂)
be its completion. Assume that τ ∈ m̂ is algebraically independent over R. By
Theorem

6.2.16
22.11, the extension R[τ ] ↪→ R̂ is weakly flat if and only if τ is idealwise

independent over R. By Theorem
6.4.3
22.27, this extension satisfies PDE (or equiva-

lently LF1) if and only if τ is residually algebraically independent over R. Thus
Examples

6.4.8
22.36 and

6.4.10
22.38 give extensions of Krull domains R[τ ] ↪→ R̂, that are

weakly flat, but do not satisfy PDE. In fact, in these examples the ring R[τ ] is a
3-dimensional excellent UFD.
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Exercises
Idlenprmax (1) Assume Setting

6.2.1
22.1. Let I be an ideal of R such that (P, t1−τ1, . . . , tn−τn)Ŝn

is primary to the maximal ideal of Ŝn, for every P ∈ SpecSn with P minimal
over I. Prove that (I, t1 − τ1, . . . , tn − τn)Ŝn is primary to the maximal ideal
of Ŝn.

resalgind2imp2' (2) Prove Remark
6.4.1r
22.25: Let τ1, . . . , τn ∈ m̂ be algebraically independent over R,

and let P̂ be a height-one prime ideal of R̂ such that P̂ ∩R[τ1, . . . , τi−1] 6= (0).
Show that the images of the τi in R̂/P̂ are algebraically independent over
R[τ1, . . . , τi−1]/(P̂ ∩R[τ1, . . . , τi−1]).

cap0algind (3) As in Remark
6.3.8
22.19, let A ↪→ B be an extension of Krull domains, and let α

be a nonzero nonunit of B such that α /∈ Q for each height-one prime Q of B
such that Q ∩A 6= (0).
(a) Prove that αB ∩A = (0) as asserted in Remark

6.3.8
22.19.

(b) Prove that α is algebraically independent over A.
Suggestion For part a, see Remarks

Krullrmks
2.12.

(4) Let R = k[s, t](s,t) and the field k be as in Example
6.4.10
22.38.

(a) Prove as asserted in Example
6.4.10
22.38 that (s2 − t2 − t3)R is a prime ideal.

(b) Prove that s2−t2−t3 factors in the power series ring k[[s, t]] as the product
of two nonassociate prime elements.





CHAPTER 23

Idealwise algebraic independence IIidwisec2

This chapter relates the three concepts of independence from Chapter
idwisec
22 to

flatness conditions of extensions of Krull domains. Implications among the con-
cepts are given, as well as some conclusions concerning their equivalence in special
situations. We also investigate their stability under change of base ring.

Setting
6.2.1
22.1 from Chapter

idwisec
22 is used in this chapter. Thus (R,m) is an ex-

cellent normal local domain with field of fractions K and completion (R̂, m̂), and
t1, . . . , tn are indeterminates over R. The elements τ1, . . . , τn ∈ m̂ are algebraically
independent over R, and we have embeddings:

R ↪→ S = Rn = R[τ1, . . . , τn](m,τ1,...,τn)
φ
↪→ R̂

Using this setting and other terminology of Chapter
idwisec
22, we summarize the results

of this chapter.

ch2sum Summary 23.1. In Section
6.5
23.1 we describe the three concepts of idealwise

independence, residual algebraic independence, and primary independence defined
in Definitions

6.2.2
22.2,

6.4.1
22.24, and

6.3.1
22.12 in terms of certain flatness conditions on the

embedding
ϕ : R[τ1, . . . , τn](m,τ1,...,τn) ↪→ R̂.

In Section
6.6
23.2 we investigate the stability of these independence concepts under

base change, composition and polynomial extension. We prove in Corollary
6.6.10
23.18

the existence of uncountable excellent normal local domains R such that R̂ contains
infinite sets of primarily independent elements.

Corollary
6.7.2
23.20 of Section

6.7
23.3 states that residual algebraic independence or

primary independence holds for elements over the original ring R if and only if
the corresponding property holds over the Henselization Rh of R. Also idealwise
independence descends from the Henselization to the ring R.

A diagram in Section
6.8
23.4 displays the relationships among the independence

concepts and other related properties.

23.1. Primary independence and flatness
6.5

In this section we describe the concept of primary independence in terms of
flatness of certain localizations of the canonical embedding of Setting

6.2.1
22.1

ϕ : Rn = R[τ1, . . . , τn](m,τ1,...,τn) ↪→ R̂.

Chapter
idwisec
22 contains flatness conditions for ϕ that are equivalent to idealwise in-

dependence and residual algebraic independence. Remark
6.5.2
23.2 summarizes these

conditions.

295
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6.5.2 Remark 23.2. Let (R,m) and τ1, . . . , τn ∈ m̂ be as in Setting
6.2.1
22.1, and let

ϕ : Rn = R[τ1, . . . , τn](m,τ1,...,τn) ↪→ R̂ denote the canonical embedding. Then:
(1) τ1, . . . , τn are idealwise independent over R if and only if the map Rn ↪→ R̂

is weakly flat; see Definitions
6.2.2
22.2 and

PDEetc
22.5 and Theorem

6.2.16
22.11.

(2) The elements τ1, . . . , τn are residually algebraically independent over R
⇐⇒ ϕ : Rn = R[τ1, . . . , τn](m,τ1,...,τn) −→ R̂ satisfies LF1; see Defini-
tion

7.3.4fc
9.1.

Lfd12
3, Corollary

6.5.4
9.14 and Theorem

6.4.3
22.27.

(3) If each height-one prime of R is the radical of a principal ideal and
the elements τ1, . . . , τn are residually algebraically independent over R,
then the elements τ1, . . . , τn are idealwise independent over R. See Theo-
rem

6.4.4
22.30.3.

Lemma
prhtgd
23.3 is useful for obtaining a description of primary independence in

terms of flatness of certain localizations of the embedding ϕ : Rn −→ R̂:

prhtgd Lemma 23.3. Let d ∈ N and n ∈ N0, and let (S,m) ↪→ (T, n) be a local em-
bedding of catenary Noetherian local domains with dimT = d and dimS = d + n.
Assume the extension S ↪→ T satisfies:

htP ≥ d =⇒ PT is n-primary, for every P ∈ SpecS. Property
prhtgd
23.3.0

Then, for every Q ∈ SpecT with htQ ≤ d− 1, we have ht(Q ∩ S) ≤ htQ.

Proof. If Q ∈ SpecT is such that ht(Q ∩ S) ≥ d, then, by Property
prhtgd
23.3.0,

(Q ∩ S)T is n-primary, and so Q = n and htQ = d. Thus, for every Q ∈ SpecT
with htQ ≤ d− 1, we have ht(Q ∩ S) ≤ d− 1. In particular, if htQ = d− 1, then
ht(Q ∩ S) ≤ htQ.

Proceed by induction on s ≥ 1 to show: htQ = d − s =⇒ ht(Q ∩ S) ≤ htQ.
Assume s ≥ 2 and ht(P ∩S) ≤ htP , for every P ∈ SpecT with d > htP ≥ d−s+1.
Let Q ∈ SpecT with htQ = d− s. Suppose ht(Q∩S) ≥ d− s+1; choose b ∈ m \Q
and let Q1 ∈ SpecT be minimal over (b,Q)T . Since T is catenary and Noetherian,
we have htQ1 = d − s + 1. By the inductive hypothesis, ht(Q1 ∩ S) ≤ d − s + 1.
Since b ∈ Q1 ∩ S, the ideal Q1 ∩ S properly contains Q ∩ S. But this implies

d− s+ 1 ≥ ht(Q1 ∩ S) > ht(Q ∩ S) ≥ d− s+ 1,

a contradiction. Thus ht(Q∩S) ≤ htQ, for every Q ∈ SpecT with htQ ≤ d−1. □

Theorem
6.5.6
23.4 uses the LFn notation of Definition

7.3.4fc
9.1.

Lfd12
3 and uses Remark

16.3.35
9.2.

6.5.6 Theorem 23.4. Let (R,m) be an excellent normal local domain, and let the
elements τ1, . . . , τn ∈ m̂ be as in Setting

6.2.1
22.1. Assume that dimR = d. Then the

elements τ1, . . . , τn are primarily independent over R if and only if

ϕ : Rn = R[τ1, . . . , τn](m,τ1,...,τn) −→ R̂

satisfies LFd−1.

Proof. To prove the =⇒ direction: Since Rn is a localized polynomial ring
over R, the map R ↪→ Rn has regular fibers. Since R is excellent, the map R ↪→ R̂
has regular, hence Cohen-Macaulay, fibers. Consider the sequence

R −→ Rn
φ−→ R̂.
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To show ϕ satisfies LFd−1, we show that ϕQ̂ is flat for every Q̂ ∈ Spec R̂ with
ht Q̂ ≤ d − 1. For this, by (2) =⇒ (1) of Theorem

13.2.0p
7.3, it suffices to show

ht(Q̂ ∩ Rn) ≤ ht Q̂ for every Q̂ ∈ Spec R̂ with ht Q̂ ≤ d − 1. This holds by
Lemma

prhtgd
23.3, since primary independence implies Property

prhtgd
23.3.0.

For ⇐= , let P ∈ SpecRn be a prime ideal with dim(Rn/P ) ≤ n. Suppose
that PR̂ is not m̂-primary and let Q̂ ⊇ PR̂ be a minimal prime of PR̂. Then
ht(Q̂) ≤ d− 1. Set Q = Q̂ ∩Rn, then LFd−1 implies that the map

ϕQ̂ : (Rn)Q −→ R̂Q̂

is faithfully flat. Hence by going-down (Remark
remflat
2.37.

flgd
10), htQ ≤ d− 1. But P ⊆ Q

and Rn is catenary, so d− 1 ≥ htQ ≥ htP ≥ d, a contradiction. We conclude that
τ1, . . . , τn are primarily independent. □

6.5.7 Remark 23.5. Theorem
6.5.6
23.4 yields a different proof of statements (1) and

(3) of Theorem
6.4.4
22.30, that primarily independent elements are residually alge-

braically independent and that in dimension two, the two concepts are equiva-
lent. Consider again the basic Setting

6.2.1
22.1, with d = dim(R). Theorem

6.5.6
23.4

equates the LFd−1 condition on the extension Rn = R[τ1, . . . , τn](m,τ1,...,τn) −→ R̂
to the primary independence of the τi. Corollary

6.5.4
9.14 and Theorem

6.4.3
22.27 imply

that the τi are residually algebraically independent if and only if the extension
Rn = R[τ1, . . . , τn](m,τ1,...,τn) −→ R̂ satisfies LF1. Clearly LFi =⇒ LFi−1, for
i > 1, and if d = dim(R) = 2, then LFd−1 = LF1.

6.5.8 Remark 23.6. In Setting
6.2.1
22.1, if τ1, . . . , τn are primarily independent over R

and dim(R) = d, then ϕ : Rn −→ R̂ satisfies LFd−1, but not LFd, that is, ϕ fails
to be faithfully flat; for faithful flatness would imply going-down and hence that
dim(Rn) ≤ d = dim(R̂).

6.5.9 Example 23.7. By a modification of Example
6.2.13
9.17, it is possible to obtain,

for each integer d ≥ 2, an injective local map ϕ : (A,m) −→ (B, n) of normal
Noetherian local domains with B essentially of finite type over A, ϕ(m)B = n,
and dim(B) = d such that ϕ satisfies LFd−1, but fails to be faithfully flat over
A. Let k be a field and let x1, . . . , xd, y be indeterminates over k. Let A be
the localization of k[x1, . . . , xd, x1y, . . . , xdy] at the maximal ideal generated by
(x1, . . . , xd, x1y, . . . , xdy), and let B be the localization of A[y] at the prime ideal
(x1, . . . , xd)A[y]. Then A is an d+ 1-dimensional normal Noetherian local domain
and B is an d-dimensional regular local domain birationally dominating A. For
any nonmaximal prime Q of B we have BQ = AQ∩A. Hence ϕ : A −→ B satisfies
LFd−1, but ϕ is not faithfully flat since dim(B) < dim(A).

The local injective map ϕ : (A,m) −→ (B, n) of Example
6.5.9
23.7 is not height-

one preserving. Remark
6.2.7
22.8 shows that if each height-one prime ideal of R is the

radical of a principal ideal then the maps studied in this chapter are height-one
preserving.

23.2. Composition, base change and polynomial extensions
6.6

In this section we investigate idealwise independence, residual algebraic inde-
pendence, and primary independence under polynomial ring extensions and local-
izations of these polynomial extensions.
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Proposition
6.6.1
23.8 implies that many of the properties of injective maps that we

consider are stable under composition:

6.6.1 Proposition 23.8. Let ϕ : A −→ B and ψ : B −→ C be injective maps of
commutative rings, and let s ∈ N. That is,

C

A B

ψ

ψφ

φ

is a commutative diagram of commutative rings and injective maps. Then:
(1) If ϕ and ψ satisfy LFs, then ψϕ satisfies LFs.
(2) If C is Noetherian, ψ is faithfully flat and the composite map ψϕ satisfies

LFs, then ϕ satisfies LFs.
(3) Assume that A,B and C are Krull domains, and that QC 6= C, for each

height-one prime Q of B. If ϕ and ψ are height-one preserving (respectively
weakly flat), then ψϕ is height-one preserving (respectively weakly flat).

Proof. The first item follows because a flat map satisfies going-down, see
Remark

remflat
2.37.

flgd
10. For item 2, since C is Noetherian and ψ is faithfully flat, B is

Noetherian; see Remark
remflat
2.37.

ffNN
8. Let Q ∈ Spec(B) with ht(Q) = d ≤ s. We show

ϕQ : AQ∩A −→ BQ is faithfully flat. By localization of B and C at B \Q, we may
assume that B is local with maximal ideal Q. Since C is faithfully flat over B,
QC 6= C. Let Q′ ∈ Spec(C) be a minimal prime of QC. Since C is Noetherian and
B is local with maximal ideal Q, we have ht(Q′) ≤ d and Q′ ∩ B = Q. Since the
composite map ψϕ satisfies LFs, the composite map

AQ′∩A = AQ∩A
φQ−−−−→ BQ = BQ′∩B

ψQ′
−−−−→ CQ′

is faithfully flat. This and the faithful flatness of ψQ′ : BQ′∩B −→ CQ′ imply that
ϕQ is faithfully flat

M1
[121, (4.B) page 27].

For item 3, let P be a height-one prime of A such that PC 6= C. Then PB 6= B
so if ϕ and ψ are height-one preserving then there exists a height-one prime Q of
B such that PB ⊆ Q. By assumption, QC 6= C (and ψ is height-one preserving),
so there exists a height-one prime Q′ of C such that QC ⊆ Q′. Hence PC ⊆ Q′.

If ϕ and ψ are weakly flat, then by Proposition
6.2.10fc
9.11 there exists a height-one

prime Q of B such that Q∩A = P . Again by assumption, QC 6= C; thus the weak
flatness of ψ implies QC ∩B = Q. Now

P ⊆ PC ∩A ⊆ QC ∩A = QC ∩B ∩A = Q ∩A = P. □

6.6.2 Remarks 23.9. If in Proposition
6.6.1
23.8.3 the Krull domains B and C are local,

but not necessarily Noetherian, and ψ is a local map, then clearly QC 6= C for each
height-one prime Q of B.

If a map λ of Krull domains is faithfully flat, then λ is height-one preserving,
weakly flat and satisfies condition LFk for every integer k ∈ N. Thus if ϕ : A −→ B
and ψ : B −→ C are injective maps of Krull domains such that one of ϕ or ψ is
faithfully flat and the other is weakly flat (respectively height-one preserving or
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satisfies LFk), then the composition ψϕ is again weakly flat (respectively height-
one preserving or satisfies LFk). Moreover, if the map ψ is faithfully flat, we also
obtain the following converse to Proposition

6.6.1
23.8.3:

6.6.3 Proposition 23.10. Let ϕ : A −→ B and ψ : B −→ C be injective maps of
Krull domains. Assume that ψ is faithfully flat. If ψϕ is height-one preserving
(respectively weakly flat), then ϕ is height-one preserving (respectively weakly flat).

Proof. Let P be a height-one prime ideal of A such that PB 6= B. Since ψ
is faithfully flat, PC 6= C; so if ψϕ is height-one preserving, then there exists a
height-one prime ideal Q′ of C containing PC. Now Q = Q′ ∩B has height one by
going-down for flat extensions, and PB ⊆ Q′∩B = Q, so ϕ is height-one preserving.
The proof of the weakly flat statement is similar, using Proposition

6.2.10fc
9.11. □

Next we consider a commutative square of commutative rings and injective
maps:

A′
φ′

−−−−→ B′

µ

x ν

x
A

φ−−−−→ B

6.6.4 Proposition 23.11. In the diagram above, assume that µ and ν are faithfully
flat, and let k ∈ N. Then:

(1) (Ascent) Assume that B′ = B⊗AA′, or that B′ is a localization of B⊗AA′.
Let ν denote the canonical map associated with this tensor product. If
ϕ : A −→ B satisfies LFk, then ϕ′ : A′ −→ B′ satisfies LFk.

(2) (Descent) If B′ is Noetherian and ϕ′ : A′ −→ B′ satisfies LFk, then
ϕ : A −→ B satisfies LFk.

(3) (Descent) Assume that the rings A,A′, B and B′ are Krull domains. If
ϕ′ : A′ −→ B′ is height-one preserving (respectively weakly flat), then
ϕ : A −→ B is height-one preserving (respectively weakly flat).

Proof. For (1), assume that ϕ satisfies LFk and let Q′ ∈ Spec(B′) with
ht(Q′) ≤ k. Put Q = (ν)−1(Q′), P ′ = (ϕ′)−1(Q′), and P = µ−1(P ′) = ϕ−1(Q) and
consider the commutative diagrams:

A′
φ′

−−−−→ B′ A′P ′

φ′
Q′

−−−−→ B′Q′

µ

x ν

x µP ′

x νQ′

x
A

φ−−−−→ B AP
φQ−−−−→ BQ

The flatness of ν implies that ht(Q) ≤ k and so, by assumption, ϕQ is faithfully
flat. The ring B′Q′ is a localization of BQ⊗AP

A′P ′ , and so BQ is faithfully flat over
AP implies B′Q′ is faithfully flat over A′P ′ .

For item 2, by Proposition
6.6.1
23.8.1,ϕ′µ = νϕ satisfies LFk. By Proposition

6.6.1
23.8.2,

ϕ satisfies LFk.
Item 3 follows immediately from the assumption that µ and ν are faithfully flat

maps and hence going-down holds; see Remark
remflat
2.37.

flgd
10. □

Next we examine the situation for polynomial extensions.
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6.6.5 Proposition 23.12. Let (R,m) and {τi}mi=1 ⊆ m̂ be as in Setting
6.2.1
22.1, where

m is either an integer or m =∞, and the dimension of R is at least 2. Let z be an
indeterminate over R̂. Then:

(1) {τi}mi=1 is residually algebraically independent over R ⇐⇒ {τi}mi=1 is
residually algebraically independent over R[z](m,z).

(2) If {τi}mi=1 is idealwise independent over R[z](m,z), then {τi}mi=1 is idealwise
independent over R.

Proof. Let n ∈ N be an integer with n ≤ m. Set Rn = R[τ1, . . . , τn](m,τ1,...,τn).
Let ϕ : Rn −→ R̂ and µ : Rn −→ Rn[z] be the inclusion maps. The following
diagram commutes:

Rn[z](max(Rn),z)
φ′

−−−−→ R′ = R̂[z](m̂,z)
ψ−−−−→ R̂′ = R̂[[z]]

µ

x µ′
x

Rn
φ−−−−→ R̂ .

The ring R′ is a localization of the tensor product R̂⊗RnRn[z] and Proposition
6.6.4
23.11

applies. Thus, for item 1, ϕ satisfies LF1 if and only if ϕ′ satisfies LF1. Since
the inclusion map ψ of R′ = R̂[z](m̂,z) to its completion R̂[[z]] is faithfully flat,
Proposition

6.6.4
23.11 implies these statements are equivalent:

ϕ satisfies LF1 ⇐⇒ ϕ′ satisfies LF1 ⇐⇒ ψϕ′ satisfies LF1.
For item 2, the τi are idealwise independent over R[z](m,z), then the map ψϕ′

is weakly flat by Remark
6.5.2
23.2. Thus ϕ′ is weakly flat and the statement follows by

Proposition
6.6.4
23.11. □

6.6.6 Proposition 23.13. Let A ↪→ B be an extension of Krull domains such that
for each height-one prime P ∈ Spec(A) we have PB 6= B, and let Z be a (possibly
uncountable) set of indeterminates over A. Then A ↪→ B is weakly flat if and only
if A[Z] ↪→ B[Z] is weakly flat.

Proof. Let F denote the field of fractions of A. By Corollary
6.2.14fc
9.4, the extension

A ↪→ B is weakly flat if and only if F ∩ B = A. Thus the assertion follows from
F ∩B = A ⇐⇒ F (Z) ∩B[Z] = A[Z]. □

It would be interesting to know whether the converse of Proposition
6.6.5
23.12.2 is

true. In this connection we have:

6.6.7 Remarks 23.14. Let ϕ : A −→ B be a weakly flat map of Krull domains, and
let P be a height-one prime in A.

(1) Let Q be a minimal prime of the extended ideal PB. If the map ϕQ :
A −→ BQ is weakly flat, then htQ = 1. To see this, observe that QBQ is
the unique minimal prime of PBQ, so QBQ is the radical of PBQ. If ϕQ
is weakly flat, then PBQ ∩ A = P and hence QBQ ∩ A = P . It follows
that AP ↪→ BQ. Since AP is a DVR and its maximal ideal PAP extends
to an ideal primary for the maximal ideal QBQ of the Krull domain BQ,
we must have that BQ is a DVR and hence htQ = 1.

(2) Thus if there exists a weakly flat map of Krull domains ϕ : A −→ B and a
minimal prime Q of PB such that htQ > 1, then the map ϕQ : A −→ BQ
fails to be weakly flat,
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(3) If P is the radical of a principal ideal, then each minimal prime of PB
has height one.

Question 23.15. Let ϕ : A −→ B be a weakly flat map of Krull domains,
and let P be a height-one prime in A, as in Remarks

6.6.7
23.14. Is it possible that the

extended ideal PB has a minimal prime Q with htQ > 1?

6.6.8 Remark 23.16. Primary independence never lifts to polynomial rings. With
Setting

6.2.1
22.1 and τ ∈ m̂, to see that τ ∈ m̂ fails to be primarily independent over

R[z](m,z), observe that mR[z](m,z) is a dimension-one prime ideal that extends to
m̂[[z]]. The ideal m̂[[z]] also has dimension one and is not (m, z)-primary in R̂[[z]].
Alternatively, in the language of locally flat maps, if the elements {τi}mi=1 ⊆ m̂ are
primarily independent over R, then Proposition

6.6.4
23.11 implies that the map

ϕ′ : Rn[z](max(Rn),z) −→ R̂[[z]]

satisfies condition LFd−1, where d = dim(R). For {τi}mi=1 to be primarily inde-
pendent over R[z](m,z), the map ϕ′ has to satisfy LFd, since dimR[z](m,z) = d+ 1.
Proposition

6.6.4
23.11 forces ϕ : Rn −→ R̂ to satisfy condition LFd and thus ϕ is flat,

so that n = 0.

Theorem
6.6.9
23.17 gives a method to obtain residually algebraically independent

and primarily independent elements over an uncountable excellent local domain.
Theorem

6.6.9
23.17 uses the fact that, if A is a Noetherian ring and Z is a set of

indeterminates over A, then the ring A(Z) obtained by localizing the polynomial
ring A[Z] at the multiplicative system of polynomials whose coefficients generate
the unit ideal of A is again a Noetherian ring

GH
[56, Theorem 6].

6.6.9 Theorem 23.17. Let (R,m) and {τi}mi=1 ⊂ m̂ be as in Setting
6.2.1
22.1, where m

is either an integer or m = ∞, and dim(R) = d ≥ 2. Let Z be a set (possibly
uncountable) of indeterminates over R̂ and let R(Z) = R[Z](mR[Z]). Then:

(1) {τi}mi=1 is primarily independent over R ⇐⇒ {τi}mi=1 is primarily inde-
pendent over R(Z).

(2) {τi}mi=1 is residually algebraically independent over R ⇐⇒ {τi}mi=1 is
residually algebraically independent over R(Z).

(3) If {τi}mi=1 is idealwise independent over R(Z), then {τi}mi=1 is idealwise
independent over R.

Proof. Let n ∈ N be an integer with n ≤ m, put Rn = R[τ1, . . . , τn](m,τ1,...,τn)

and let n denote the maximal ideal of Rn. Let ϕ : Rn −→ R̂ and µ : Rn −→
Rn(Z) = Rn[Z]nRn[Z] be the inclusion maps. The following diagram commutes:

Rn(Z)
φ′

−−−−→ R̂(Z)
ψ−−−−→ R̂(Z)

µ

x µ′
x

Rn
φ−−−−→ R̂ ,

where ψ is the inclusion map taking R̂(Z) to its completion. Since Rn is a free Rn-
module and R̂ is an Rn-module, R̂⊗Rn

Rn[Z] ∼= R̂[Z]. The ring R̂(Z) = S−1R̂[Z],
where S is the multiplicatively closed set

S := {f(Z) ∈ R̂[Z] | the coefficients of f(Z) generate the unit ideal of R̂}.
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Since R̂ is local with maximal ideal m̂, S = R̂[Z]\m̂R̂[Z], and so R̂(Z) = R̂[Z]m̂R̂[Z].

Now Proposition
6.6.4
23.11 applies. Thus, for item 1, ϕ satisfies LFd−1 if and only if ϕ′

satisfies LFd−1. Similarly, for item 2, ϕ satisfies LF1 if and only if ϕ′ satisfies LF1.
Since the inclusion map ψ is faithfully flat,

ϕ satisfies LFk ⇐⇒ ϕ′ satisfies LFk ⇐⇒ ψϕ′ satisfies LFk.
Items 1 and 2 hold since primary independence is equivalent to LFd−1 by

Theorem
6.5.6
23.4, and residual algebraic independence is equivalent to LF1 by Corol-

lary
6.5.4
9.14.
For item 3, observe that R(Z), R̂(Z) and R̂(Z) are all excellent normal lo-

cal domains, and so they are Krull domains. If the τi are idealwise independent
over R(Z), then the morphism ψϕ′ is weakly flat by Remark

6.5.2
23.2.1. By Proposi-

tion
6.6.3
23.10, ϕ′ is weakly flat. Proposition

6.6.1
23.8.2 implies ϕ is also weakly flat. Item 3

follows by Remark
6.5.2
23.2.1. □

6.6.10 Corollary 23.18. Let k be a countable field, let Z be an uncountable set of
indeterminates over k and let x, y be additional indeterminates. Then the ring
R := k(Z)[x, y](x,y) is an uncountable excellent normal local domain of dimension
two, and, for m a positive integer or m = ∞, there exist m primarily indepen-
dent elements (and hence also residually algebraically and idealwise independent
elements) over R.

Proof. Apply Proposition
6.3.4
22.15 and Theorems

6.3.9
22.20,

6.4.4
22.30 and

6.6.9
23.17. □

23.3. Passing to the Henselization
6.7

In this section we investigate idealwise independence, residual algebraic inde-
pendence, and primary independence as we pass from R to the Henselization Rh

of R. In particular, we show in Proposition
6.7.5
23.23 that for a single element τ ∈ mR̂

the notions of idealwise independence and residual algebraic independence coincide
if R = Rh. This implies that for every excellent normal local Henselian domain of
dimension 2 all three concepts coincide for an element τ ∈ m̂; that is, τ is idealwise
independent ⇐⇒ τ is residually algebraically independent ⇐⇒ τ is primarily
independent.

We use the commutative square of Proposition
6.6.4
23.11 and obtain the following

result for Henselizations:

6.7.1 Proposition 23.19. Let ϕ : (A,m) ↪→ (B, n) be an injective local map of
normal Noetherian local domains, and let ϕh : Ah −→ Bh denote the induced map
of the Henselizations. Then:

(1) For each k with 1 ≤ k ≤ dim(B), ϕ satisfies LFk ⇐⇒ ϕh satisfies
LFk. Thus ϕ satisfies PDE ⇐⇒ ϕh satisfies PDE.

(2) (Descent) If ϕh is height-one preserving (respectively weakly flat), then ϕ
is height-one preserving (respectively weakly flat).

Using shorthand and diagrams, we show Proposition
6.7.1
23.19 schematically:

ϕ is LFk ⇐⇒ ϕh is LFk ; ϕ is PDE ⇐⇒ ϕh is PDE

ϕ ht-1 pres ⇐= ϕh ht-1 pres ; ϕ w.f. ⇐= ϕh w.f. .
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Proof. (of Proposition
6.7.1
23.19) Consider the commutative diagram:

Ah
φh

−−−−→ Bh

µ

x ν

x
A

φ−−−−→ B

where µ and ν are the faithfully flat canonical injections; see Remarks
Hensrmks
3.32.1

and
Hensrmks
3.32.2. Since ν◦ϕ is injective and A is normal, ϕh is injective by Remark

Hensrmks
3.32.

Hid
4.

The statement for PDE in item 1 holds if the statement for LF1 in item 1 holds,
since Corollary

6.5.4
9.14 implies they are equivalent statements. Proposition

6.6.4
23.11.2

shows that if ϕh is LFk, then ϕ is LFk. Thus to prove item 1, it suffices to show
that ϕ is LFk implies ϕh is LFk.

Assume that ϕ is LFk. Let Q′ ∈ Spec(Bh) with ht(Q′) ≤ k. Put Q = Q′ ∩ B,
P ′ = Q′ ∩Ah, and P = P ′ ∩A. We consider the localized diagram:

AhP ′

φh
Q′

−−−−→ BhQ′

µP ′

x νQ′

x
AP

φQ−−−−→ BQ

The faithful flatness of ν implies ht(Q) ≤ k. The LFk condition on ϕ implies that
ϕQ is flat. Since ϕhQ′ and ϕQ are local maps of local rings, flatness of either map is
equivalent to faithful flatness.

To show that ϕhQ′ : AhP ′ −→ BhQ′ is flat, apply Remark
6.5.5
7.2 with M = BhQ′ and

I = PAhQ′ . By Remark
6.5.5
7.2, BhQ′ is flat over AhP ′ if and only if

(a) PAhQ′ ⊗Ah
P ′
BhQ′
∼= PAhQ′BhQ′ ; that is, PAhQ′ ⊗Ah

P ′
BhQ′
∼= PBhQ′ , and

(b) BhQ′/PAhQ′BhQ′ is AhP ′/PAhQ′ -flat; that is, BhQ′/PBhQ′ is AhP ′/PAhQ′ -flat.
Note that P ′ is a minimal prime divisor of PAh. By Remark

Hensrks
8.28.2, µ is a regular

map. Therefore (Ah/PAh)P ′ = (Ah/P ′)P ′ is a field. Thus

ϕhQ′ : (A
h/PAh)P ′ −→ (Bh/PBh)Q′

is faithfully flat and it remains to show that

PAhP ′ ⊗Ah
P ′
BhQ′ ∼= PBhQ′ .

This can be seen as follows:
PAhP ′ ⊗Ah

P ′
BhQ′ ∼= (P ⊗AP

AhP ′)⊗Ah
P ′
BhQ′ by flatness of µ

∼= P ⊗AP
BhQ′

∼= (P ⊗AP
BQ)⊗BQ

BhQ′

∼= PBQ ⊗BQ
BhQ′ by flatness of ϕQ

∼= PBhQ′ by flatness of ν.

This completes the proof of item 1.
Item 2 is proved in Proposition

6.6.4
23.11.3. □

6.7.2 Corollary 23.20. Let (R,m) and {τi}mi=1 be as in Setting
6.2.1
22.1, where m is

either a positive integer or m = ∞ and dim(R) = d ≥ 2. Then the following
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diagram commutes

(
6.7.2
23.20.0)

R̃n := Rh[τ1, . . . , τn](m,τ1,...,τn)
φ′

−−−−→ R̂

µ

x ∥∥∥
Rn := R[τ1, . . . , τn](m,τ1,...,τn)

φ−−−−→ R̂ , where
µ is the canonical faithfully flat injection from the proof of Proposition

6.7.1
23.19 and

ϕ and ϕ‘ are the inclusion maps, and:
(1) {τi}mi=1 is primarily independent over R ⇐⇒ {τi}mi=1 is primarily

independent over Rh.
(2) {τi}mi=1 is residually algebraically independent over R ⇐⇒ {τi}mi=1

is residually algebraically independent over Rh.
(3) (Descent) If {τi}mi=1 is idealwise independent over Rh, then {τi}mi=1 is

idealwise independent over R.

Proof. As in the proof of Proposition
6.7.1
23.19, Diagram

6.7.2
23.20.0 commutes.

For items 1 and 2, it suffices to show the equivalence for every positive integer
n ≤ m. Refer to Diagram

6.7.2
23.20.0. By Remark

Hensrks
8.28.5, the local rings Rn =

R[τ1, . . . , τn](m,τ1,...,τn) and R̃n = Rh[τ1, . . . , τn](m,τ1,...,τn) have the same Henseliza-
tion Rhn. Also Rn ⊆ R̃n. By Theorem

6.5.6
23.4 and Proposition

6.7.1
23.19 we have:

τ1, . . . , τn are primarily (respectively residually algebraically)
independent over R ⇐⇒

Rn −→ R̂ satisfies LFd−1 (respectively LF1) ⇐⇒

Rhn −→ R̂ = R̂h satisfies LFd−1 (respectively LF1) ⇐⇒

R̃n −→ R̂ satisfies LFd−1 (respectively LF1).

The third statement on idealwise independence follows from Theorem
6.6.4
23.11.3

by considering Diagram
6.7.2
23.20.0. □

6.7.3 Remark 23.21. The examples given in Theorems
6.4.7
22.35 and

6.4.9
22.37 show the

converse to part 3 of Corollary
6.7.2
23.20 fails: weak flatness need not lift to the

Henselization. With the notation of Proposition
6.7.1
23.19, if ϕ is weakly flat, then

for every P ∈ Spec(A) of height one with PB 6= B there exists by Proposition
6.2.10fc
9.11,

Q ∈ Spec(B) of height one such that P = Q ∩ A. In the Henselization Ah of A,
the ideal PAh is a finite intersection of height-one prime ideals P ′i of Ah by Re-
marks

Hensrks
8.28.2. Only one of the P ′i is contained in Q. Thus as in Theorems

6.4.7
22.35

and
6.4.9
22.37, one of the minimal prime divisors P ′i may fail the condition for weak

flatness.
Let R be an excellent normal local domain with Henselization Rh. By Re-

mark
Hensrks
8.28.

Hid3
9, Rh is an integral domain. Let K and Kh denote the fields of fractions

of R and Rh respectively. Let L be an intermediate field with K ⊆ L ⊆ Kh. Since
Kh ∩ R̂ = Rh, it follows that T = L ∩ R̂ = L ∩ Rh. The intersection ring T is an
etale extension of R, and T is an excellent reduced local ring with Henselization
Th = Rh, by

R3.7
[160, Corollary 1.5 and Proposition 1.9]. Since an etale extension of

a normal domain is normal, the ring T is an excellent normal local domain.
The proof of corollary

6.7.4
23.22 uses that Henselian excellent normal local domains

are algebraically closed in their completion; see Remark
Hensrks
8.28.5.
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6.7.4 Corollary 23.22. Let (R,m) and {τi}mi=1 be as in Setting
6.2.1
22.1, where m

denotes a positive integer orm =∞. Let T be a Noetherian local domain dominating
R and algebraic over R and dominated by R̂ with R̂ = T̂ . Then:

(1) {τi}mi=1 is primarily independent over R ⇐⇒ {τi}mi=1 is primarily
independent over T .

(2) {τi}mi=1 is residually algebraically independent over R ⇐⇒ {τi}mi=1

is residually algebraically independent over T .
(3) If {τi}mi=1 is idealwise independent over T , then {τi}mi=1 is idealwise inde-

pendent over R.

Proof. By Remark
Hensrks
8.28.5, R ⊆ T ⊆ Rh = Th. Statements 1 and 2 follow

from Corollary
6.7.2
23.20, parts 1 and 2.

For statement 3, use Remark
6.5.2
23.2.1: τ1, . . . , τn are idealwise independent over

R, respectively T , if and only if Rn ↪→ R̂, respectively T [τ1, . . . , τn](−) ↪→ T̂ , is
weakly flat. Suppose {τi}mi=1 is idealwise independent over T . Then, for every
n ≤ m, {τi}ni=1 is idealwise independent over T , and this implies

T [τ1, . . . , τn](−) ↪→ T̂ = R̂

is weakly flat. By Proposition
6.6.4
23.11.3, Rn ↪→ R̂ is weakly flat, and so τ1, . . . , τn are

idealwise independent over R. Hence {τi}mi=1 is idealwise independent over R. □

Theorem
6.4.4
22.30 states that, if R has the property that every height-one prime

ideal is the radical of a principal ideal and τ ∈ m̂ is residually algebraically indepen-
dent over R, then τ is idealwise independent over R. Proposition

6.7.5
23.23 describes a

situation in which idealwise independence implies residual algebraic independence.

6.7.5 Proposition 23.23. Let (R,m) and τ ∈ m̂ be as in Setting
6.2.1
22.1. Suppose R

has the property that, for each P ∈ Spec(R) with ht(P ) = 1, the ideal PR̂ is prime.
(1) If τ is idealwise independent over R, then τ is residually algebraically

independent over R.
(2) If R has the additional property that every height-one prime ideal is the

radical of a principal ideal, then τ is idealwise independent over R ⇐⇒ τ
is residually algebraically independent over R.

Proof. For item 1, let P̂ ∈ Spec(R̂) be such that ht(P̂ ) = 1 and P̂ ∩ R 6= 0.
Then ht(P̂ ∩R) = 1 and (P̂ ∩R)R[τ ] is a prime ideal of R[τ ] of height 1. Idealwise
independence of τ implies that (P̂ ∩ R)R[τ ] = (P̂ ∩ R)R̂ ∩ R[τ ]. Since (P̂ ∩ R)R̂
is nonzero and prime, P̂ = (P̂ ∩ R)R̂ and P̂ ∩ R[τ ] = (P̂ ∩ R)R[τ ]. Therefore
ht(P̂ ∩ R[τ ]) = 1 and Theorem

6.4.3
22.27 implies that τ is residually algebraically

independent over R.
Item 1 implies item 2 by Theorem

6.4.4
22.30.3. □

6.7.5h Remarks 23.24. (1) Let R be an excellent normal local domain. If R is
Henselian, then R/P is Henselian for each height-one prime P of R. This im-
plies that, for each P ∈ SpecR with htP = 1, the ideal PR̂ is prime, as in the
hypothesis of Proposition

6.7.5
23.23. To see this, let P be a height-one prime of R such

that S := R/P is Henselian. Then the integral closure S′ of S in its field of fractions
is again local, in fact S′ is an excellent normal local domain and so its completion
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Ŝ′ is a normal domain by Theorem
excel8.23
8.23. Since S ⊆ S′ are finite R-modules and R̂

is a flat R-module,
Ŝ = S ⊗R R̂ ⊆ S′ ⊗R R̂ = Ŝ′,

by
M
[123, Theorem 8.7, p.60]. Thus Ŝ = R̂/P R̂ is an integral domain, and so PR̂ is

a prime ideal.
(2) There is an example in

AHW
[10] of a normal Noetherian local domain R that is

not Henselian but, for each prime ideal P of R of height-one, the domain R/P is
Henselian.

(3) It is unclear whether Proposition
6.7.5
23.23 extends to more than one al-

gebraically independent element τ ∈ m̂, because the localized polynomial ring
R[τ ](m,τ) is not Henselian.

6.7.6 Corollary 23.25. Let R be an excellent Henselian normal local domain of
dimension 2, and assume the notation of Setting

6.2.1
22.1. Then:

(1) τ is residually algebraically independent over R ⇐⇒ τ is primarily
independent over R.

(2) Either of these equivalent conditions implies τ is idealwise independent
over R.

(3) If R has the additional property that every height-one prime ideal is the
radical of a principal ideal, then the three conditions are equivalent.

Proof. This follows from Theorem
6.4.4
22.30, Proposition

6.3.4
22.15.1 and Proposi-

tion
6.7.5
23.23. □

23.4. Summary diagram for the independence concepts6.8

(
6.5.6
23.4)

(
6.5.2
23.2.2)

(
6.4.3
22.27)

(
6.4.3
22.27)

(
6.2.16
22.11.1)

(
6.6.9
23.17.1)

(
6.7.4
23.22.1)

(
6.6.9
23.17.2)

(
6.7.4
23.22.2)

(
6.6.5
23.12.1)

(
6.6.5
23.12.2)

(
6.6.9
23.17.3)

(
7.3.4fc
9.1

Lfd12
3)

(
6.5.4
9.14)

(
PDEetc
22.5)

(
6.2.12
22.9) ∗

(
PDEetc
22.5)

(
6.3.1
22.12)

(
6.4.4
22.30.1)

(
6.4.3
22.27)

(
6.4.3
22.27)

(
6.2.2
22.2)

(
6.4.4
22.30.2)∗ (

6.4.4
22.30.2)∗

Rn ↪→ R̂ LFd−1(
7.3.4fc
9.1

Lfd12
3) τ p.i./R (

6.3.1
22.12) τ p.i./R(Z) (

6.3.1
22.12)

∀p, pR̂ is m̂-primary τ p.i./T (
6.3.1
22.12)

Rn ↪→ R̂ LF1(
7.3.4fc
9.1

Lfd12
3) τ r.i./R (

6.4.1
22.24) τ r.i./R(Z) (

6.4.1
22.24)

Rn ↪→ R̂ PDE (
PDEetc
22.5) ht(P̂ ∩Ri) ≤ 1,∀P̂∀i τ r.i./T (

6.4.1
22.24)

ht(P̂ ∩Rn) ≤ 1,∀P̂ τ r.i./R (
6.4.1
22.24) τ r.i./R[z] (

6.4.1
22.24)

Rn ↪→ R̂ wf. (
PDEetc
22.5) τ i.i./R(

6.2.2
22.2) τ i.i./R[z](m,z)(

6.4.1
22.24)

PR̂ 6= R̂ =⇒ PR̂ ∩Rn = P R̂ ∩ L = Rn τ i.i./R(Z) (
6.4.1
22.24)

Diagram
6.7.6
23.25.0 Implications among the properties.
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Diagram
6.7.6
23.25.0 uses Setting

6.2.1
22.1: R,m, τ = {τ1 . . . , τn}, and Rn = R[τ ](m,τ).

Let d = dim(R), L = the field of fractions of Rn, let p denote a prime ideal of Rn
such that dim(Rn/p) ≤ d− 1, P denotes a prime ideal of Rn with ht(P ) = 1, P̂ in
Spec(R̂) has ht(P̂ ) = 1, Rh = the Henselization of R in R̂, T is a local Noetherian
domain dominating and algebraic over R and dominated by R̂ with R̂ = T̂ , z is an
indeterminate over the field of fractions of R̂ and Z is a possibly uncountable set of
set of indeterminates over the field of fractions of R̂. Then we have the implications
shown below.

We use the abbreviations “p. i.”, “r. i.” and “i. i.” for “primarily independent”,
“residually algebraically independent” and “idealwise independent”.

∗ We assume that every height-one prime ideal of R is a principal ideal in order
to have the starred arrows.

6.7.6n Note 23.26. Rn ↪→ R̂ is always height-one preserving by Proposition
6.2.7
22.8.





CHAPTER 24

Krull domains with Noetherian x-adic completions
May 28 2020, pintintsec

This chapter contains applications of Inclusion Construction
4.4.1
5.3 for the case

where the base ring R is a local Krull domain. With the setting and notation of
Inclusion Construction

4.4.1
5.3 and the assumptions of Setting

7.4.1
24.2, R is a Krull domain

and both the Intersection Domain A and Approximation Domain B of Definition
appintdef
5.7

are Krull domains; see Theorem
7.4.5
9.7.

The result of applying Inclusion Construction
4.4.1
5.3 to a normal Noetherian in-

tegral domain R that satisfies the assumptions of Setting
7.4.1
24.2 may fail to be Noe-

therian.1 Setting
7.4.1
24.2 yields an application to non-Noetherian Krull domains for

which Construction
4.4.1
5.3 can be iterated.

The construction in Chapters
idwisec
22 and

idwisec2
23 uses the entire m-adic completion of

an excellent normal local domain (R,m), rather than a completion with respect to
a principal ideal. Chapters

idwisec
22 and

idwisec2
23 contain examples of subfields L of the field

of fractions of R̂ such that the ring A := L ∩ R̂ is a localized polynomial ring over
R in finitely many or infinitely many variables. Thus A may be a non-Noetherian
Krull domain, such as the example of Corollary

6.3.10
22.23.

Here, as in Inclusion Construction
4.4.1
5.3 and Chapters

fex
4 to

insidecon
10, we use completions

with respect to a principal ideal. The base ring is a local Krull domain (R,m). We
do not assume R is Noetherian, but we do assume in Setting

7.4.1
24.2 the existence of a

nonzero nonunit x of R such that the x-adic completion R∗ of R is an analytically
normal Noetherian domain. Since R∗ is a Krull domain, the ring A := L ∩ R∗,
for L a subfield of Q(R∗), is a Krull domain. Thus we can apply the results of
Chapter

flatcon
9 to the constructed ring A. This setting permits iterations of Inclusion

Construction
4.4.1
5.3, as in Section

7.5
24.2.

The focus of this chapter is the limit-intersecting conditions of Definitions
7.5.1
24.6

that include the limit-intersecting condition given in Definition
4.2li
5.10. By The-

orem
7.5.5fc
9.9, these conditions imply that the ring A of Inclusion Construction

4.4.1
5.3

equals its Approximation Domain B from Definition
appintdef
5.7. The two stronger forms

of the limit-intersecting condition are useful for determining if A is Noetherian or
excellent. Sections

8.4
24.3 and

7.6
24.4 contain several examples related to these concepts.

Concepts from earlier chapters are useful in this study, including various flatness
conditions for extensions of Krull domains in Chapter

flatcon
9. The following terms from

Definitions
PDE
2.14 and

7.3.4fc
9.1 are restated for use in this chapter:

PDEetcrep Definitions 24.1. Let ϕ : S ↪→ T be an extension of Krull domains.

1See Chapters
insidepssec
14 and

insideps2
16 for examples where the constructed domain is a non-Noetherian

Krull domain.

309



310 24. NOETHERIAN x-ADIC COMPLETION

• T is a PDE extension of S if for every height-one prime ideal Q in T , the
height of Q ∩ S is at most one.

• T is a height-one preserving extension of S if for every height-one prime
ideal P of S with PT 6= T there exists a height-one prime ideal Q of T
with PT ⊆ Q.

• T is weakly flat over S if every height-one prime ideal P of S with PT 6= T
satisfies PT ∩ S = P .

• Let r ∈ N be an integer with 1 ≤ r ≤ d = dim(T ) where d is an integer
or d = ∞. Then ϕ is called locally flat in height r, abbreviated LFr,
if, for every prime ideal Q of T with ht(Q) ≤ r, the induced map on the
localizations ϕQ : SQ∩S −→ TQ is faithfully flat.

24.1. Applying Inclusion Construction
4.4.1
5.37.4

7.4.1 Setting and Notation 24.2. Let (R,m) be a local Krull domain with field
of fractions F . Assume that x is a nonzero element of m such that the x-adic
completion (R∗,m∗) of R is an analytically normal Noetherian local domain. By
Exercise

intsec
24.

intpow0
1, we have

⋂∞
i=1 x

nR = (0). Since the m-adic completion of R is the
same as the m∗-adic completion of R∗, the m-adic completion R̂ of R is also a normal
Noetherian local domain, Let F ∗ denote the field of fractions of R∗. Since R∗ is
Noetherian, R̂ is faithfully flat over R∗ and R∗ = R̂∩F ∗. Therefore F ∩R∗ = F ∩R̂.
Let d denote the dimension of the Noetherian domain R∗. It follows that d is also
the dimension of R̂. 2

Let τ1, . . . , τs ∈ m∗ be algebraically independent over F . The hypotheses of
Inclusion Construction

4.4.1
5.3 are satisfied by R, x and the τi. As in Construction

4.4.1
5.3

and Equations
4.2.3
5.4.3 and

4.2.3
5.4.6, let τin denote the nth endpiece of τi, for each i, and

Un := R[τn, . . . , τsn], U := lim−→
n∈N

Un, B := (1+xU)−1U, A := F (τ1, . . . , τs)∩R∗.

Remark
inclrem
5.6.1 and Part

localcase
6 of Construction Properties Theorem

11.2.51
5.14 imply that B is

local, that

B = lim−→
n∈N

Bn =

∞⋃
n=1

Bn, where Bn := (Un)(m,τ1n,...,τsn), for each n ∈ N,

that each Bn ⊆ Bn+1 and that Bn+1 dominates Bn. 3 By parts
compR*
3 and

Rt1/z
4 of Con-

struction Properties Theorem
11.2.51
5.14, the x-adic completions of A and of B are equal

to R∗, and A birationally dominates B. Let R̂[1/x] denote the localization of R̂ at
the powers of x; similarly, let R∗[1/x] denote the localization of R∗ at the powers
of x. The domains R̂[1/x] and R∗[1/x] have dimension d− 1.

We sometimes need the following assumption.

7.4.1.1 Assumption 24.3. R = F ∩ R∗ = F ∩ R̂; equivalently, R∗ and R̂ are
weakly flat over R.

2If R is Noetherian, then d is also the dimension of R. However, if R is not Noetherian, then
the dimension of R may be greater than d. This is illustrated by taking R to be the ring B of
Example

4.7.13
12.7.

3The definition of Bn used in Remarks
inclrem
5.6.1 and Equation

4.2.3
5.4.5 is different from that given

here, but Un is the same. It follows that, with Notation
7.4.1
24.2, Bn ⊆ Bn+1 and Bn is dominated

by Bn+1.
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Corollary
6.2.14fc
9.4.ii implies the equivalence of the two statements in Assumption

7.4.1.1
24.3.

7.4.2 Remark 24.4. It is possible for R ↪→ R∗[1/x] to satisfy the conditions of Set-
ting

7.4.1
24.2 but fail to satisfy Assumption

7.4.1.1
24.3. This is demonstrated by the iterative

example of Section
4.7
12.1 as given in Theorem

4.2.11t
12.3, with R := B 6= A; see Exam-

ple
4.7.13
12.7. The Krull domain B of Example

4.7.13
12.7 with B 6= A also illustrates that

a directed union of normal Noetherian domains may be a non-Noetherian Krull
domain.

Theorems
7.4.4
24.5 consists of applications of Construction Properties Theorem

11.2.51
5.14,

Theorem
Bufd
5.24, Noetherian Flatness Theorem

11.3.25
6.3, and Theorem

7.4.5
9.7.

7.4.4 Theorem 24.5. Assume Setting
7.4.1
24.2. Then the intermediate rings Bn, B and

A have the following properties:
(1) xnR∗ ∩R = xnR, xnR∗ ∩A = xnA, xnR∗ ∩B = xnB and

xnR∗ ∩ U = xnU , for each n ∈ N.
(2) R/xtR = U/xtU = B/xtB = A/xtA = R∗/xtR∗, for every positive

integer t.
(3) A∗ = B∗ = R∗.

b1/zlocbn (4) For every n ∈ N, B[1/x] is a localization of Bn, i.e., for each n ∈ N, there
exists a multiplicatively closed subset Sn of Bn such that B[1/x] = S−1n Bn.

24.5.5 (5) The minimal prime ideals over xR, xB, xA, and xR∗ are in one-to-one
correspondence via extension and contraction of prime ideals.

bssadom (6) B and A are local rings, with B ⊆ A and A dominating B.
i/zfg (7) Every ideal of R,B or A that contains x is finitely generated by elements

of R. In particular, the maximal ideal m of R is finitely generated, and
the maximal ideals of B and A are mB and mA.

bnimpb=a (8) If B is Noetherian, then B = A.
(9) A and B are local Krull domains.

Proof. Properties 1 -
b1/zlocbn
4 are items 1 - 4 of Construction Properties Theo-

rem
11.2.51
5.14. Property

24.5.5
5 follows from Properties 1 and 2. Property

bssadom
6 follows from

Proposition
11.2.52
5.17.

Bloc
5 and Remarks

inclrem
5.6. Since R∗ is Noetherian, property

i/zfg
7 follows

from property 2. Property
bnimpb=a
8 is in Noetherian Flatness Theorem

11.3.25
6.3.1.

Property 9 follows from Theorem
7.4.5
9.7, property 6 above and Setting

7.4.1
24.2. □

24.2. Limit-intersecting elements7.5

Let (R,m) be a Krull domain as in Setting
7.4.1
24.2. Remark

7.5.2
24.7.1 shows that each

of the limit-intersecting properties of Definitions
7.5.1
24.6 implies L ∩ R̂ is a directed

union of localized polynomial ring extensions of R. In Note
7.5.11
24.15, we compare these

limit-intersection concepts to the independence concepts of Definitions
6.2.2
22.2,

6.3.1
22.12,

and
6.4.1
22.24.

7.5.1 Definitions 24.6. Assume Setting
7.4.1
24.2 and also assume Assumption

7.4.1.1
24.3.

(1) The elements τ1, . . . , τs are said to be limit-intersecting in x over R pro-
vided B = A.

(2) The elements τ1 . . . , τs are said to be residually limit-intersecting in x over
R provided the inclusion map
B0 := R[τ1, . . . , τs](m,τ1,...,τs) −→ R∗[1/x] is LF1. (

7.5.1
24.6.2)



312 24. NOETHERIAN x-ADIC COMPLETION

(3) The elements τ1 . . . , τs are said to be primarily limit-intersecting in x over
R provided the inclusion map
B0 := R[τ1, . . . , τs](m,τ1,...,τs) −→ R∗[1/x] is flat. (

7.5.1
24.6.3)

Since R∗[1/x] and R̂[1/x] have dimension d− 1, the condition LFd−1 is equivalent
to primarily limit-intersecting, that is, to the flatness of the map B0 −→ R∗[1/x].

7.5.2 Remarks 24.7. Assume Setting
7.4.1
24.2.

(1) The following statements are equivalent:
(a) τ1, · · · , τs are limit-intersecting, that is, A = B, as in Definition

7.5.1
24.6.1

(b) B0 := R[τ1, . . . , τs](m,τ1,...,τs) ↪→ R∗[1/x] is weakly flat.
(c) B ↪→ R∗[1/x] is weakly flat.
(d) B ↪→ R∗ is weakly flat.
(e) R[τ1, . . . , τs] ↪→ R∗ is weakly flat.

This follows from Weak Flatness Theorem
7.5.5fc
9.9 and Proposition

wfforInc
9.8, since B is a

Krull domain by Theorem
7.4.5
9.7.4.

(2) If an injective map of Krull domains is weakly flat, then it is height-one pre-
serving by Corollary

6.2.14fc
9.4.ii. Thus any of the equivalent conditions of Remark

7.5.2
24.7.1

imply that B −→ R∗ is height-one preserving.
(3) If B is Noetherian, then, by Theorem

7.4.4
24.5.

bnimpb=a
8, A = B, and so all the conclu-

sions of Remark
7.5.2
24.7.1 hold.

(4) By Remark
6.2.7
22.8, if R is an excellent normal local domain such that every

height-one prime ideal of R is the radical of a principal ideal, then the extension
B0 ↪→ R∗ is height-one preserving. By Proposition

6.2.11
9.16, an extension of Krull

domains that is height-one preserving and satisfies PDE is weakly flat.
(5) If {τ1, . . . , τs} are primarily limit-intersecting, then {τ1, . . . , τs} are residu-

ally limit-intersecting by Definition
7.5.1
24.6.

(6) If d = 2, then obviously LF1 = LFd−1. Hence in this case primarily limit-
intersecting is equivalent to residually limit-intersecting.

(7) Since R̂[1/x] is faithfully flat over R∗[1/x], the statements obtained by
replacing R∗[1/x] by R̂[1/x] in Definitions

7.5.1
24.6 parts 2 and 3 give definitions equiv-

alent to those definitions; see Propositions
6.6.1
23.8 and

6.6.3
23.10 of Chapter

idwisec2
23, and Propo-

sition
7.5.3
24.8.

(8) By Construction Properties Theorem
11.2.51
5.14, R ↪→ Bn, for every n, and

R ↪→ B are faithfully flat. Thus we have that
(8a) If residually limit-intersecting elements exist over R, then R ↪→ R∗[1/x]

must be LF1. This follows since R ↪→ B0 ↪→ R∗[1/x]Q is the compos-
ition of a faithfully flat map followed by a flat map, for every height-one
prime ideal Q ∈ Spec(R∗[1/x]).

(8b) If primarily limit-intersecting elements exist over R, then R ↪→ R∗[1/x]
must be flat.

(8c) If B0 → R∗ is weakly flat, then R → R∗ is weakly flat; see Exer-
cise

intsec
24.

wfBompwfR
2.

(9) The examples of Remarks
7.3.6fc
9.12 and

7.4.2
24.4 show that in some situations R∗

contains no limit-intersecting elements. Indeed, if R is complete with respect to
some nonzero ideal I, and x is outside every minimal prime over I, then every
element τ =

∑
aix

i of R∗ that is transcendental over R fails to be limit-intersecting
in x. To see this, choose an element z ∈ I, z outside every minimal prime ideal of
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xR; define σ :=
∑
aiz

i ∈ R. Then (τ−σ)/(z−x) ∈ A, but (τ−σ)/(z−x) /∈ B, and
so A 6= B. Here τ − σ ∈ (z − x)A ∩R[τ ] ⊆ (z − x)R∗ ∩R[τ ]. Thus B ↪→ R∗ is not
weakly flat, and so, by item 4, B ↪→ R∗[1/x] is not weakly flat. By Remark

7.5.2
24.7.1,

the element τ is not limit-intersecting. Moreover a minimal prime over z− x in R∗
intersects R[τ ] in an ideal p of height greater than one, because p contains z − x
and τ − σ.

7.5.3 Proposition 24.8. Assume Setting
7.4.1
24.2, and let k be a positive integer with

1 ≤ k ≤ d− 1. Then the following are equivalent:
(1) The inclusion map ϕ : B0 := R[τ1, . . . , τs](m,τ1,...,τs) ↪→ R∗[1/x] is LFk.

(1′) The canonical injection ϕ1 : B0 := R[τ1, . . . , τs](m,τ1,...,τs) −→ R̂[1/x] is
LFk.

(2) The canonical injection ϕ′ : U0 := R[τ1, . . . , τs] −→ R∗[1/x] is LFk.
(2′) The canonical injection ϕ′1 : U0 := R[τ1, . . . , τs] −→ R̂[1/x] is LFk.
(3) The canonical injection θ : Bn := R[τ1n, . . . , τsn](m,τ1n,...,τsn) −→ R∗[1/x]

is LFk.
(3′) The canonical injection θ1 : Bn := R[τ1n, . . . , τsn](m,τ1n,...,τsn) −→ R̂[1/x]

is LFk.
(4) The canonical injection ψ : B −→ R∗[1/x] is LFk.

(4′) The canonical injection ψ1 : B −→ R̂[1/x] is LFk.
Each of these statements is also equivalent to LFk of the corresponding inclusion
map obtained by replacing B0, Bn, U0 and B by B0[1/x], Bn[1/x], U0[1/x] and
B[1/x].

Proof. We have:

U0
loc.−−−−→ B0

φ−−−−→ R∗[1/x]
f.f.−−−−→ R̂[1/x].

The injection ϕ′1 : U0 −→ R̂[1/x] factors as ϕ′ : U0 −→ R∗[1/x] followed by the
faithfully flat injection R∗[1/x] −→ R̂[1/x]. Therefore ϕ′ is LFk if and only if ϕ′1 is
LFk. The injection ϕ′ factors through the localization U0 −→ B0 and so ϕ is LFk
if and only if ϕ′ is LFk.

For each n ∈ N, Bn is a localization of Un, and B = (1 + xU)−1U , by Theo-
rem

11.2.51
5.14, parts

11.2.51
5.14 and

localcase
6. Thus

B[1/x] −→ R∗[1/x] is LFk ⇐⇒ U [1/x] −→ R∗[1/x] is LFk
⇐⇒ U0[1/x] −→ R∗[1/x] is LFk ⇐⇒ Bn[1/x] −→ R∗[1/x] is LFk

⇐⇒ B0[1/x] −→ R∗[1/x] is LFk .
Thus

ψ : B −→ R∗[1/x] is LFk ⇐⇒ U −→ R∗[1/x] is LFk
⇐⇒ ϕ′ : U0 −→ R∗[1/x] is LFk ⇐⇒ θ : Bn −→ R∗[1/x] is LFk

⇐⇒ ϕ : B0 −→ R∗[1/x] is LFk .
□

7.5.4 Remarks 24.9. Assume Setting
7.4.1
24.2.

(1) Since B0 is a localization of U0, the elements τ1, . . . , τs are primarily limit-
intersecting in x over R if and only if U0 = R[τ1, . . . , τs] ↪→ R∗[1/x] is flat;
see Remark

16.3.35
9.2.
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(2) If (R,m) is a one-dimensional local Krull domain, then R is a DVR, R∗
is also a DVR, and R∗[1/x] is flat over U0 = R[τ1, . . . , τs]. Therefore, in
this situation, τ1, . . . , τs are primarily limit-intersecting in x over R if and
only if τ1, . . . , τs are algebraically independent over R; see Corollary

nftcor
6.6.

(3) Let τ1, . . . , τs ∈ k[[x]] be transcendental over k(x), where k is a field and x
is an indeterminate. Then τ1, . . . , τs are primarily limit-intersecting in x
over k[x](x) by item 2 above. If x1, . . . , xm are additional indeterminates
over k(x), then, by Prototype Theorem

11.4.1a
10.2 and Noetherian Flatness

Theorem
11.3.25
6.3, the elements τ1, . . . , τs are primarily limit-intersecting in x

over k[x, x1, . . . , xm](x,x1,...,xm).
(4) If B is Noetherian, then τ1, . . . , τs are primarily limit-intersecting in x

over R by Noetherian Flatness Theorem
11.3.25
6.3.

(5) By the equivalence of (1) and (3) of Proposition
7.5.3
24.8, the elements τ1, . . . , τs

are primarily limit-intersecting in x over R if and only if the endpiece
power series τ1n, . . . , τsn are primarily limit-intersecting in x over R.

(6) In view of Remark
16.3.35
9.2, and Proposition

7.5.3
24.8, we have τ1, . . . , τs are resid-

ually (respectively primarily) limit-intersecting in x over R if and only if
the canonical map

S−10 B0 = B[1/x] −→ R∗[1/x]

is LF1 (respectively LFd−1 or equivalently flat). Here S0 is the multi-
plicatively closed subset of B0 from Theorem

7.4.4
24.5.

b1/zlocbn
4,

7.5.45 Theorem 24.10. Assume Setting
7.4.1
24.2 and Assumption

7.4.1.1
24.3. Thus (R,m) is

a local Krull domain with field of fractions F , and x ∈ m is such that the x-adic
completion (R∗,m∗) of R is an analytically normal Noetherian local domain and
R = R∗ ∩ F . For elements τ1, . . . , τs ∈ m∗ that are algebraically independent over
R, the following are equivalent:

(1) The extension R[τ1, . . . , τs] ↪→ R∗[1/x] is flat.
(2) The elements τ1, . . . , τs are primarily limit-intersecting in x over R.
(3) The extension B ↪→ R∗ is faithfully flat.
(4) The intermediate rings A and B are equal and are Noetherian.
(5) The constructed ring B is Noetherian.

If these equivalent conditions hold, then the Krull domain R is Noetherian.
Proof. By Remark

7.5.4
24.9.1, items 1 and 2 are equivalent. Theorem

7.5.45
24.10 fol-

lows from Noetherian Flatness Theorem
11.3.25
6.3, parts 1 and 3. □

7.5.6 Remark 24.11. Example
16.3.10
10.15 yields the existence of a three-dimensional reg-

ular local domain R = k[x, y, z](x,y,z), over an arbitrary field k, and an element
f = yτ1 + zτ2 in the x-adic completion of R such that f is residually limit-
intersecting in x over R, but fails to be primarily limit-intersecting in x over R. In
particular, the rings A and B constructed using f are equal, yet A and B are not
Noetherian. The elements τ1 and τ2 are elements of xk[[x]] that are algebraically
independent over k(x).

Proposition
7.5.7
24.12 gives criteria for an element τ in R∗ to be residually limit-

intersecting.
7.5.7 Proposition 24.12. Assume Setting

7.4.1
24.2 and s = 1. Then items 1 - 3 are

equivalent:
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(1) The element τ = τ1 is residually limit-intersecting in x over R.
(2) If P̂ is a height-one prime ideal of R̂ such that x /∈ P̂ and P̂ ∩ R 6= (0),

then ht(P̂ ∩R[τ ](m,τ)) = 1.
(3) B ↪→ R∗[1/x] is LF1.
If (R,m) is Noetherian, then item 4 is equivalent to items 1-3.
(4) For every height-one prime ideal P of R such that x /∈ P and for ev-

ery minimal prime divisor P̂ of PR̂ in R̂, the image τ̄ of τ in R̂/P̂ is
algebraically independent over R/P .

Proof. By Proposition
7.5.3
24.8, item 1 is equivalent to item 3, ψ : B ↪→ R∗[1/x]

being LF1, and also item 1 is equivalent to R[τ ] ↪→ R̂[1/x] being LF1.
For item 1 =⇒ item 2, suppose item 2 fails; that is, there exists a prime

ideal P̂ of R̂ of height one such that x /∈ P̂ , P̂ ∩ R 6= (0), but ht(P̂ ∩ R[τ ]) ≥ 2.
Let Q̂ := P̂ R̂[1/x] and Q := Q̂ ∩R[τ ](m,τ). Then htQ ≥ 2. By Definition

7.5.1
24.6.2 of

residually limit-intersecting, the injective map R[τ ](m,τ) ↪→ R̂[1/x] is LF1. Then the
map (R[τ ](m,τ))Q ↪→ (R̂[1/x])Q̂ is faithfully flat by Definition

PDEetcrep
24.1, a contradiction

to htQ ≥ 2 > ht P̂ = ht Q̂.

For item 2 =⇒ item 1, let Q̂ ∈ Spec(R̂[1/x]) have ht Q̂ = 1. Define

P̂ := Q̂R̂[1/x] ∩ R̂ ∈ Spec R̂, Q := P̂ ∩ (R[τ ](m,τ)) = Q̂ ∩ (R[τ ](m,τ)).

Case i: If Q̂∩R 6= (0), then item 2 implies that htQ = 1. Proposition
dcgKrullpoly
2.17 implies

R[τ ](m,τ) is a Krull domain. Since htQ = 1, (R[τ ](m,τ))Q is a DVR. The map
(R[τ ](m,τ))Q ↪→ (R̂[1/x])Q̂ is faithfully flat by Remark

remflat2
2.39.2.

Case ii: If Q̂ ∩ R = (0) but Q 6= (0), then htQ = 1. By the same reasoning used
for case i, the map (R[τ ](m,τ))Q ↪→ (R̂[1/x])Q̂ is faithfully flat.
Case iii: If Q̂ ∩ R = (0) = Q, then (R[τ ](m,τ))Q = (R[τ ](m,τ))(0) is a field, and so
the map is again faithfully flat.
Thus in all cases R[τ ] ↪→ R̂[1/x] is LF1, and so item 1 holds.

For item 2 ⇐⇒ item 4: Since R is Noetherian, the map R ↪→ R̂ is flat,
and Going-down holds; see Remark

remflat
2.37.

flgd
10. Hence ht P̂ ≥ ht(P̂ ∩ R), for each

P̂ ∈ Spec R̂. If P ∈ SpecR and P̂ ∈ Spec R̂ is minimal over PR̂, then P = P̂ ∩ R,
and the map RP ↪→ R̂P̂ is faithfully flat with PR̂P̂ primary for the maximal
ideal of R̂P̂ . By Krull’s Altitude Theorem

krullpit
2.23, dimRP ≤ dim R̂P̂ . Therefore

dimRP = dim R̂P̂ . In particular, htP = 1 ⇐⇒ ht P̂ = 1.
If P̂ is a height-one prime ideal of R̂ such that P := P̂ ∩ R 6= 0 and x /∈ P̂ ,

then P is a height-one prime ideal of R with x /∈ P . Then ht(P̂ ∩ R[τ ]) = 1 ⇐⇒
P̂ ∩R[τ ] = PR[τ ] and R[τ ]/(PR[τ ]) canonically embeds in R̂/P̂ . That is, the image
of τ in R[τ ]/PR[τ ] is algebraically independent over R/P .

□

prprreswf Remark 24.13. Assume Setting
7.4.1
24.2. If R has the property that every height-

one prime of R is the radical of a principal ideal, and τ is residually limit-intersecting
in x over R, then the extension B ↪→ R∗[1/x] is height-one preserving by Re-
mark

6.2.9fc
9.6.c, and hence weakly flat by Propositions

6.5.4
9.14,

6.2.11
9.16 and

7.5.7
24.12. Thus, with

these assumptions, if τ is residually limit-intersecting, then τ is limit-intersecting.
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Proposition
7.5.10
24.14 implies a transitive property of limit-intersecting elements.

7.5.10 Proposition 24.14. Assume Setting and Notation
7.4.1
24.2. Also assume s > 1.

For every j ∈ {1, . . . s}, set A(j) := F (τ1, . . . , τj) ∩ R̂ and let m(j) denote the
maximal ideal of A(j). Then the following statements are equivalent:

(1) τ1, . . . , τs are limit-intersecting in x over R.
(2) For every j ∈ {1, . . . , s}, the elements τ1, . . . , τj are limit-intersecting in x

over R and the elements τj+1, . . . , τs are limit-intersecting in x over A(j).
(3) There exists a j ∈ {1, . . . , s}, such that the elements τ1, . . . , τj are limit-

intersecting in x over R and the elements τj+1, . . . , τs are limit-intersecting
in x over A(j).

Moreover, the three adjusted statements that result if every instance of “limit-
intersecting” in statements 1 through 3 is replaced by “residually limit-intersecting”
are also equivalent, as are the three adjusted statements for “primarily limit-
intersecting”.

Proof. Set B(j) :=
⋃∞
n=1R[τ1n, . . . , τjn](n,τ1n,...,τjn). That (2) implies (3) is

clear, for any of the conditions—“limit-intersecting”, “residually limit-intersecting”
or “primarily limit-intersecting” .

For (3) =⇒ (1), Remark
7.5.2
24.7.1 implies that A(j) = B(j) under each of the

conditions on τ1, . . . , τj . By applying Definitions
7.5.1
24.6 of limit-intersecting, residu-

ally limit-intersecting, and primarily limit-intersecting in x over A(j) to τj+1, . . . , τs
with Remark

7.5.2
24.7.8, we get the equivalence of the stated flatness properties for each

of the maps
ϕ1 :A(j)[τj+1, . . . , τs](m(j),τj+1,...,τs) −→ A(j)∗[1/x] = R∗[1/x]

ϕ2 :A(j)[τj+1, . . . , τs](m(j),τj+1,...,τs)[1/x] −→ R∗[1/x]

ϕ3 :B(j)[τj+1, . . . , τs](m(j),τj+1,...,τs)[1/x] −→ R∗[1/x]

ϕ4 :R[τ1, . . . , τs](n,τ1,...,τs)[1/x] −→ R∗[1/x]

ϕ5 :R[τ1, . . . , τs](n,τ1,...,τs) −→ R∗[1/x].

Thus
ψ : B −→ R∗[1/x] is LFk ⇐⇒ U −→ R∗[1/x] is LFk

⇐⇒ ϕ′ : U0 −→ R∗[1/x] is LFk
⇐⇒ θ : Bn −→ R∗[1/x] is LFk
⇐⇒ ϕ : B0 −→ R∗[1/x] is LFk .

The respective flatness properties for ϕ5 are equivalent to the conditions that
τ1, . . . , τs be limit-intersecting, or residually limit-intersecting, or primarily limit-
intersecting in x over R. Thus (3) =⇒ (1) for each property.

For (1) =⇒ (2), we go backwards: The statement of (1) for τ1, . . . , τs is equiv-
alent to the respective flatness property for ϕ5. This is equivalent to ϕ4 and thus ϕ3

having the respective flatness property. By Remark
7.5.2
24.7.1, B(j)[τj+1, . . . , τs](−) −→

R∗[1/x] has the appropriate flatness property. Also B(j) −→ B(j)[τj+1, . . . , τs](−)
is flat, and so B(j) −→ R∗[1/x] has the appropriate flatness property. Thus the
τ1, . . . , τj are limit-intersecting, or residually limit-intersecting or primarily limit-
intersecting in x over R. Therefore A(j) = B(j), and so A(j) −→ R∗[1/x] has
the appropriate flatness property. It follows that τj+1, . . . , τs are limit-intersecting,
or residually limit-intersecting, or primarily limit-intersecting in x over A(j), as
desired. □
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7.5.11 Note 24.15. The “limit-intersection” concepts of Definition
7.5.1
24.6 have names

similar to the names used for “idealwise independence” concepts of Definitions
6.2.2
22.2,6.3.1

22.12, and
6.4.1
22.24. The concepts apply in different settings. The similarities that

exist among the terms is because the maps defining the concepts have similar prop-
erties, but in different settings.

(1) Consider the two settings and concepts: Setting
7.4.1
24.2 for the limit-intersection

concepts has (R,m) a local Krull domain and x ∈ m a nonzero element such that
the x-adic completion R∗ of R is an analytically normal Noetherian local domain.
Limit-intersecting, residually limit-intersecting and primarily limit-intersecting in-
volve a finite set τ of elements in the maximal ideal m∗ of R∗ that are algebraically
independent over R. Then R[τ ] is a polynomial ring over R. The limit-intersecting
properties involve the map R[τ ] ↪→ R∗[1/x].

Setting
6.2.1
22.1 for the independence concepts has (R,m) an excellent normal local

domain. Then R̂ is a normal Noetherian domain, by Theorem
excel8.23
8.23. Idealwise inde-

pendent, residually algebraically independent and primarily independent involve a
set τ of elements in R̂ that are algebraically independent over R. The independence
properties involve the map R[τ ](m,τ) ↪→ R̂. Since (R,m) Noetherian implies that
R̂ is faithfully flat over R∗, if R[τ ] ↪→ R̂ is weakly flat, then R[τ ] ↪→ R∗ is weakly
flat.

(2) Let (R,m) be an excellent normal local domain; thus R fits both settings.
(a) By Theorem

6.2.16
22.11.1, τ is idealwise independent over R is equivalent to

Rn ↪→ R̂ is weakly flat, and therefore is equivalent to weak flatness of
R[τ ] ↪→ R̂. By Remark

7.5.2
24.7.1, τ is limit-intersecting in x over R is equiv-

alent to weak flatness of R[τ ] ↪→ R∗[1/x]. Thus τ idealwise independent
over R implies that τ is limit-intersecting in x over R.

(b) By Theorem
6.4.3
22.27, one element τ is residually algebraically independent

over R ⇐⇒ R[τ ] ↪→ R̂ satisfies LF1. By Definition
7.5.1
24.6, the element

τ is residually limit-intersecting in x over R ⇐⇒ R[τ ] ↪→ R∗[1/x] is
LF1. Thus residual algebraic independence of one element τ implies τ is
limit-intersecting in x over R. Proposition

7.5.7
24.12 shows that τ residually

limit-intersecting in x is equivalent to part of the condition for τ to be
residually algebraically independent over R.

(c) Assume that dimR = d. By Definition
7.5.1
24.6, τ is primarily limit-intersecting

if R[τ ] ↪→ R∗[1/x] is flat, whereas, by Theorem
6.5.6
23.4, τ is primarily inde-

pendent ⇐⇒ R[τ ] ↪→ R̂ satisfies LFd−1. Since dimR∗[1/x] = d− 1, the
map R[τ ] ↪→ R∗[1/x] is flat if it satisfies LFd−1. Thus τ primarily inde-
pendent over R implies that τ is primarily limit-intersecting in x over R.

24.3. Example where the intersection domain equals the approximation
domain and is non-Noetherian8.4

Theorem
16.3.9
10.12 and Examples

16.3.10
10.15 yield examples where the constructed do-

mains A and B are equal and are not Noetherian. Theorem
8.4.4
24.16 gives a spe-

cific example of an excellent regular local domain (R,m) of dimension three with
m = (x, y, z)R and R̂ = Q[[x, y, z]] such that there exists an element τ ∈ yR∗,
where R∗ is the (y)-adic completion of R, with τ limit-intersecting and residually
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limit-intersecting, but not primarily limit-intersecting in y over R. In this example,
B = A and B is non-Noetherian.

8.4.4 Theorem 24.16. Let Q[[x, y, z]] be the power series ring in three indeterminates
x, y, z over the rational numbers Q. Then Q[[x, y, z]] contains an excellent regular
local three-dimensional domain (R,m), with maximal ideal m = (x, y, z)R and an
element τ in the (y)-adic completion R∗ of R such that
(
8.4.4
24.16.1) τ is residually limit-intersecting in y over R.

(
8.4.4
24.16.2) τ is not primarily limit-intersecting in y over R.

(
8.4.4
24.16.3) τ is limit-intersecting in y over R.
In particular, the rings A and B constructed using τ as in Notation

7.4.1
24.2 are equal,

yet A and B fail to be Noetherian.

Proof. Define the following elements of Q[[x, y, z]]:

γ := ex − 1 ∈ xQ[[x]], δ := ex
2

− 1 ∈ xQ[[x]],

σ := γ + zδ ∈ Q[z](z)[[x]] and τ := ey − 1 ∈ yQ[[y]].

For each n, define the endpieces γn, δn, σn and τn as in Notation
4.2.3
5.4, considering

γ, δ, σ as series in x and τ as a series in y. Thus, for example,

γ =

∞∑
i=1

aix
i; γn =

∞∑
i=n+1

aix
i−n, and xnγn +

n∑
i=1

aix
i = γ.

Here ai := 1/i!. The δn, σn satisfy similar relations.

8.4.5 Claim 24.17. Define V := Q(x, γ, δ)∩Q[[x]] and D := Q(x, z, σ)∩Q[z](z)[[x]].
Then:

(1) The equalities (*1)-(*5) of Diagram
8.4.4
24.16.0 hold.

(2) V and V [z](x,z) are excellent regular local rings, and
(3) The canonical local embedding ψ : D −→ V [z](x,z) is a direct limit of the

maps ψn : Q[x, z, σn](x,z,σn) −→ Q[x, z, γn, δn](x,z,γn,δn), where ψn(σn) =
γn + zδn, and so is also faithfully flat.

Proof. (of Claim
8.4.5
24.17) By Local Prototype Theorem

11.4.11ic
10.6,

(∗1) : V := Q(x, γ, δ)∩Q[[x]] = lim−→(Q[x, γn, δn](x,γn,δn)) =
⋃

Q[x, γn, δn](x,γn,δn).

The equalities (∗2) and (∗3) follow from Theorem
11.4.11ic
10.6.1. Since V has characteristic

zero, Theorem
11.4.11ic
10.6.2 implies V and V [z](x,z) are excellent regular local rings.

To establish (∗4) and (∗5) and item 3, observe that for each positive integer n,
the map

ψn : Q[x, z, σn](x,z,σn) −→ Q[x, z, γn, δn](x,z,γn,δn)

is faithfully flat. Thus the induced map on the direct limits:

ψ : D = lim−→Q[x, z, σn](x,z,σn) −→ V [z](x,z) = lim−→Q[x, z, γn, δn](x,z,γn,δn)

is also faithfully flat. The direct limits can also be expressed as directed unions,
and the expression for D[y](x,y,z) will be a similar directed union. □
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Q[[x, y, z]]

Q[[x, y]] A := Q(x, y, z, σ, τ) ∩D[[y]]

B := ∪D[y, τn](x,y,z,τn)

R := D[y](x,y,z)V [y](x,y)

(∗5) = ∪Q[x, y, z, σn](x,y,z,σn)

D := Q(x, z, σ) ∩Q[z](z)[[x]]

(∗4) = ∪Q[x, z, σn](x,z,σn)

V [y, z](x,y,z)

V [z](x,z)

(∗2) = Q(x, z, γ, δ) ∩Q[[x, z]]

(∗3) = ∪Q[x, z, γn, δn](x,z,γn,δn)

S := Q[z, x, γ, δ](x,z,γ,δ)

F [σ](x,z,σ)

F := Q[x, z](x,z)

V := Q(x, γ, δ) ∩Q[[x]]

(∗1) = ∪Q[x, γn, δn](x,γn,δn)

Q[x, γ, δ](x,γ,δ)

Diagram
8.4.4
24.16.0.

8.4.6 Claim 24.18. D := Q(x, z, σ)∩Q[z](z)[[x]] is excellent, and R := D[y](x,y,z) is
a three-dimensional excellent regular local domain with maximal ideal m = (x, y, z)R

and m-adic completion R̂ = Q[[x, y, x]].

Proof. (of Claim
8.4.6
24.18) By Theorem

4.1.2
4.9 of Valabrega, the ring

D := Q(x, z, σ) ∩Q[z](z)[[x]]

is a two-dimensional regular local domain and the completion D̂ of D with respect
to the powers of its maximal ideal is canonically isomorphic to Q[[x, z]].

With an appropriate change of notation, Theorem
8.3.7
10.17 applies to prove Claim

8.4.6
24.18.

Let F = Q[x, z](x,z) and let F ∗ denote the x-adic completion of F . Consider
the local injective map

F [σ](x,z,σ)
ϕ−−−−→ F [γ, δ](x,z,γ,δ) := S.
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Let φx : F [σ](x,z,σ) −→ Sx denote the composition of φ followed by the canonical
map of S to Sx. We have the setting of Insider Construction

16.1.1
10.7 and Theo-

rem
8.3.7
10.17, where F plays the role of R and V [z](x,z) plays the role of B; here F is

an excellent normal local domain.
By Theorem

8.3.7
10.17, to show D is excellent, it suffices to show that φx is a

regular morphism. Let t1 and t2 be new variables over Q(x, y, z). The map φx may
be identified as the inclusion map

Q[z, x, t1 + zt2](z,x,t1+zt2)
ϕx−−−−→ Q[z, x, t1, t2](z,x,t1,t2)[1/x]yµ yν

Q[z, x, γ + zδ](z,x,γ+zδ)
ϕx−−−−→ Q[z, x, γ, δ](z,x,γ,δ)[1/x]

where µ and ν are the isomorphisms mapping t1 → γ and t2 → δ. Then φx
is a regular morphism, since Q[z, x, t1, t2] = Q[z, x, t1 + zt2][t2] is isomorphic to a
polynomial ring in one variable over its subring Q[z, x, t1+zt2]. By Theorem

8.3.7
10.17,

D is excellent. This completes the proof of Claim
8.4.6
24.18. □

8.4.7 Claim 24.19. The element τ := ey − 1 is in the (y)-adic completion R∗ of
R := D[y](x,y,z), but τ is not primarily limit-intersecting in y over R and the ring
B constructed using τ is not Noetherian.

Proof. (of Claim
8.4.7
24.19) Consider the height-two prime ideal P̂ := (z, y−x)R̂

of R̂. Now y 6∈ P̂ , so P̂ R̂y is a height-two prime ideal of R̂y. Moreover, the ideal
Q := P̂ ∩R[τ ](m,τ) contains the element σ − τ . Thus ht(Q) = 3 and the canonical
map R[τ ](m,τ) −→ R̂y is not flat. The Noetherian Flatness Theorem

11.3.25
6.3 implies

that τ is not primarily limit-intersecting in y over R, and B is not Noetherian. □

For the completion of the proof of Theorem
8.4.4
24.16, it remains to show that τ is

residually limit-intersecting in y over R. We first establish the following claim.

8.4.8 Claim 24.20. Let P̂ be a height-one prime ideal of R̂ = Q[[x, y, z]], and suppose
P̂ ∩Q[[x, y]] 6= (0). Let P0 := P̂ ∩R. Then

(1) P0 is a prime ideal of R of height at most one, and P0 = fR, for some
f ∈ P0, and

(2) There exists f0 ∈ P0 ∩ Q[x, y] such that f0R = fR = P0; that is, P0 is
extended from Q[x, y] ⊆ R.

Proof. We may assume P0 is distinct from (0), xR, yR, and zR, since these
are obviously extended. Since R̂ is faithfully flat over R and P0 6= (0), P0 has
height one. Similarly P1 := P̂ ∩ V [y, z](x,y,z) has height at most one since R̂ is
also the completion of V [y, z](x,y,z). Also P1 ∩ R = P0, and so P1 is nonzero and
hence has height one. The ring R[1/x] is a localization of Q[x, y, z, σ][1/x], since
σn ∈ Q[x, y, z, σ][1/x], for every n ∈ N. Thus P̂ ∩ Q[x, y, z, σ] has height one and
contains an element f that generates P0, since R is a UFD.

Similarly, for every n ∈ N, γn and δn are in Q[x, y, z, γ, δ][1/x]. Therefore the
ring V [y, z](x,y,z)[1/x] is a localization of Q[x, y, z, γ, δ][1/x]. Thus P̂ ∩Q[x, y, z, γ, δ]

has height one and contains a generator g for P1. Let ĥ ∈ Q[[x, y]] be a generator
of P̂ ∩Q[[x, y]]. Then ĥR̂ = P̂ . The following diagram illustrates this situation:
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P̂ ⊂ Q[[x, y, z]]

P0 := P̂ ∩R

f ∈ P̂ ∩Q[x, y, z, σ]

P1 := P̂ ∩ V [y, z](x,y,z)

g ∈ P̂ ∩Q[x, y, z, γ, δ]ĥ ∈ P̂ ∩Q[[x, y]]

P̂ ∩Q[x, y, γn]

P̂ ∩Q[x, y]

Picture for proof of (
8.4.8
24.20)

Subclaim 1: Take g0 to be the constant term of the generator g of P̂ ∩V [y, z](x,y,z)

from above, with g ∈ P̂ ∩Q[x, y, z, γ, δ]. Then g0 ∈ P̂ ∩Q[x, y, γ, δ] and g0 generates
P1.

Proof. (of Subclaim 1): Write g = g0 + g1z + · · · + grz
r, where each gi ∈

Q[x, y, γ, δ]. Since g ∈ P̂ , we have g = ĥ(x, y)φ(x, y, z), for some φ(x, y, z) ∈
Q[[x, y, z]]. Since g is irreducible and P1 6= zV [y, z](x,y,z), we have g0 6= (0).

Setting z = 0, we have g0 = g(0) = ĥ(x, y)φ(x, y, 0) ∈ Q[[x, y]]. Thus g0 ∈
ĥQ[[x, y]] ∩Q[x, y, γ, δ] 6= (0). Therefore g0 ∈ Q[x, y, γ, δ] and

gQ[x, y, γ, δ, z] = g0Q[x, y, γ, δ].

Thus P1 is extended from Q[x, y, γ, δ]. □

Subclaim 2: Write f as f = f0 + f1z + · · · + frz
r, where the fi ∈ Q[x, y, γ, δ].

Then f0 ∈ Q[x, y, γ].

Proof. (of Subclaim 2) Since f is an element of Q[x, y, σ, z], write f as a
polynomial

f =
∑

aijz
iσj =

∑
aijz

i(γ + zδ)j , where aij ∈ Q[x, y].

By setting z = 0, obtain f0 = f(0) =
∑
a0j(γ)

j ∈ Q[x, y, γ]. □

Proof. Completion of proof of Claim
8.4.8
24.20. Since f ∈ P̂ ∩ Q[x, y, z, γ, δ], it

follows that f = dg0, for g0 from Subclaim 1 and some d ∈ Q[x, y, γ, δ, z]. Regarding
d as a polynomial in z with coefficients in Q[x, y, γ, δ] and setting z = 0, gives
f0 = f(0) = d(0)g0 ∈ Q[x, y, γ, δ]. Thus f0 is a multiple of g0. Hence g0 ∈ Q[x, y, γ],
by Subclaim 2.

Now again use that f = dg0 and set z = 1 to obtain that d(1)g0 = f(1) ∈
Q[x, y, γ + δ]. This says that f(1) is a multiple of the polynomial g0 ∈ Q[x, y, γ].
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Since γ and δ are algebraically independent over Q[x, y], this implies f(1) has degree
0 in γ + δ and g0 has degree 0 in γ. Therefore g0 ∈ Q[x, y], d ∈ Q, 0 6= f ∈ Q[x, y],
and P0 = fR is extended from Q[x, y]. □

Claim
8.4.9
24.21 shows that τ is residually limit-intersecting by showing that τ

satisfies part of the residual algebraic independence property.

8.4.9 Claim 24.21. (1) If P̂ is a height-one prime ideal of R̂ with ht(P̂ ∩R) = 1

and y /∈ P̂ , then the image τ̄ of τ in R̂/P̂ is algebraically independent over
R/(P̂ ∩R).

(2) τ is residually limit-intersecting in y over R.

Proof. (of Claim
8.4.9
24.21) By Proposition

7.5.7
24.12, item 1 =⇒ item 2.

For item 1, let P0 := P̂ ∩ R and let π : Q[[x, y, z]] −→ Q[[x, y, z]]/P̂ ; we use ¯

to denote the image under π. If P̂ = xR̂, then we have the commutative diagram:
R/P0 −−−−→ (R/P0)[τ̄ ] −−−−→ Q[[x, y, z]]/P̂

∼=
x ∼=

x ∼=
x

Q[y, z](y,z) −−−−→ Q[y, z](y,z)[τ ] −−−−→ Q[[y, z]] .

Since τ is transcendental over Q[y, z], τ̄ is algebraically independent over R/(P̂ ∩R)
in this case. □

For the other height-one primes P̂ of R̂, we distinguish two cases:
case 1: P̂ ∩Q[[x, y]] = (0).
Let P1 := V [y, z](x,y,z) ∩ P̂ . We have the following commutative diagram of local
injective morphisms:

R/P0 −−−−→ V [y, z](x,y,z)/P1 −−−−→ Q[[x, y, z]]/P̂x x
V [y](x,y) −−−−→ Q[[x, y]] ,

where V [y, z](x,y,z)/P1 is algebraic over V [y](x,y). Since τ ∈ Q[[x, y]] is transcenden-
tal over V [y](x,y), its image τ̄ in Q[[x, y, z]]/P̂ is transcendental over V [y, z](x,y,z)/P1

and thus is transcendental over R/P0.
case 2: P̂ ∩Q[[x, y]] 6= (0).

In this case, by Claim
8.4.8
24.20, the height-one prime P0 := P̂ ∩R is extended from a

prime ideal in Q[x, y]. Let p be a prime element of Q[x, y] such that (p) = P̂∩Q[x, y].
We have the inclusions:

G := Q[x, y](x,y)/(p) ↪→ R/P0 ↪→ R̂/P̂ ,

where R/P0 = lim−→Q[x, y, z, σn](x,y,z,σn)/(p) has transcendence degree ≤ 1 over
G[z̄](x̄,ȳ,z̄). It suffices to show that σ̄ and τ̄ are algebraically independent over the
field of fractions Q(x̄, ȳ, z̄) of G[z̄].

Let G′ be the integral closure of G in its field of fractions. Let S := R̂/P̂ and
let S′ denote the integral closure of S. Since S is complete, S′ is local. Let m
denote the maximal ideal of S′ and set n := m ∩ G′. Define H := G′n. Then H is
a DVR dominated by the complete local ring S′. It follows that Ĥ, the nH-adic
completion of H, is dominated by S′.
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Now H[z̄] has transcendence degree at least one over Q[z̄]. Since P̂∩Q[x, y] 6= 0,
the transcendence degree over Q of both Q[x̄, ȳ] and H equals one. Thus H[z̄] has
transcendence degree exactly one over Q(z̄). There exists an element t ∈ H that is
transcendental over Q[z̄] and is such that t generates the maximal ideal of the DVR
H. Then H is algebraic over Q[t] and H may be regarded as a subring of C[[t]],
where C is the complex numbers. In order to show that σ̄ and τ̄ are algebraically
independent over G[z̄], it suffices to show that σ̄ and τ̄ are algebraically indepen-
dent over H[z̄] and thus it suffices to show that these elements are algebraically
independent over Q(t, z̄). Thus it suffices to show that σ̄ and τ̄ are algebraically
independent over C(t, z̄).

We have the setup shown in the following diagram:

C(z̄)[[t]] (R̂/P̂ )′

C[[t]] C(z̄)[t] H[z̄]

H := G̃n Q[t, z̄] G[z̄](x̄,ȳ,z̄)

Q[t] G := Q[x̄, ȳ](x̄,ȳ) Q[z̄]

By
Ax
[19, Corollary 1, p. 253], if x̄, x̄2, ȳ ∈ tC[[t]] are linearly independent over

Q, then:
trdegC(t)(C(t)(x̄, x̄2, ȳ, ex̄, ex̄

2

, eȳ)) ≥ 3;

see paragraph 2 of the proof of Theorem
7.6.1.1
12.18. Since x̄, x̄2 and ȳ are in H, these

elements are algebraic over Q(t). Therefore if x̄, x̄2, ȳ are linearly independent over
Q, then the exponential functions ex̄, ex̄2

, eȳ are algebraically independent over Q(t)
and hence σ̄ and τ̄ are algebraically independent over G(z̄).

We observe that if x̄, x̄2, ȳ ∈ tH are linearly dependent over Q, then there exist
a, b, c ∈ Q such that

lp = ax+ bx2 + cy in Q[x, y].

where l ∈ Q[x, y]. Since (p) 6= (x), we have c 6= 0. Hence we may assume c = 1 and
lp = y− ax− bx2 with a, b ∈ Q. Since y− ax− bx2 is irreducible in Q[x, y], we may
assume l = 1. Also a and b cannot both be 0 since y 6∈ P̂ . Thus if x̄, x̄2, ȳ ∈ tH are
linearly dependent over Q, then we may assume

p = y − ax− bx2 for some a, b ∈ Q not both 0.

It remains to show that σ̄ and τ̄ are algebraically independent over G(z̄) pro-
vided that p = y − ax− bx2, that is

ȳ = ax̄+ bx̄2, for a, b ∈ Q, not both 0.

Suppose h ∈ G[z̄][u, v], where u, v are indeterminates and that h(σ̄, τ̄) = 0. This
implies

h(ex̄ + z̄ex̄
2

, eax̄+bx̄
2

) = 0.
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We have eax̄ = (ex̄)a and ebx̄
2 are algebraic over G(z̄, ex̄, ex̄2

) since a and b are
rational. Since p = y−ax−bx2, we have p is part of a regular system of parameters
and the ideal P = pQ[[x, y, z]] is a prime ideal. Hence we can treat z̄ as a variable
and set it equal to zero. By substituting z̄ = 0 we obtain an equation over G:

h(ex̄, eax̄+bx̄
2

) = 0,

which implies that b = 0 since x̄ and x̄2 are linearly independent over Q. Now the
only case to consider is the case where p = y+ ax. The equation we obtain then is:

h(ex̄ + z̄ex̄
2

, eax̄) = 0,

which implies that h must be the zero polynomial, since ex̄2 is transcendental over
the algebraic closure of the field of fractions of G[z̄, ex̄]. This completes the proof
of Claim

8.4.9
24.21. □

Thus τ is residually limit-intersecting over R. Since R is a UFD, the element
τ is limit-intersecting over R by Remark

prprreswf
24.13. This completes the proof of Theo-

rem
8.4.4
24.16. □

8.4.10 Remark 24.22. With notation as in Theorem
8.4.4
24.16, let u, v be indeterminates

over Q[[x, y, z]]. Then the height-one prime ideal Q̂ = (u − τ) in Q[[x, y, z, u]] is
in the generic formal fiber of the excellent regular local ring R[u](x,y,z,u) and the
intersection domain

B = K(u) ∩ (Q[[x, y, z, u]]/Q̂) ∼= K(τ) ∩ R̂,
where K is the fraction field of R, fails to be Noetherian. In a similar fashion
this intersection ring K(τ) ∩ R̂ may be identified with the following ring: Let
Û = (u − τ, v − σ) be the height-two prime ideal in Q[[x, y, z, u, v]] that is in the
generic formal fiber of the polynomial ring Q[x, y, z, u, v](x,y,z,u,v). Then:

Q(x, y, z, u, v) ∩ ((Q[[x, y, z, u, v]])/Û) ∼= K(τ) ∩ R̂ .

As shown in Theorem
8.4.4
24.16, this ring is not Noetherian. We do not know an

example of a height-one prime ideal Ŵ in the generic formal fiber of a polynomial
ring T for which the intersection ring A = Q(T )∩ (T̂ /Ŵ ) fails to be Noetherian. In
Chapter

intsec
24, we present an example of such an intersection ring A whose completion

is not equal to T̂ . However in this example the ring A is still Noetherian.

24.4. A birational connection and additional examples
7.6

bircon Setting and Notation 24.23. Let (R,m) be a Noetherian local domain with
m-adic completion R̂. The field of fractions K of R canonically imbeds in the total
quotient ring Q(R̂) of R̂. A prime ideal p of R̂ is in the generic formal fiber of R if
p ∩ R = (0). The composite map R ↪→ R̂ → R̂/p is injective, and the intersection
K ∩ (R̂/p) is well defined.

In
HRS
[72], Heinzer, Rotthaus and Sally describe an association between prime

ideals in the generic formal fiber of R and birational extensions of R via Basic
Construction Equation

RamQ
1.2.0 For p in the generic formal fiber of R, define

ϕ(p) := K ∩ (R̂/p),

a birational local overring of R.
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More generally, for an ideal a of R̂ such that each associated prime ideal of a is
in the generic formal fiber of R, then the composite map R ↪→ R̂→ R̂/a is injective,
and K canonically embeds in the total quotient ring of R̂/a, as in Construction

4.4.2
17.2.

Hence the intersection domain

C := ϕ(a) := K ∩ R̂/a

is well defined, and is a birational local overring of R.

7.6.88 Remark 24.24. Assume Setting and Notation
bircon
24.23 where R is a localized

polynomial ring. It is observed in
HRS
[72, Theorem 2.5] that there exists a one-to-

one correspondence between prime ideals p̂ of R̂ that are maximal in the generic
formal fiber of R and DVRs C such that C birationally dominates R and C/mC
is a finitely generated R-module. The prime ideals maximal in the generic formal
fiber of R have dimension 1 by Theorem

gffres
26.3.1. Example

7.6.8
24.25 demonstrates that

this connection between the maximal ideals of the generic formal fiber of a localized
polynomial ring R and certain birational extensions of R does not extend to prime
ideals nonmaximal in the generic formal fiber R.

7.6.8 Example 24.25. For S := Q[x, y, z](x,y,z), the construction of Theorem
7.6.1.1
12.18

yields an example of a height-one prime ideal P̂ of Ŝ = Q[[x, y, z]] in the generic
formal fiber of S. Then the canonical map S → Ŝ/P̂ is injective. Moreover

Q(S) ∩ (Ŝ/P̂ ) = S.

Proof. Let P̂ := (z − τ)Ŝ, where τ is as in Theorem
7.6.1.1
12.18. Then Q(x, y, z)∩

(Ŝ/P̂ ) can be identified with the intersection Q(x, y, τ) ∩Q[[x, y]]. Therefore

Q(x, y, z) ∩ (Ŝ/P̂ ) = S = Q[x, y, z](x,y,z).

□

With S = Q[x, y, z](x,y,z), every prime ideal of Ŝ = Q[[x, y, z]] that is max-
imal in the generic formal fiber of S has height 2 by Theorem

19.6.1
27.12; also see

Remark
gffrem
26.2.5. Thus the prime ideal P̂ is not maximal in the generic formal fiber

of S = Q[x, y, z](x,y,z).

7.6.9 Example 24.26. Again let S = Q[x, y, z](x,y,z). With a slight modification of
Example

7.6.8
24.25, we exhibit a prime ideal P̂ in the generic formal fiber of S that

does correspond to a nontrivial birational extension; that is, the intersection ring

A := Q(S) ∩ (Ŝ/P̂ )

is essentially finitely generated over S.

Proof. Let τ be the element from Theorem
7.6.1.1
12.18. Let P̂ = (z − xτ)Ŝ. Since

τ is transcendental over Q(x, y, z), the prime ideal P̂ is in the generic formal fiber
of S. The ring S can be identified with a subring of Ŝ/P̂ ∼= Q[[x, y]] by replacing z
by xτ ; thus S = Q[x, y, xτ ](x,y,xτ). It follows that the Intersection Domain

Q(S) ∩Q[[x, y]] = Q(x, y, τ) ∩Q[[x, y]] = Q[x, y, τ ](x,y,τ) = Q[x, y, z/x](x,y,z/x).

The ring Q[x, y, τ ](x,y,τ) is then the essentially finitely generated birational exten-
sion of S defined as S[z/x](x,y,z/x). □
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7.6.10 Example 24.27. Let σ ∈ xQ[[x]] and ρ ∈ yQ[[y]] be as in Theorem
7.6.1.1
12.18.

If D := Q(x, σ) ∩ Q[[x]] =
⋃∞
n=1 Q[x, σn](x,σn) and T := D[y](x,y), and so T is

regular local with completion T̂ = Q[[x, y]], then the element ρ is primarily limit-
intersecting in y over T .

Proof. Since dimT = 2, Remark
7.5.2
24.7.6 implies ρ is primarily limit-intersecting

in y over T if ϕy : T [ρ] −→ Q[[x, y]][1/y] is LF1. That is, the induced map
ϕP̂ : T [ρ]P̂∩T [ρ] −→ Q[[x, y]]P̂ is flat for every height-one prime ideal P̂ of Q[[x, y]]

with y /∈ P̂ . It is equivalent to show for every height-one prime P̂ of Q[[x, y]] that
P̂ ∩ T [ρ] has height ≤ 1. If P̂ = (x), the statement is immediate, since ρ is alge-
braically independent over Q(y). Next we consider the case P̂ ∩ Q[x, y, σ] = (0).
Since Q(x, y, σ) = Q(x, y, σn) for every positive integer n, P̂ ∩ Q[x, y, σ] = (0) if
and only if P̂ ∩ Q[x, y, σn] = (0). Moreover, if this is true, then since the field of
fractions of T [ρ] has transcendence degree one over Q(x, y, σ), then P̂ ∩ T [ρ] has
height ≤ 1. The remaining case is where P := P̂ ∩Q[x, y, σ] 6= (0) and xy /∈ P̂ . By
Proposition 6.3, ρ̄ is transcendental over T̄ = T/(P̂ ∩ T ), and this is equivalent to
ht(P̂ ∩ T [τ ]) = 1, by Proposition

7.5.7
24.12. □

Still referring to ρ, σ, σn as in Theorem
7.6.1.1
12.18 and Example

7.6.10
24.27, and using

that σ is primarily limit-intersecting in y over T , we have:
A := Q(T )(ρ) ∩Q[[x, y]] = lim−→T [ρn](x,y,ρn) = lim−→Q[x, y, σn, ρn](x,y,σn,ρn)

where the endpieces ρn are defined as in Section
4.2.3
5.4; viz., ρ :=

∑∞
n=1 biz

i and
ρn =

∑∞
i=n+1 biz

i−n. The philosophy here is that sufficient “independence” of
the algebraically independent elements σ and ρ allows us to explicitly describe the
intersection ring A.

The previous examples have been over localized polynomial rings, where we are
free to exchange variables. The next example shows, over a different regular local
domain, that an element in the completion with respect to one regular parameter
x may be residually limit-intersecting with respect to x whereas the corresponding
element in the completion with respect to another regular parameter y may be
transcendental but fail to be residually limit-intersecting.

7.6.11 Example 24.28. There exists a regular local ring R with R̂ = Q[[x, y]] such
that σ = ex− 1 is residually limit-intersecting in x over R, whereas γ = ey − 1 fails
to be limit-intersecting in y over R.

Proof. Let {ωi}i∈I be a transcendence basis of Q[[x]] over Q(x) such that:
{ex

n

}n∈N ⊆ {ωi}i∈I .
Let D be the discrete valuation ring:

D = Q(x, {ωi}i∈I,ωi ̸=ex) ∩Q[[x]].

Obviously, Q[[x]] has transcendence degree 1 over D. The set {ex} is a transcen-
dence basis of Q[[x]] over D. Let R = D[y](x,y).

By Remark
7.5.4
24.9.1, the element σ = ex − 1 is primarily limit-intersecting and

hence residually limit-intersecting in x over D. Moreover, by Remark
7.5.4
24.9.2, σ is

also primarily and hence residually limit-intersecting over R := D[y](x,y). However,
the element γ = ey − 1 is not residually limit-intersecting in y over R. To see
this, consider the height-one prime ideal P := (y − x2)Q[[x, y]]. The prime ideal
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W := P ∩R[γ](x,y,γ) contains the element γ− ex2

+1 = ey − ex2 . Therefore W has
height greater than one and γ is not residually limit-intersecting in y over R. □

Note that the intersection ring Q(R)(γ) ∩ Q[[x, y]] is a regular local ring with
completion Q[[x, y]] by Theorem

4.1.2
4.9, a theorem of Valabrega.

Exercises
intpow0 (1) Let A be a Krull domain and let x be a nonunit of A. Prove that

⋂
xnA = (0).

wfBompwfR (2) Prove Remark
7.5.2
24.7.8c: With Notation

7.4.1
24.2, if B0 ↪→ R∗ is weakly flat, so is

R ↪→ R∗, and Assumption
7.4.1.1
24.3 holds.

Suggestion: Show that U0 ↪→ R∗ is weakly flat implies the result.





CHAPTER 25

Inclusion Constructions over excellent normal
local domainsintIIsec

Let (R,m) be an excellent normal local domain. Let x be a nonzero element
in m and let R∗ denote the x-adic completion of R. In this chapter we consider
certain extension domains A inside R∗ arising from Inclusion Construction

4.4.1
5.3. We

use test criteria given in Theorem
13.2.0p
7.3, Theorem

13.2.1p
7.4 and Corollary

16.2.3p
7.6, involving

the heights of certain prime ideals to determine flatness for the map ϕ defined
in Equation

6.1.1
25.1.0. These characterizations of flatness involve the condition that

certain fibers are Cohen-Macaulay and other fibers are regular.
We give in Theorem

iff
25.12 and Remarks

iffremark
25.14 necessary and sufficient condi-

tions for an element τ ∈ xR∗ to be primarily limit-intersecting in x over R; see
Remark

6.1.1remark
25.2. If R is countable, we prove in Theorem

exnprimli
25.19 the existence of an

infinite sequence of elements of xR∗ that are primarily limit-intersecting in x over
R. Using this result we establish the existence of a normal Noetherian local do-
main B such that: B dominates R; B has x-adic completion R∗; and B contains a
height-one prime ideal p such that R∗/pR∗ is not reduced. Thus B is not a Nagata
domain and hence is not excellent; see Remark

3.435
3.48.

25.1. Primarily limit-intersecting extensions and flatness

In this section, we consider properties of Inclusion Construction
4.4.1
5.3 under the

assumptions of Setting
6.1.1
25.1.

6.1.1 Setting 25.1. Let (R,m) be an excellent normal local domain and let x be a
nonzero element in m. Let (R∗,m∗) be the x-adic completion of R and let (R̂, m̂) be
the m-adic completion of R. Thus R∗ and R̂ are normal Noetherian local domains
and R̂ is the m∗-adic completion of R∗. Let τ1, . . . , τs be elements of xR∗ that
are algebraically independent over R, and set U0 = S := R[τ1, . . . , τs]. The field of
fractions L of S is a subfield of the field of fractionsQ(R∗) of R∗. Define A := L∩R∗.

6.1.1remark Remark 25.2. Noetherian Flatness Theorem
11.3.25
6.3 implies that A = L ∩ R∗ is

both Noetherian and a localization of a subring of S[1/x] if and only if the extension
ϕ is flat, where
(
6.1.1
25.1.0) ϕ : S −→ R∗[1/x]

By Definition
7.5.1
24.6.3, the elements τ1, . . . , τs are primarily limit-intersecting in x

over R if and only if ϕ is flat.

13.2.2 Theorem 25.3. Assume notation as in Setting
6.1.1
25.1. That is, (R,m) is an

excellent normal local domain, x is a nonzero element in m, (R∗,m∗) is the x-adic
completion of R, and the elements τ1, . . . , τs ∈ xR∗ are algebraically independent
over R. Then the following statements are equivalent:

329
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(1) S := R[τ1, . . . , τs] ↪→ R∗[1/x] is flat. Equivalently, τ1, . . . , τs are primarily
limit-intersecting in x over R∗.

(2) For P a prime ideal of S and Q∗ a prime ideal of R∗ minimal over PR∗,
if x /∈ Q∗, then ht(Q∗) = ht(P ).

(3) If Q∗ is a prime ideal of R∗ with x /∈ Q∗, then ht(Q∗) ≥ ht(Q∗ ∩ S).
Moreover, if any of (1)-(3) hold, then S ↪→ R∗[1/x] has Cohen-Macaulay fibers.

Proof. By Remark
6.1.1remark
25.2, we have the equivalence in item 1.

(1)⇒ (2): Let P be a prime ideal of S and let Q∗ be a prime ideal of R∗ that
is minimal over PR∗ and is such that x /∈ Q∗. The assumption of item 1 implies
flatness of the map:

ϕQ∗ : SQ∗∩S −→ R∗Q∗ .

By Remark
remflat
2.37.

flgd
10, we have Q∗∩S = P , and by

M
[123, Theorem 15.1], htQ∗ = htP .

(2)⇒ (3): Let Q∗ be a prime ideal of R∗ with x /∈ Q∗. Set Q := Q∗∩S and let
w∗ be a prime ideal of R∗ that is minimal over QR∗ and is contained in Q∗. Then
ht(Q) = ht(w∗) by (2) since x /∈ w∗ and therefore ht(Q∗) ≥ ht(Q).

(3) ⇒ (1): Let Q∗ be a prime ideal of R∗ with x /∈ Q∗. Then for every
prime ideal w∗ of R∗ contained in Q∗, we also have x /∈ w∗, and by (3), ht(w∗) ≥
ht(w∗ ∩ S). Therefore, by Theorem

13.2.1p
7.4, ϕQ∗ : SQ∗∩S −→ R∗Q∗ is flat with Cohen-

Macaulay fibers. □

With notation as in Setting
6.1.1
25.1, the map R∗ ↪→ R̂ is flat. Hence the corre-

sponding statements in Theorem
13.2.2
25.3 with R∗ replaced by R̂ also hold. We record

this as

Corollary 25.4. Assume notation as in Setting
6.1.1
25.1. Then the following

statements are equivalent:
(1) S := R[τ1, . . . , τs] ↪→ R̂[1/x] is flat.
(2) For P a prime ideal of S and Q̂ a prime ideal of R̂ minimal over PR̂, if

x /∈ Q̂, then ht(Q̂) = ht(P ).

(3) If Q̂ is a prime ideal of R̂ with x /∈ Q̂, then ht(Q̂) ≥ ht(Q̂ ∩ S).
Moreover, if any of (1)-(3) hold, then S ↪→ R̂[1/x] has Cohen-Macaulay fibers.

The following is another corollary to Theorem
13.2.2
25.3.

13.2.3 Corollary 25.5. With the notation of Theorem
13.2.2
25.3, assume that R̂[1/x] is

flat over S. Let P ∈ SpecS with htP ≥ dimR. Then
(1) For every Q̂ ∈ Spec R̂ minimal over PR̂ we have x ∈ Q̂.
(2) Some power of x is in PR̂.

Proof. Clearly items 1 and 2 are equivalent. To prove these hold, suppose
that x /∈ Q̂. By Theorem

13.2.2
25.3.2, ht(P ) = ht(Q̂). Since dim(R) = dim(R̂), we have

ht(Q̂) ≥ dim(R̂). But then ht(Q̂) = dim(R̂) and Q̂ is the maximal ideal of R̂. This
contradicts the assumption that x /∈ Q̂. We conclude that x ∈ Q̂. □

Theorem
13.2.2
25.3, together with results from Chapter

noeflic
6, gives Corollary

13.2.4
25.6.

13.2.4 Corollary 25.6. Assume notation as in Setting
6.1.1
25.1, and consider the fol-

lowing conditions:
(1) A is Noetherian and is a localization of a subring of S[1/x].
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(2) S ↪→ R∗[1/x] is flat.
(3) S ↪→ R∗[1/x] is flat with Cohen-Macaulay fibers.
(4) For every Q∗ ∈ Spec(R∗) with x 6∈ Q∗, we have ht(Q∗) ≥ ht(Q∗ ∩ S).
(5) A is Noetherian.
(6) A ↪→ R∗ is flat.
(7) A ↪→ R∗[1/x] is flat.
(8) A ↪→ R∗[1/x] is flat with Cohen-Macaulay fibers.

Conditions (1)-(4) are equivalent, conditions (5)-(8) are equivalent and (1)-(4)
imply (5)-(8).

Proof. Item 1 is equivalent to item 2 by Noetherian Flatness Theorem
11.3.2
17.13,

item 2 is equivalent to item 3 and item 7 is equivalent to item 8 by Theorem
13.2.1p
7.4,

and item 2 is equivalent to item 4 by Theorem
13.2.2
25.3.

It is obvious that item 1 implies item 5. By Construction Properties Theo-
rem

11.2.51
5.14.

compR*
3, the ring R∗ is the x-adic completion of A, and so item 5 is equivalent

to item 6. By Lemma
11.3.1
6.2).1, item 6 is equivalent to item 7. □

13.2.5 Remarks 25.7. (1) With the notation of Corollary
13.2.4
25.6, if dimA = 2, it follows

that condition (7) of Corollary
13.2.4
25.6 holds. Since R∗ is normal, so is A. Thus if

Q∗ ∈ SpecR∗ with x 6∈ Q∗, then AQ∗∩A is either a DVR or a field. The map
A→ R∗Q∗ factors as A→ AQ∗∩A → R∗Q∗ . Since R∗Q∗ is a torsionfree and hence flat
AQ∗∩A-module, it follows that A→ R∗Q∗ is flat. Therefore A ↪→ R∗[1/x] is flat and
A is Noetherian.

(2) There exist examples where dimA = 2 and conditions (5)-(8) of Corollary13.2.4
25.6 hold, but yet conditions (1)-(4) fail to hold; see Theorem

4.2.11t
12.3.

13.2.6 Question 25.8. With the notation of Corollary
13.2.4
25.6, suppose for every prime

ideal Q∗ of R∗ with x 6∈ Q∗ that ht(Q∗) ≥ ht(Q∗ ∩ A). Does it follow that R∗ is
flat over A or, equivalently, that A is Noetherian?

Theorem
13.2.2
25.3 also extends to give equivalences for the locally flat in height k

property; see Definitions
PDEetcrep
24.1.

13.2.7 Theorem 25.9. Assume notation as in Setting
6.1.1
25.1. That is, (R,m) is an

excellent normal local domain, x is a nonzero element in m, (R∗,m∗) is the x-adic
completion of R, and the elements τ1, . . . , τs ∈ xR∗ are algebraically independent
over R. Then the following statements are equivalent:

(1) S := R[τ1, . . . , τs] ↪→ R̂[1/x] is LFk.
(2) If P is a prime ideal of S and Q̂ is a prime ideal of R̂ minimal over PR̂

and if, moreover, x /∈ Q̂ and ht(Q̂) ≤ k, then ht(Q̂) = ht(P ).

(3) If Q̂ is a prime ideal of R̂ with x /∈ Q̂ and ht(Q̂) ≤ k, then ht(Q̂) ≥
ht(Q̂ ∩ S).

Proof. (1)⇒ (2): Let P be a prime ideal of S and let Q̂ be a prime ideal of
R̂ that is minimal over PR̂ with x /∈ Q̂ and ht(Q̂) ≤ k. The assumption of item 1
implies flatness for the map:

ϕQ̂ : SQ̂∩S −→ R̂Q̂,

and we continue as in Theorem
13.2.2
25.3.
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(2) ⇒ (3): Let Q̂ be a prime ideal of R̂ with x /∈ Q̂ and ht(Q̂) ≤ k. Set
Q := Q̂ ∩ S and let Ŵ be a prime ideal of R̂ that is minimal over QR̂, and so that
Ŵ ⊆ Q̂. Then ht(Q) = ht(Ŵ ) by item 2 since x /∈ Ŵ and therefore ht(Q̂) ≥ ht(Q).

(3) ⇒ (1): Let Q̂ be a prime ideal of R̂ with x /∈ Q̂ and ht(Q̂) ≤ k. Then for
every prime ideal Ŵ contained in Q̂, we also have x /∈ Ŵ and ht(Ŵ ) ≥ ht(Ŵ ∩ S),
by item 3. To complete the proof it suffices to show that ϕQ̂ : SQ̂∩S −→ R̂Q̂ is flat,
and this is a consequence of Theorem

13.2.1p
7.4. □

25.2. Existence of primarily limit-intersecting extensions
13.1e

In this section, we establish the existence of primary limit-intersecting elements
over countable excellent normal local domains. To do this, we use the following
prime avoidance lemma that is analogous to Lemma

6.3.7
22.18, but avoids the hypothesis

of Lemma
6.3.7
22.18 that T is complete in its n-adic topology. See the articles

Bu
[31],

SV
[172],WW

[187] and the book
LW
[111, Lemma 14.2] for other prime avoidance results involving

countably infinitely many prime ideals.

6.3.7e Lemma 25.10. Let (T, n) be a Noetherian local domain that is complete in the
x-adic topology, where x is a nonzero element of n. Let U be a countable set of
prime ideals of T such that x 6∈ P for each P ∈ U , and fix an arbitrary element
t ∈ n \ n2. Then there exists an element a ∈ x2T such that t− a 6∈

⋃
{P : P ∈ U}.

Proof. We may assume there are no inclusion relations among the P ∈ U . We
enumerate the prime ideals in U as {Pi}∞i=1. We choose b2 ∈ T so that t−b2x2 6∈ P1

as follows: (i) if t ∈ P1, let b2 = 1. Since x 6∈ P1, we have t−x2 6∈ P1. (ii) if t 6∈ P1,
let b2 be a nonzero element of P1. Then t− b2x2 6∈ P1. Assume by induction that
we have found b2, . . . , bn in T such that

t− cx2 := t− b2x2 − · · · − bnxn 6∈ P1 ∪ · · · ∪ Pn−1.
We choose bn+1 ∈ T so that t− cx2− bn+1x

n+1 6∈
⋃n
i=1 Pi as follows: (i) if t− cx2 ∈

Pn, let bn+1 ∈ (
∏n−1
i=1 Pi) \ Pn. (ii) if t − cx2 6∈ Pn, let bn+1 be any nonzero

element in
∏n
i=1 Pi. Hence in either case there exists bn+1 ∈ T so that

t− b2x2 − · · · − bn+1x
n+1 6∈ P1 ∪ · · · ∪ Pn.

Since T is complete in the x-adic topology, the Cauchy sequence
{b2x2 + · · ·+ bnx

n}∞n=2

has a limit a ∈ n2. Since T is Noetherian and local, every ideal of T is closed in
the x-adic topology. Hence, for each integer n ≥ 2, we have

t− a = (t− b2x2 − · · · − bnxn) − (bn+1x
n+1 + · · · ),

where t − b2x2 − · · · − bnxn 6∈ Pn−1 and (bn+1x
n+1 + · · · ) ∈ Pn−1. We conclude

that t− a 6∈
⋃∞
i=1 Pi. □

We use the following setting to describe necessary and sufficient conditions for
an element to be primarily limit-intersecting.

excset Setting 25.11. Let (R,m) be a d-dimensional excellent normal local domain
with d ≥ 2, let x be a nonzero element of m and let R∗ denote the x-adic completion
of R. Let t be a variable over R, let S := R[t](m,t), and let S∗ denote the I-adic
completion of S, where I := (x, t)S. Then S∗ = R∗[[t]] is a (d + 1)-dimensional
normal Noetherian local domain with maximal ideal n∗ := (m, t)S∗. For each
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element a ∈ x2S∗, we have S∗ = R∗[[t]] = R∗[[t− a]]. Let λa : S∗ → R∗ denote the
canonical homomorphism S∗ → S∗/(t − a)S∗ = R∗, and let τa = λa(t) = λa(a).
Consider the set

U := {P ∗ ∈ SpecS∗ | ht(P ∗ ∩ S) = htP ∗, and x /∈ P ∗ }.
Since S ↪→ S∗ is flat and thus satisfies the Going-down property, the set U can also
be described as the set of all P ∗ ∈ SpecS∗ such that x /∈ P ∗ and P ∗ is minimal
over PS∗ for some P ∈ SpecS, see

M
[123, Theorem 15.1]

iff Theorem 25.12. With the notation of Setting
excset
25.11, the element τa is primar-

ily limit-intersecting in x over R if and only if t− a /∈
⋃
{P ∗ | P ∗ ∈ U}.

Proof. Consider the commutative diagram:

S = R[t](m,t)
⊆−−−−→ S∗ = R∗[[t]]

⊆−−−−→ S∗[1/x]

λ0

y λa

y
R

⊆−−−−→ R1 = R[τa](m,τa) −−−−→ R∗
⊆−−−−→ R∗[1/x].

Diagram
iff
25.12.0

The map λ0 denotes the restriction of λa to S.
Assume that τa is primarily limit-intersecting in x over R. Then τa is alge-

braically independent over R and λ0 is an isomorphism. If t − a ∈ P ∗ for some
P ∗ ∈ U , we prove that ϕ : R1 → R∗[1/x] is not flat. Let Q∗ := λa(P

∗). We have
htQ∗ = htP ∗− 1, and x /∈ P ∗ implies x /∈ Q∗. Let P := P ∗ ∩S and Q := Q∗ ∩R1.
Commutativity of Diagram

iff
25.12.0 and λ0 an isomorphism imply that htP = htQ.

Since P ∗ ∈ U , we have htP = htP ∗. It follows that htQ > htQ∗. This implies
that ϕ : R1 → R∗[1/x] is not flat.

For the converse, assume that t− a /∈
⋃
{P ∗ | P ∗ ∈ U}. Since a ∈ x2S∗ and S∗

is complete in the (x, t)-adic topology, we have S∗ = R∗[[t]] = R∗[[t− a]]. Thus
p := ker(λa) = (t− τa)S∗ = (t− a)S∗

is a height-one prime ideal of S∗. Since x ∈ R and p ∩R = (0), we have x /∈ p.
Since t − a is outside every element of U , we have p /∈ U . Since p does not fit

the condition of U , we have ht(p ∩ S) 6= ht p = 1, and so, by the faithful flatness of
S ↪→ S∗, p ∩ S = (0). Therefore the map λ0 : S → R1 has trivial kernel, and so λ0
is an isomorphism. Thus τa is algebraically independent over R.

Since R is excellent and R1 is a localized polynomial ring over R, the hypotheses
of Corollary

16.2.3p
7.6 are satisfied. It follows that the element τa is primarily limit-

intersecting in x over R provided that ht(Q∗1 ∩ R1) ≤ htQ∗1 for every prime ideal
Q∗1 ∈ Spec(R∗[1/x]), or, equivalently, if for every Q∗ ∈ SpecR∗ with x /∈ Q∗, we
have ht(Q∗∩R1) ≤ htQ∗. Thus, to complete the proof of Theorem

iff
25.12, it suffices

to prove Claim
htler
25.13. □

htler Claim 25.13. For every prime ideal Q∗ ∈ SpecR∗ with x /∈ Q∗, we have
ht(Q∗ ∩R1) ≤ htQ∗.

Proof. (of Claim
htler
25.13) Since dimR∗ = d and x /∈ Q∗, we have htQ∗ = r ≤

d − 1. Since the map R ↪→ R∗ is flat, we have ht(Q∗ ∩ R) ≤ htQ∗ = r. Suppose
that Q := Q∗ ∩ R1 has height at least r + 1 in SpecR1. Since R1 is a localized
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polynomial ring in one variable over R and ht(Q ∩R) ≤ r, we have ht(Q) = r + 1.
Let P := λ−10 (Q) ∈ SpecS. Then htP = r + 1 and x /∈ P .

Let P ∗ := λ−1a (Q∗). Since the prime ideals of S∗ that contain t − a and have
height r+1 are in one-to-one correspondence with the prime ideals of R∗ of height
r, we have htP ∗ = r + 1. By the commutativity of the diagram, we also have
x /∈ P ∗ and P ⊆ P ∗ ∩ S, and so

r + 1 = htP ≤ ht(P ∗ ∩ S) ≤ htP ∗ = r + 1,

where the last inequality holds because the map S ↪→ S∗ is flat. It follows that
P = P ∗ ∩ S, and so P ∗ ∈ U . This contradicts the fact that t − a /∈ P ∗1 for each
P ∗1 ∈ U . Thus we have ht(Q∗ ∩ R1) ≤ r = htQ∗, as asserted in Claim

htler
25.13. This

completes the proof of Theorem
iff
25.12. □

Theorem
iff
25.12 yields a necessary and sufficient condition for an element of R∗

that is algebraically independent over R to be primarily limit-intersecting in x over
R.

iffremark Remarks 25.14. Assume notation as in Setting
excset
25.11.

(1) For each a ∈ x2S∗ as in Setting
excset
25.11, we have (t − a)S∗ = (t − τa)S∗.

Hence t− a /∈
⋃
{P ∗ | P ∗ ∈ U} ⇐⇒ t− τa /∈

⋃
{P ∗ | P ∗ ∈ U}.

(2) If a ∈ R∗, then the commutativity of Diagram
iff
25.12.0 implies that τa = a.

(3) For τ ∈ R∗, we have τ = a0 + a1x + τ ′, where a0 and a1 are in R and
τ ′ ∈ x2R∗.
(a) The rings R[τ ] and R[τ ′] are equal. Hence τ is primarily limit-

intersecting in x over R if and only if τ ′ is primarily limit-intersecting
in x over R.

(b) Assume τ ∈ R∗ is algebraically independent over R. Then τ is pri-
marily limit-intersecting in x overR if and only if t−τ ′ /∈

⋃
{P ∗ | P ∗ ∈

U}.
Item 3b follows from Theorem

iff
25.12 by setting a = τ ′ and applying item 3a

and item 2.

We use Theorem
iff
25.12 and Lemma

6.3.7e
25.10 to prove Theorem

exprimli
25.15.

exprimli Theorem 25.15. Let (R,m) be a countable excellent normal local domain with
dimension d ≥ 2, and let x be a nonzero element in m. Let R∗ denote the x-
adic completion of R. Then there exists an element τ ∈ xR∗ that is primarily
limit-intersecting in x over R.

Proof. As in Setting
excset
25.11, let

U := {P ∗ ∈ SpecS∗ | ht(P ∗ ∩ S) = htP ∗, and x /∈ P ∗ }.

Since the ring S is countable and Noetherian, the set U is countable. Lemma
6.3.7
22.18

implies that there exists an element a ∈ x2S∗ such that t − a /∈
⋃
{P ∗ | P ∗ ∈ U}.

By Theorem
iff
25.12, the element τa is primarily limit-intersecting in x over R. □

To establish the existence of more than one primarily limit-intersecting element
we use the following setting.

excset2 Setting 25.16. Let (R,m) be a d-dimensional excellent normal local domain,
let x be a nonzero element of m and let R∗ denote the x-adic completion of R. Let
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t1, . . . , tn+1 be indeterminates over R, and let Sn and Sn+1 denote the localized
polynomial rings

Sn := R[t1, . . . , tn](m,t1,...,tn) and Sn+1 := R[t1, . . . , tn+1](m,t1,...,tn+1).

Let S∗n denote the In-adic completion of Sn, where In := (x, t1, . . . , tn)Sn. Then
S∗n = R∗[[t1, . . . , tn]] is a (d+n)-dimensional normal Noetherian local domain with
maximal ideal n∗ = (m, t1, . . . , tn)S

∗
n. Assume that τ1, . . . , τn ∈ xR∗ are primar-

ily limit-intersecting in x over R, and define λ : S∗n → R∗ to be the R∗-algebra
homomorphism such that λ(ti) = τi, for 1 ≤ i ≤ n.

Since S∗n = R∗[[t1 − τ1, . . . , tn − τn]], we have pn := kerλ = (t1 − τ1, . . . , tn −
τn)S

∗
n. Consider the commutative diagram:

Sn = R[t1, . . . , tn](m,t1,...,tn)
⊆−−−−→ S∗n = R∗[[t1, . . . , tn]]

⊆−−−−→ S∗n[1/x]

λ0, ∼=
y λ

y
R

⊆−−−−→ Rn = R[τ1, . . . , τn](m,τ1,...,τn)
φ0−−−−→ R∗

α−−−−→ R∗[1/x].

Let S∗n+1 denote the In+1-adic completion of Sn+1, where In+1 := (x, t1, . . . , tn+1)Sn+1.
For each element a ∈ x2S∗n+1, we have
(
excset2
25.16.1) S∗n+1 = S∗n[[tn+1]] = S∗n[[tn+1 − a]].

Let λa : S∗ → R∗ denote the composition

S∗n+1 = S∗n[[tn+1]] −−−−→ S∗
n[[tn+1]]

(tn+1−a) = S∗n
λ−−−−→ R∗,

and let τa := λa(tn+1) = λa(a). We have kerλa = (pn, tn+1 − a)S∗n+1. Consider
the commutative diagram

Sn
⊆−−−−→ S∗n

⊆−−−−→ S∗n+1 −−−−→ S∗n+1[1/x]

λ0, ∼=
y λ

y λa

y y
R

⊆−−−−→ Rn
φ0−−−−→ R∗

=−−−−→ R∗ −−−−→ R∗[1/x].

Diagram
excset2
25.16.2

Let
U := {P ∗ ∈ SpecS∗n+1 | P ∗∩Sn+1 = P, x /∈ P and P ∗ is minimal over (P, pn)S

∗
n+1}.

Notice that x /∈ P ∗ for each P ∗ ∈ U , since x ∈ R implies λa(x) = x.

iff2 Theorem 25.17. With the notation of Setting
excset2
25.16, the elements τ1, . . . , τn, τa

are primarily limit-intersecting in x over R if and only if tn+1−a /∈
⋃
{P ∗ | P ∗ ∈ U}.

Proof. Assume that τ1, . . . , τn, τa are primarily limit-intersecting in x over R.
Then τ1, . . . , τn, τa are algebraically independent over R. Consider the following
commutative diagram:

Sn+1 = R[t1, . . . , tn+1](m,t1,...,tn+1)
⊆−−−−→ S∗n+1 = R∗[[t1, . . . , tn+1]]

λ1

y λa

y
R

⊆−−−−→ Rn+1 = R[τ1, . . . , τa](m,τ1,...,τa) −−−−→ R∗.

Diagram
iff2
25.17.0
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The map λ1 is the restriction of λa to Sn+1, and is an isomorphism since
τ1, . . . , τn, τa are algebraically independent over R.

If tn+1−a ∈ P ∗ for some P ∗ ∈ U , we prove that ϕ : Rn+1 → R∗[1/x] is not flat,
a contradiction to our assumption that τ1, . . . , τn, τa are primarily limit-intersecting.
Since P ∗ ∈ U , we have pn ⊂ P ∗. Then tn+1 − a ∈ P ∗ implies kerλa ⊂ P ∗. Let
λa(P

∗) := Q∗. Then λ−1a (Q∗) = P ∗ and htP ∗ = n + 1 + htQ∗. Since P ∗ ∈ U ,
we have x /∈ P ∗. The commutativity of Diagram

iff2
25.17.0 implies that x /∈ Q∗.

Let P := P ∗ ∩ Sn+1 and let Q := Q∗ ∩ Rn+1. Commutativity of Diagram
iff2
25.17.0

and λ1 an isomorphism imply that htP = htQ. Since P ∗ is a minimal prime of
(P, pn)S

∗
n+1 and pn is n-generated and S∗n+1 is Noetherian and catenary, we have

htP ∗ ≤ htP + n. Hence htP ≥ htP ∗ − n. Thus
htQ = htP ≥ htP ∗ − n = htQ∗ + n+ 1− n = htQ∗ + 1.

The fact that htQ > htQ∗ implies that the map Rn+1 → R∗[1/x] is not flat.
For the converse, we have

Assumption
iff2
25.17.1: tn+1 − a /∈

⋃
{ P ∗ | P ∗ ∈ U }.

Since λa : S∗n+1 → R∗ is an extension of λ : S∗n → R∗ as in Diagram
excset2
25.16.2,

we have kerλa ∩ Sn = (0). Let p := (tn+1 − a)S∗n+1 = (tn+1 − τa)S∗n+1. As in
Equation

excset2
25.16.1, we have
S∗n+1 = R∗[[t1, . . . , tn+1]] = R∗[[t1 − τ1, . . . , tn − τn, tn+1 − a]].

Thus P ∗ := (pn, p)S
∗
n+1 is a prime ideal of height n+1 and P ∗∩R∗ = (0). It follows

that x /∈ P ∗. We show that P ∗ ∩ Sn+1 = (0). Assume that P = P ∗ ∩ Sn+1 6= (0).
Since htP ∗ = n+1, P ∗ is minimal over (P, pn)S∗n+1, and so P ∗ ∈ U , a contradiction
to Assumption

iff2
25.17.1. Therefore P ∗ ∩ Sn+1 = (0). It follows that p ∩ Sn+1 = (0)

since p ⊂ P ∗. Thus kerλ1 = (0), and so λ1 in Diagram
iff2
25.17.0 is an isomorphism.

Therefore τa is algebraically independent over Rn.
Since R is excellent and Rn+1 is a localized polynomial ring in n+ 1 variables

over R, the hypotheses of Corollary
16.2.3p
7.6 are satisfied. It follows that the elements

τ1, . . . , τn, τa are primarily limit-intersecting in x over R if for every Q∗ ∈ SpecR∗

with x /∈ Q∗, we have ht(Q∗ ∩ Rn+1) ≤ htQ∗. Thus, to complete the proof of
Theorem

iff2
25.17, it suffices to prove Claim

htler2
25.18. □

htler2 Claim 25.18. Let Q∗ ∈ SpecR∗ with x /∈ Q∗ and htQ∗ = r. Then
ht(Q∗ ∩Rn+1) ≤ r.

Proof. (of Claim
htler2
25.18) Let Q1 := Q∗∩Rn+1 and let Q0 := Q∗∩Rn. Suppose

htQ1 > r. Notice that r < d, since d = dimR∗ and x /∈ Q∗.
Since τ1, . . . , τn are primarily limit-intersecting in x over R, the extension

Rn := R[τ1, . . . , τn](m,τ1,...,τn) ↪→ R∗[1/x]

from Diagram
excset2
25.16.2 is flat. Thus htQ0 ≤ r and htQ0 ≤ htL∗ for every prime

ideal L∗ of R∗ with Q0R
∗ ⊆ L∗ ⊆ Q∗. Since Rn+1 is a localized polynomial ring

in the indeterminate τa over Rn, we have that htQ1 ≤ htQ0 + 1 = r + 1. Thus
htQ1 = r + 1 and htQ0 = r. It follows that Q∗ is a minimal prime of Q0R

∗.
Let h(τa) be a polynomial in

(Q∗ ∩Rn[τa]) \ (Q∗ ∩Rn)Rn+1.

It follows thatQ∗∩Rn+1 := Q1 is a minimal prime of the ideal (Q∗∩Rn, h(τa))Rn+1.
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With notation from Diagram
excset2
25.16.2, define

P0 := λ−10 (Q0) and P ∗0 := λ−1(Q∗).

Since λ0 is an isomorphism, P0 is a prime ideal of Sn with htP0 = r. Moreover, we
have the following:

(1) P ∗0 ∩ Sn = P0 (by commutativity in Diagram
excset2
25.16.2),

(2) x /∈ P ∗0 (by item 1),
(3) P ∗0 is a minimal prime of (P0, pn)S

∗
n (since S∗n/pn = R∗ in Diagram

excset2
25.16.2,

and Q∗ is a minimal prime of Q0R
∗),

(4) htP ∗0 = n+ r (by the correspondence between prime ideals of S∗n contain-
ing pn and prime ideals of R∗).

Consider the commutative diagram below with the left and right ends identified:

S∗n+1 ←−−−− S∗n ←−−−− Sn −−−−→ Sn+1
θ−−−−→ S∗n+1

λa

y λ

y λ0,∼=
y λ1,∼=

y λa

y
R∗ ←−−−− R∗ ←−−−− Rn −−−−→ Rn+1 −−−−→ R∗,

Diagram
htler2
25.18.0

where λ, λ0 and λ1 are as in Diagrams
excset2
25.16.2 and

iff2
25.17.0, and so λa restricted to

S∗n is λ. Let h(tn+1) = λ−11 (h(τa)) and set
P1 := λ−11 (Q1) ∈ Spec(Sn+1), and P ∗ := λ−1a (Q∗) ∈ Spec(S∗n+1).

Then P1 is a minimal prime of (P0, h(tn+1))Sn+1, since Q1 is a minimal prime
of (Q0, h(τa))Rn+1. Since Q1 ⊆ Q∗, we have h(tn+1) ∈ P ∗ and P1S

∗
n+1 ⊆ P ∗

because λa(h(tn+1)) = λ1(h(tn+1)) = h(τa) ∈ Q1 and λa(P1) = λ1(P1) = Q1. By
the correspondence between prime ideals of S∗n+1 containing ker(λa) = pn+1 and
prime ideals of R∗, we see

htP ∗ = htQ∗ + n+ 1 = r + n+ 1.

Since λa(P ∗0 ) ⊆ Q∗, we have P ∗0 ⊆ P ∗, but h(tn+1) /∈ P0Sn+1 implies h(tn+1) /∈
P ∗0 S

∗
n+1. Therefore

(P0, pn)S
∗
n+1 ⊆ P ∗0 S∗n+1 ( (P ∗0 , h(tn+1))S

∗
n+1 ⊆ P ∗.

By items 3 and 4 above, htP ∗0 = n+r and P ∗0 is a minimal prime of (P0, pn)S
∗
n. Since

htP ∗ = n + r + 1, it follows that P ∗ is a minimal prime of (P0, h(tn+1), pn)S
∗
n+1.

Since (P0, h(tn+1), pn)S
∗
n+1 ⊆ (P1, pn)S

∗
n+1 ⊆ P ∗, we have P ∗ is a minimal prime

of (P1, pn)S
∗
n+1. But then, by Assumption

iff2
25.17.1, tn+1 − a /∈ P ∗, a contradiction.

This contradiction implies that htQ1 = r. This completes the proof of Claim
htler2
25.18

and thus also the proof of Theorem
iff2
25.17. □

We use Theorem
exprimli
25.15, Theorem

iff2
25.17 and Lemma

6.3.7e
25.10 to prove in Theo-

rem
exnprimli
25.19 the existence over a countable excellent normal local domain of dimension

at least two of an infinite sequence of primarily limit-intersecting elements.

exnprimli Theorem 25.19. Let R be a countable excellent normal local domain with di-
mension d ≥ 2, let x be a nonzero element in the maximal ideal m of R, and let R∗
be the x-adic completion of R. Let n be a positive integer. Then

(1) If the elements τ1, . . . , τn ∈ xR∗ are primarily limit-intersecting in x over
R, then there exists an element τa ∈ xR∗ such that τ1, . . . , τn, τa are
primarily limit-intersecting in x over R.
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(2) There exists an infinite sequence τ1, . . . , τn, . . . ∈ xR∗ of elements that are
primarily limit-intersecting in x over R.

Proof. Since item 1 implies item 2, it suffices to prove item 1. Theorem
exprimli
25.15

implies the existence of an element τ1 ∈ xR∗ that is primarily limit-intersecting in
x over R. As in Setting

excset2
25.16, let

U := {P ∗ ∈ SpecS∗n+1 | P ∗∩Sn = P ∈ SpecSn and P ∗ is minimal over (P, pn)S
∗
n+1}.

Since the ring Sn+1 is countable and Noetherian, the set U is countable. Lemma
6.3.7
22.18

implies that there exists an element a ∈ x2S∗n+1 such that

tn+1 − a /∈
⋃
{P ∗ | P ∗ ∈ U}.

By Theorem
iff2
25.17, the elements τ1, . . . , τn, τa are primarily limit-intersecting in x

over R. □

Using Theorem
exprimli
25.15, we establish in Theorem

nagtheorem
25.20, for every countable ex-

cellent normal local domain R of dimension d ≥ 2, the existence of a primarily
limit-intersecting element η ∈ xR∗ such that the constructed Noetherian domain

B = A = R∗ ∩Q(R[η])
is not a Nagata domain and hence is not excellent.

nagtheorem Theorem 25.20. Let R be a countable excellent normal local domain of dimen-
sion d ≥ 2, let x be a nonzero element in the maximal ideal m of R, and let R∗ be
the x-adic completion of R. There exists an element η ∈ xR∗ such that

(1) η is primarily limit-intersecting in x over R.
(2) The associated intersection domain A := R∗ ∩ Q(R[η]) is equal to its

approximation domain B.
(3) The ring A has a height-one prime ideal p such that R∗/pR∗ is not reduced.

Thus the integral domain A = B associated to η is a normal Noetherian local
domain that is not a Nagata domain and hence is not excellent.

Proof. Since dimR ≥ 2, there exists y ∈ m such that ht(x, y)R = 2. By
Theorem

exprimli
25.15, there exists τ ∈ xR∗ such that τ is primarily limit-intersecting

in x over R. Hence the extension R[τ ] −→ R∗[1/x] is flat. Let n ∈ N with
n ≥ 2, and let η := (y + τ)n. Since τ is algebraically independent over R, the
element η is also algebraically independent over R. Moreover, the polynomial ring
R[τ ] is a free R[η]-module with 1, τ, . . . , τn−1 as a free module basis. Hence the
map R[η] −→ R∗[1/x] is flat. It follows that η is primarily limit-intersecting in
x over R. Therefore the intersection domain A := R∗ ∩ Q(R[η]) is equal to its
associated approximation domain B and is a normal Noetherian domain with x-
adic completion R∗. Since η is a prime element of the polynomial ring R[η] and
B[1/x] is a localization of R[η], it follows that p := ηB is a height-one prime ideal
of B. Since τ ∈ R∗, and η = (y + τ)n, the ring R∗/pR∗ contains nonzero nilpotent
elements. Since a Nagata local domain is analytically unramified, it follows that
the normal Noetherian domain B is not a Nagata ring,

M
[123, page 264] or

N2
[138,

(32.2)]. □

Let d be an integer with d ≥ 2. In Examples
16.3.10
10.15 we give extensions that sat-

isfy LFd−1 but do not satisfy LFd; see Definition
PDEetcrep
24.1. These extensions are weakly

flat but are not flat. In our setting these examples have the intersection domain A
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equal to its approximation domain B but A is not Noetherian In Theorem
wftheorem
25.21,

we present a more general construction of examples with these properties.

wftheorem Theorem 25.21. Let (R,m) be a countable excellent normal local domain. As-
sume that dimR = d+ 1 ≥ 3, that (x, y1, . . . , yd)R is an m-primary ideal, and that
R∗ is the x-adic completion of R. Then there exists f ∈ xR∗ such that f is alge-
braically independent over R and the map ϕ : R[f ] −→ R∗[1/x] is weakly flat but
not flat. Indeed, ϕ satisfies LFd−1, but fails to satisfy LFd. Thus the intersection
domain A := Q(R[f ]) ∩ R∗ is equal to its approximation domain B, but A is not
Noetherian.

Proof. By Theorem
exnprimli
25.19, there exist elements τ1, . . . , τd ∈ xR∗ that are

primarily limit-intersecting in x over R. Let

f := y1τ1 + · · ·+ ydτd.

Using that τ1, . . . , τd are algebraically independent over R, we regard f as a polyno-
mial in the polynomial ring T := R[τ1, . . . , τd]. Let S := R[f ]. ForQ ∈ SpecR∗[1/x]
and P := Q ∩ T , consider the composition ϕQ

S −→ TP −→ R∗[1/x]Q.

Since τ1, . . . , τd are primarily limit-intersecting in x over R, the map T ↪→ R∗[1/x]
is flat. Thus the map ϕQ is flat if and only if the map S −→ TP is flat. Let
p := P ∩R.

Assume that P is a minimal prime of (y1, . . . , yd)T . Then p is a minimal
prime of (y1, . . . , yd)R. Since T is a polynomial ring over R, we have P = pT and
ht(p) = d = htP . Notice that (p, f)S = P ∩ S and ht(p, f)S = d+ 1. Since a flat
extension satisfies the Going-down property, the map S −→ TP is not flat. Hence
ϕ does not satisfy LFd.

Assume that htP ≤ d − 1. Then (y1, . . . , yd)T is not contained in P . Hence
(y1, . . . , yd)R is not contained in p. Consider the sequence

S = R[f ] ↪→ Rp[f ]
ψ−→ Rp[τ1, . . . , τd] ↪→ TP ,

where the first and last injections are localizations. Since the nonconstant coeffi-
cients of f generate the unit ideal of Rp, the map ψ is flat; see Theorem

16.3.7
7.28. Thus

ϕ satisfies LFd−1.
We conclude that the intersection domain A = R∗ ∩ Q(R[f ]) is equal to its

approximation domain B and is not Noetherian. □

Exercise
(1) Let (R,m) be a Noetherian local ring, let x be an element of m and let R∗ be

the x-adic completion of R. Let S be the localized polynomial ring R[t](m,t)
and let S∗ denote the I-adic completion completion of S, where I = (y, t)S.
Let a be an element of the ideal xR∗.
(a) Prove that R∗ is complete in the a-adic topology on R∗, and that S∗ is

complete in the (t− a)-adic topology on S∗.
(b) Prove that S∗ is the formal power series ring R∗[[t]].
(c) Prove that R∗[[t]] = R∗[[t− a]]. Thus S∗ is the formal power series ring in

t− a over R∗, as is used in the proof of Theorem
iff
25.12.
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Comment: Item a is a special case of Exercise 2 of
M
[123, p. 63].

Suggestion: For item c, prove that every element of S∗ has a unique expression
as a power series in t over R∗ and also a unique expression as a power series in
t− a over R∗.



CHAPTER 26

Weierstrass techniques for generic fiber rings May
27 2020 (weiersec)weiersec

Let k be a field, let m and n be positive integers, and let X = {x1, . . . , xn} and
Y = {y1, . . . , ym} be sets of independent variables over k. Define the rings A,B
and C as follows:

(
gffnot
26.1.0) A := k[X](X), B := k[[X]] [Y ](X,Y ) and C := k[Y ](Y )[[X]].

That is, A is the usual localized polynomial ring in the variables of X. The rings
B and C are “mixed polynomial-power series rings”, over k using X, the power
series variables, and Y , the polynomial variables, in two different ways: The ring
B consists of polynomials in Y with coefficients in the power series ring k[[X]],
whereas C contains power series in the X variables over the localized polynomial
ring k[Y ][Y ]. Thus C is complete in the (X)-adic topology, whereas B is not. The
(X)-adic completion B∗ of B is C.

The maps shown in the following sequences are local embeddings:

A := k[X](X) ↪→ Â := k[[X]], Â ↪→ B̂ = Ĉ = k[[X,Y ]] and

B := k[[X]] [Y ](X,Y ) ↪→ C := k[Y ](Y )[[X]] ↪→ B̂ = Ĉ = k[[X]] [[Y ]].

There is a canonical inclusion map B ↪→ C, and the ring C has infinite transcen-
dence degree over B, even if m = n = 1. In Chapter

ppssec
28, we consider this embedding

and analyze the associated spectral map.
In this chapter, we develop techniques using the Weierstrass Preparation The-

orem. These techniques are applied in Chapter
gffpi
27 to describe the prime ideals

maximal in generic fiber rings associated to the polynomial-power series rings A,B,
and C. In Chapter

gffpi
27, we prove every prime ideal P in k[[X]] that is maximal with

respect to P ∩ A = (0) has htP = n − 1. For every prime ideal P of k[[X]] [[Y ]]
such that P is maximal with respect to either P ∩ B = (0) or P ∩ C = (0), we
prove ht(P ) = n + m − 2. In addition we prove each prime ideal P of k[[X,Y ]]
that is maximal with respect to P ∩ k[[X]] = (0) has htP = m or n +m − 2; see
Theorem

gffres
26.3.

26.1. Terminology, background and results
19.1

gffnot Notation 26.1. Let (R,m) be a Noetherian local domain and let R̂ be the
m-adic completion of R. The formal fibers of R are the fibers of the map Spec R̂→
SpecR. A prime ideal P̂ of R̂ is in the generic formal fiber of R ⇐⇒ P̂ ∩R = (0).
The generic formal fiber ring of R, denoted Gff(R), is the ring

Gff(R) : = (R \ (0))−1R̂ = R̂[K],

341
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where K denotes the field of fractions of R. Since Gff(R) is a localization of R̂, the
prime ideals of Gff(R) are all extended from R̂. SpecGff(R) is precisely the set of
prime ideals in the generic formal fiber of R.

For a prime ideal P of R, the formal fiber over P is Spec( (RP /PRP ) ⊗R R̂ ),
or equivalently Spec((R \ P )−1(R̂/P R̂)); see Discussion

3.21d
3.29 and Definition

3.39
3.44.

Let Gff(R/P ) denote the generic formal fiber ring of R/P . Since R̂/P R̂ is the
completion of R/P , the formal fiber over P is Spec(Gff(R/P )).

Let R ↪→ S be an injective homomorphism of commutative rings. If R is
an integral domain, the generic fiber ring of the map R ↪→ S is the localization
(R \ (0))−1S of S.

The formal fibers encode important information about the structure of R. For
example, R is excellent provided it is universally catenary and has geometrically
regular formal fibers

G
[63, (7.8.3), page 214]; see Definition

exceld
8.22.

Remarks
gffrem
26.2 contains historical remarks regarding dimensions of generic for-

mal fiber rings and heights of the maximal ideals of these rings:
gffrem Remarks 26.2. (1) Let (R,m) be a Noetherian local domain. In

M1.5
[122] Mat-

sumura remarks that, as the ring R gets closer to its m-adic completion R̂, it is
natural to think that the dimension of the generic formal fiber ring Gff(R) gets
smaller. He proves that the generic formal fiber ring of A has dimension dimA− 1,
and the generic formal fiber rings of B and C have dimension dimB−2 = dimC−2
in

M1.5
[122]. Matsumura speculates as to whether dimR − 1,dimR − 2 and 0 are the

only possible values for dim(Gff(R)) in
M1.5
[122, p. 261].

(2) In answer to Matsumura’s question, Rotthaus establishes the following re-
sult in

R3.5
[159]: For every pair t, n of non-negative integers with t < n, there exists

an excellent regular local ring R such that dimR = n and dim(Gff(R)) = t.
(3) Let (R,m) be an n-dimensional universally catenary Noetherian local do-

main. Loepp and Rotthaus in
LR
[115] compare the dimension of the generic formal

fiber ring of R with that of the localized polynomial ring R[x](m,x). Matsumura
shows in

M1.5
[122] that the dimension of the generic formal fiber ring Gff(R[x](m,x)) is

either n or n− 1. Loepp and Rotthaus prove that dim(Gff(R[x](m,x))) = n implies
that dim(Gff R) = n− 1

LR
[115, Theorem 2]. They show by example that in general

the converse is not true, and they give sufficient conditions for the converse to hold.
(4) Let (T,mT ) be a complete Noetherian local domain that contains a field of

characteristic zero. Assume that T/mT has cardinality at least the cardinality of
the real numbers. By adapting techniques developed by Heitmann in

H2
[97], in the

articles
Lo
[113] and

Lo2
[114], Loepp proves, among other things, for every prime ideal q

of T with q 6= mT , there exists an excellent regular local ring R that has completion
T and has generic formal fiber ring Gff(R) = Tq. By varying the height of q, this
yields examples where the dimension of the generic formal fiber ring is any integer
t with 0 ≤ t < dimT . Loepp also shows for these examples that, for each nonzero
prime ideal p of R, there exists a unique prime q of T with q ∩R = p and q = pT .

(5) Let R,m) be a countable Noetherian local domain. Heinzer, Rotthaus and
Sally show in

HRS
[72, Proposition 4.10, page 36] that:

(a) The generic formal fiber ring Gff(R) is a Jacobson ring in the sense that
each prime ideal of Gff(R) is an intersection of maximal ideals of Gff(R).

(b) dim(R̂/P ) = 1 for each prime ideal P ∈ Spec R̂ that is maximal with
respect to P ∩R = (0).
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(c) If R̂ is equidimensional of dimension n, then htP = n− 1 for each prime
ideal P ∈ Spec R̂ that is maximal with respect to P ∩R = (0).

(d) If Q ∈ Spec R̂ with htQ ≥ 1, then there exists a prime ideal P ⊂ Q such
that P ∩R = (0) and ht(Q/P ) = 1.

If the field k is countable, it follows from this result that all ideals maximal in the
generic formal fiber ring of A have the same height.

(6) In Matsumura’s article
M1.5
[122] from item 1 above, he does not address the

question of whether all ideals maximal in the generic formal fiber rings for A, B
and C have the same height. In general, for an excellent regular local ring R it
can happen that Gff(R) contains maximal ideals of different heights; see the articleR3.5
[159, Corollary 3.2] of Rotthaus.

(7) Charters and Loepp in
CL
[32, Theorem 3.1] extend Rotthaus’s result men-

tioned in item 6: Let (T,mT ) be a complete Noetherian local ring and let G be
a nonempty subset of SpecT such that the number of maximal elements of G is
finite. They prove there exists a Noetherian local domain R with completion T and
with generic formal fiber exactly G if G satisfies the following conditions:

(a) mT /∈ G and G contains the associated primes of T ,
(b) If p ⊂ q are in SpecT and q ∈ G, then p ∈ G, and
(c) Every q ∈ G meets the prime subring of T in (0).

Charters and Loepp
CL
[32, Theorem 4.1] also show that, if T contains the ring of

integers and, in addition to conditions a, b, and c,
(d) T is equidimensional, and
(e) Tp is a regular local ring for each maximal element p of G,

then there exists an excellent local domain R with completion T and with generic
formal fiber exactly G; see

CL
[32, Theorem 4.1]. Since the maximal elements of the

set G may be chosen to have different heights, this result provides many examples
where the generic formal fiber ring contains maximal ideals of different heights.

The Weierstrass techniques developed in this chapter enable us to prove the
following theorem in Chapter

gffpi
27:

gffres Maximal Generic Fibers Theorem 26.3. Let k be a field, let m and n be
positive integers, and let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be sets of indepen-
dent variables over k. Then, for each of the rings A := k[X](X), B := k[[X]] [Y ](X,Y )

and C := k[Y ](Y )[[X]], every prime ideal maximal in the generic formal fiber ring
has the same fixed height; more precisely :

(1) If P is a prime ideal of Â maximal with respect to P ∩ A = (0), then
ht(P ) = n− 1.

(2) If P is a prime ideal of B̂ maximal with respect to P ∩ B = (0), then
ht(P ) = n+m− 2.

(3) If P is a prime ideal of Ĉ maximal with respect to P ∩ C = (0), then
ht(P ) = n+m− 2.

(4) There are at most two possible values for the height of a maximal ideal of
the generic fiber ring (Â \ (0))−1Ĉ of the inclusion map Â ↪→ Ĉ.

(a) If n ≥ 2 and P is a prime ideal of Ĉ maximal with respect to
P ∩ Â = (0), then either htP = n+m− 2 or htP = m.

(b) If n = 1, then all ideals maximal in the generic fiber ring
(Â \ (0))−1Ĉ have height m.



344 26. WEIERSTRASS TECHNIQUES

We were motivated to consider generic fiber rings for the embeddings displayed
above because of questions related to Chapters

ppssec
28 and

tgfsec
29 and ultimately because

of the following question posed by Melvin Hochster and Yongwei Yao.

Hochster Question 26.4. Let R be a complete Noetherian local domain. Can one de-
scribe or somehow classify the local maps of R to a complete Noetherian local
domain S such that U−1S is a field, where U = R \ (0), i.e., such that the generic
fiber of R ↪→ S is trivial?

rhochster Remark 26.5. By Cohen’s structure theorems
Co
[36],

N2
[138, (31.6)], a complete

Noetherian local domain R is a finite integral extension of a complete regular local
domain R0. If R has the same characteristic as its residue field, then R0 is a formal
power series ring over a field; see Remarks

3.38.4
3.19. The generic fiber of R ↪→ S is

trivial if and only if the generic fiber of R0 ↪→ S is trivial.
A local ring R is called equicharacteristic, if the ring and its residue field have

the same characteristic; see Definition
3.38.3
3.18.1. If the equicharacteristic local ring has

characteristic zero, then we say R is “equicharacteristic zero” or ”of equal charac-
teristic zero”. Such a ring contains the field of rational numbers; see Exercise

weiersec
26.

char0rats
1.

Thus, as Hochster and Yao remark, there is a natural way to construct such
extensions in the case where the local ring R has characteristic zero and contains
the rational numbers; consider
(
Hochster
26.4.0) R = k[[x1, ..., xn]] ↪→ T = L[[x1, ..., xn, y1, ..., ym]]→ T/P = S,

where k is a subfield of L, the xi, yj are formal indeterminates, and P is a prime ideal
of T maximal with respect to being disjoint from the image of R \ {0}. The prime
ideals P that arise correspond to the maximal ideals of the generic fiber (R\(0))−1T .
The composite extension T ↪→ S satisfies the condition of Question

Hochster
26.4. If k =

Q, then, in Equation
Hochster
26.4.0, R has characteristic zero and contains the rational

numbers.

In Theorem
19.7.2
27.16, we answer Question

Hochster
26.4 in the special case where the exten-

sion arises from the embedding in Sequence
Hochster
26.4.0 with the field L = k. We prove

in this case that the dimension of the extension ring S must be either 2 or n.
We introduce the following terminology for the condition of Question

Hochster
26.4 with

a more general setting:

TGFdefweier Definition 26.6. For R and S integral domains with R a subring of S, we say
that S is a trivial generic fiber extension of R, or a TGF extension of R, if every
nonzero prime ideal of S has nonzero intersection with R. If R

φ
↪→ S, then ϕ is also

called a trivial generic fiber extension or TGF extension.

As in Remark
rhochster
26.5, every extension R ↪→ T from an integral domain R to a

commutative ring T yields a TGF extension by considering a composition
(
TGFdefweier
26.6.0) R ↪→ T → T/P = S,

where P ∈ SpecT is maximal with respect to P ∩ R = (0). Thus the generic fiber
ring and so also Theorem

gffres
26.3 give information regarding TGF extensions in the

case where the smaller ring is a mixed polynomial-power series ring.
Theorem

gffres
26.3 is useful in the study of Sequence

Hochster
26.4.0, because the map in

Sequence
Hochster
26.4.0 factors through:

R = k[[x1, . . . , xn]] ↪→ k[[x1, . . . , xn]] [y1, . . . , ym] ↪→ T = L[[x1, . . . , xn, y1, . . . , ym]].
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The second extension of this sequence is TGF if n = m = 1 and k = L; see
Exercise

polyntgf
1 of this chapter. We study TGF extensions in Chapters

ppssec
28 and

tgfsec
29.

Section
weiersec
26.2 contains implications of Weierstrass’ Preparation Theorem to the

prime ideals of power series rings. We first prove a technical proposition regarding a
change of variables that provides a “nice” generating set for a given prime ideal P of
a power series ring; then in Theorem

19.2.5
26.14 we prove that, in certain circumstances,

a larger prime ideal can be found with the same contraction as P to a certain
subring. In Section

19.5
27.3 we use Valabrega’s, Theorem

4.1.2
4.9, concerning subrings of

a two-dimensional regular local domain.
In Sections

wimpB
27.1 and

wimpC
27.2, we prove parts 2 and 3 of Theorem

gffres
26.3 stated above.

We apply Theorem
19.2.5
26.14 in Section

wimpA
27.4 to prove part 1 of Theorem

gffres
26.3, and in

Section
gffps
27.5 we prove part 4.

26.2. Variations on a theme by Weierstrass
19.2

The statement of Weierstrass Preparation Theorem
19.2.1
26.8 uses Definition

distmon
26.7.

distmon Definition 26.7. Let (R,m) be a local ring and let x be an indeterminate over
R. A monic polynomial F = xs + as−1x

s−1 + · · · + a0 ∈ R[x] is distinguished if
s > 0 and ai ∈ m for 0 ≤ i ≤ s− 1.1

More generally, if (R0,m0) is a local ring, Z is a finite set of indeterminates
over R0 and R = R0[Z], then a monic polynomial f ∈ R[x] is distinguished if f is
distinguished as a polynomial of R(m0,Z)[x].

19.2.1 Theorem 26.8. (Weierstrass)
ZSII
[194, Theorem 5, p. 139; Corollary 1, p. 145],Bour

[24, Proposition 6, p.510]2 Let (R,m) be a formal power series ring in finitely many
variables over a field, let f ∈ R[[x]] be a formal power series and let f denote the
image of f in (R/m)[[x]]. Assume that ord f = s > 0.3 There exists a unique
ordered pair (u, F ) such that u is a unit in R[[x]] and F ∈ R[x] is a distinguished
monic polynomial of degree s such that f = uF .

We often write “By Weierstrass” to mean “using Theorem
19.2.1
26.8 or Corollary

19.2.2
26.9”.

19.2.2 Corollary 26.9. Assume notation as in Theorem
19.2.1
26.8. Thus f ∈ R[[x]] is

such that f ∈ (R/mR)[[x]]and ord f = s > 0. Then:
(1) The ideal fR[[x]] = FR[[x]] is extended from R[x].
(2) R[[x]]/(f) is a free R-module of rank s.
(3) Every g ∈ R[[x]] has the form g = qf + r, where q ∈ R[[x]] and r ∈ R[x]

is a polynomial with deg r ≤ s− 1.
(4) If f ∈ R[x] is a distinguished monic polynomial of degree s, then items

1-3 hold, and also R[x]/fR[x] = R[[x]]/fR[[x]], with the identifications of
the canonical map.

Remarks
19.2.2n
26.10 extends Corollary

19.2.2
26.9.

1Every polynomial that is “monic” in a variable x is assumed to have positive degree in x.
2The version in

Bour
[24] assumes only that the local ring (R,m) is complete and Hausdorff in the

m-adic topology.
3Here “ord f” refers to the order function with respect to the local ring (R/m)[[x]]; see

Definition
orderfunction
2.6.
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19.2.2n Remarks 26.10. Let (R,m) be a formal power series ring in finitely many
variables over a field. Let n ∈ N and let x, y, and Z = {z1, . . . , zn} be new variables
over R. For 1 ≤ i ≤ n, let Zi = {z1, . . . , zi}.

(1) Let g ∈ R[[x]] [Z, y] be monic as a polynomial in y of degree t, and let
f ∈ R[x] be a distinguished monic polynomial in x. Then there exists
g′ ∈ R[x,Z, y] that is monic as a polynomial in y of degree t such that
(g′, f)R[[x, y, Z]] = (g, f)R[[x, y, Z]].

If g is a distinguished monic polynomial in y as an element ofR[[x]] [Z, y],
then g′ is also distinguished in y as an element of R[x,Z, y].

(2) Assume n ≥ 2, and
g1 ∈ R[z1] is a distinguished monic polynomial in z1 of degree t1,
g2 ∈ R[[z1]] [z2] is a distinguished monic polynomial in z2 of degree t2,
. . .

gn ∈ R[[Zn−1]] [zn] is a distinguished monic polynomial in zn

of degree tn.
Then there exist monic polynomials g′1 = g1 ∈ R[z1], g′2 ∈ R[Z2], . . . ,
g′n ∈ R[Z] such that

g′1 ∈ R[z1] is distinguished in z1 of degree t1,
g′2 ∈ R[z1, z2] is distinguished in z2 of degree t2,
. . .

g′n ∈ R[Zn−1, zn] is distinguished in zn of degree tn,
and, for each i with 1 ≤ i ≤ n,

(g1, g2, . . . , gi)R[[Zi]] = (g′1, g
′
2, . . . , g

′
i)R[[Zi]].

(3) Assume g1, g2, . . . , gn ∈ R[Z] are such that, for every 1 ≤ i ≤ n, each
gi ∈ R[Zi] is distinguished monic in zi. Then:
(a) g1, . . . , gn is a regular R[Z]-sequence,
(b) The ring R[Z]/(g1, . . . , gn)R[Z] is a finite free module extension of R,

and R[Z]/(g1, . . . , gn)R[Z] = R[[Z]]/(g1, . . . , gn)R[[Z]].
(c) The (Z)-adic completion of R[Z] is identical to the (g1, . . . , gn)-adic

completion of R[Z] and both equal R[[Z]].
(d) If I is an ideal of R[[Z]] such that g1, . . . , gn ∈ I, then I is extended

from R[Z]; that is, I = (I ∩R[Z])R[[Z]].

Proof. For item 1, consider the elements of R[[x]] [Z, y] as polynomials in
Z ∪ {y}. Then g = yt +

∑e
j=1 ajbj , where e ∈ N0, the aj ∈ R[[x]], and each bj is a

monomial in the variables Z ∪{y} such that the power of y in each bj is less than t.
By Weierstrass Corollary

19.2.2
26.9, each aj = qjf + rj , where qj ∈ R[[x]], rj ∈ R[x],

and degx rj < degx f . Define g′ = yt +
∑e
j=1 rjbj ∈ R[x,Z, y]. Since the power of

y in each bj is less than t, g′ is monic in y of degree t. Then

g = yt+

e∑
j=1

ajbj = yt+

e∑
j=1

(qjf+rj)bj = yt+f

e∑
j=1

qjbj+

e∑
j=1

rjbj = g′+f

e∑
j=1

qjbj .

Thus (f, g)R[[x,Z, y]] = (f, g′)R[[x,Z, y]].
The “distinguished” condition for g implies that the non-leading coefficients

of g (in y) are in the maximal ideal (m, x, Z)R[[x]] [Z]. From the set-off equation
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above, g− g′ = f
∑e
j=1 qjbj . Since f ∈ R[x] is distinguished, f ≡ xs (mod m), and

thus f ∈ (m, x)R[x] ⊆ (m, x, Z)R[[x]] [Z, y]. It follows that g′ is distinguished. This
completes item 1.

For item 2, take g′1 = g1; the case n = 2 holds by item 1 with Z an empty
set of variables. If n > 2, use induction. Assume, for each i with 2 ≤ i ≤ n,
there exist g′′i ∈ R[[z1]][z2, . . . zi] distinguished monic in R[[z1]][z2, . . . zi−1, zi] in zi
of degree ti, and such that (g′′2 , . . . g

′′
i )R[[Z]] = (g2, . . . , gi)R[[Z]]. Since g1 ∈ R[z1]

is distinguished monic in z1, item 1 implies that there exist g′i in R[z1][z2, . . . zi]
distinguished monic (as an element of R[[z1]][z2, . . . zi−1, zi])̇ in zi of degree ti such
that, for i > 1,

(g1, g
′′
i )R[[Zi]] = (g1, g

′
i)R[[Zi]].

It follows that (g1, g2, . . . , gi)R[[Zi]] = (g1, g
′
2, . . . , g

′
i)R[[Zi]], for each i. This proves

item 2.
For statement 3.a, g1 monic in z1 implies that g1 is regular on R[Z]. For each

i > 1, let gi denote the image of gi in R[Z]/((g1, . . . , gi−1)R[Z]. Each gi monic in
zi over

R[Z]

(g1, . . . , gi−1)R[Z]
=

R[Zi−1]

(g1, . . . , gi−1)
[Z \ Zi−1]

implies gi is regular on R[Z]/(g1, . . . , gi−1)R[Z]. Thus g1, . . . , gn is a regular se-
quence on R[Z].

For statement 3.b, Weierstrass Corollary
19.2.2
26.9 implies the statement for n = 1.

For n > 1, by induction, the ring Rn−1 := R[Zn−1]/(g1, . . . , gn−1)R[Zn−1] is a finite
free R-module. Since

R[Z]

(g1, . . . , gn)R[Z]
=

Rn−1[zn]

gnRn−1[zn]

is a finite free Rn−1-module, it follows that R[Z]/(g1, . . . , gn)R[Z] is a finite free
R-module. The second part of statement 3.b follows from Corollary

19.2.2
26.9.4.

For statement 3.c, the ring R[Z]/(g1, . . . gn) is a finite free module over the
complete ring R. Therefore R[Z]/(g1, . . . gn) is complete. This implies that R[[Z]]
is the (g1, . . . gn)-adic completion and the Z-adic completion of R[Z].

Statement 3.d holds by Fact
R*hat
3.2.1.

This completes the proof of Remarks
19.2.2n
26.10. □

We apply the Weierstrass Preparation Theorem
19.2.1
26.8 to examine the structure

of a given prime ideal P in the power series ring Â = k[[X]], where X = {x1, . . . , xn}
is a set of n variables over the field k. Here A = k[X](X) is the localized polynomial
ring in these variables. Our procedure is to make a change of variables that yields
a regular sequence in P of a nice form.

19.2.3 Notation 26.11. By a change of variables, we mean a finite sequence of poly-
nomial change of variables of the type described below, where X = {x1, . . . , xn} is
a set of n variables over the field k. For example, with ei, fi ∈ N, consider

x1 7→ x1 = z1, (x1 is fixed) x2 7→ x2 + xe21 = z2, . . . ,

xn−1 7→ xn−1 + x
en−1

1 = zn−1, xn 7→ xn + xen1 = zn,

followed by:
z1 7→ z1 + zf1n = t1, z2 7→ z2 + zf2n = t2, . . . ,

zn−1 7→ zn−1 + zfn−1
n = tn−1, zn 7→ zn = tn, (zn is fixed).
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Thus a change of variables defines an automorphism of Â that restricts to an auto-
morphism of A.

19.2.4 Theorem 26.12. Let R := k[[X]], where k is a field, and X = {x1, . . . , xn} is
a finite set of indeterminates over k. Let P ∈ SpecR with x1 6∈ P and htP = r,
where 1 ≤ r ≤ n− 1. Then:

(1) There exists a change of variables

x1 7→ z1 := x1 (x1 is fixed), x2 7→ z2, . . . , xn 7→ zn,

and a regular sequence f1, . . . , fr ∈ P so that, with Zi = {z1, . . . , zi} and
for each i with 1 ≤ i ≤ n, each fi is distinguished monic in zn−i+1 as an
element of

k[[Zn−r]] [zn−r+1, . . . , zn−i][zn−i+1].

In particular
f1 ∈ k[[Zn−r]] [zn−r+1, . . . , zn−1][zn] is monic in zn
f2 ∈ k[[Zn−r]] [zn−r+1, . . . , zn−2][zn−1] is monic in zn−1, etc
...

fr ∈ k[[Zn−r]] [zn−r+1] is monic in zn−r+1.

(2) More generally, if f1, . . . , fr ∈ P satisfy the properties of item 1 for some
change of variables Z and J := (f1, . . . , fr)R, then:
(a) P is a minimal prime of J .
(b) The ring R/J is a finite free module extension of k[[Zn−r]].
(c) The (Z ′n−r)-adic completion of k[[Zn−r]] [Z ′n−r] is identical to the

(f1, . . . fr)-adic completion and both equal R = k[[X]] = k[[Z]].
(d) If P1 := P ∩ k[[Zn−r]] [Z ′n−r], then P1R = P , that is, P is extended

from k[[Zn−r]] [Z
′
n−r].

(e) If I is an ideal of R such that f1, . . . , fr ∈ I, then I is extended from
k[[Zn−r]] [Z

′
n−r]; that is, I = (I ∩ k[[Zn−r]] [Z ′n−r])R.

(f) P ∩ k[[Zn−r]] = (0), and

k[[Zn−r]] ↪→ k[[Zn−r]] [Z
′
n−r]/P1

∼= k[[Z]]/P

is a finite integral extension.

Proof. For item 1, first find polynomials in one variable over power series
rings:

19.2.4c Claim 26.13. There exists a change of variables

x1 7→ z1 := x1 (x1 is fixed), x2 7→ z2, . . . , xn 7→ zn,

and a regular sequence f1, . . . , fr ∈ P so that, for every i with 1 ≤ i ≤ r, and the
polynomial fi ∈ k[[z1, . . . , zn−i]] [zn−i+1] is distinguished monic as a polynomial in
zn−i+1.

Proof. Proof of Claim
19.2.4c
26.13. Since R is a unique factorization domain, there

exists a nonzero prime element f in P . The power series f is therefore not a multiple
of x1, and so f must contain a monomial term xi22 . . . x

in
n with a nonzero coefficient

in k. This nonzero coefficient in k may be assumed to be 1. Given positive integers
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e2, . . . , en−1, there exists an automorphism σ : R → R defined by the change of
variables:
x1 7→ x1 x2 7→ t2 := x2+x

e2
n . . . xn−1 7→ tn−1 := xn−1+x

en−1
n xn 7→ xn.

If n = 2, x2 7→ x2 = xn. For n > 2, assume that e2, . . . , en−1 ∈ N are chosen
suitably so that f written as a power series in the variables x1, t2, . . . , tn−1, xn
contains a term anx

s
n, where s is a positive integer, and an ∈ k is nonzero. Assume

that the integer s is minimal among all integers i such that a term axin occurs in f
with a nonzero coefficient a ∈ k; further assume that the coefficient an = 1.

Let B0 := k[[x1, t2, . . . , tn−1]] [xn]. Weierstrass Theorem
19.2.1
26.8 implies

f = εf1 ∈ P,
where f1 ∈ B0 is a distinguished monic polynomial in xn of degree s and ε is a
unit in R. Since f ∈ P is a prime element, f1 ∈ P is also a prime element. By
Weierstrass Corollary

19.2.2
26.9, every element g of R can be written as:

g = f1h+ q,

where h ∈ k[[x1, t2, . . . , tn−1, xn]] = R and q ∈ B0. Hence q is a polynomial in xn
of degree less than s. Let f1 and α1, . . . , αt be generators for P in R; write each
αi = f1hi + qi, where each hi ∈ R, and each qi ∈ B0 has degree in xn less than
s. Thus P is finitely generated by f1 and the set {qi} ⊂ B0. It follows that P is
extended from P ∩B0.

This implies Claim
19.2.4c
26.13 for r = 1, with f1 as defined and z1 = x1, z2 = t2, . . . ,

zn−1 = tn−1, zn = xn.
For r > 1, use induction and P0 := P ∩ k[[x1, t2, . . . , tn−1]]. For f1 de-

fined above, f1 is distinguished monic in xn over k[[x1, t2, . . . , tn−1]]. Thus f1 /∈
k[[x1, t2, . . . , tn−1]]. Since P is extended from B0 := k[[x1, t2, . . . , tn−1]] [xn] and
P ∩B0 has height r, it follows that htP0 = r − 1. Since x1 /∈ P , we have x1 /∈ P0.
By induction there exists a change of variables

t2 7→ z2, . . . , tn−1 7→ zn−1

of k[[x1, t2, . . . , tn−1]] and f2, . . . , fr ∈ P0 so that, for every i with 2 ≤ i ≤ r, the
polynomial fi is distinguished monic in k[[x1, z2, . . . , zn−i]] [zn−i+1].

The polynomial f1 is still distinguished monic in k[[x1, z2, . . . , zn−1 = tn−1]] [zn].
By Remark

19.2.2n
26.10.3a, f1, . . . fr is a regular sequence. This proves Claim

19.2.4c
26.13. □

Claim
19.2.4c
26.13 and Remark

19.2.2n
26.10.2 complete the proof of item 1 of Theorem

19.2.4
26.12.

For item 2 of Theorem
19.2.4
26.12, apply

Kap
[104, Theorem 132, p. 95]: “A proper

ideal that contains a regular sequence of length r in a commutative ring has height
at least r.” It follows that P is a minimal prime ideal over (f1, . . . , fr)k[[Z]]. Thus
Statement 2.a holds. Statements 2.b, 2.c, 2.d and 2.e of Theorem

19.2.4
26.12 follow from

statements 3.b, 3.c, and 3.d of Remarks
19.2.2n
26.10. For the proof of statement 2.f of

Theorem
19.2.4
26.12, let P1 := P ∩ k[[Zn−r]] [Z ′n−r], and consider the maps

k[[Zn−r]]
α
↪→ k[[Zn−r]] [Z

′
n−r]/(f1, . . . , fr)→ k[[Zn−r]] [Z

′
n−r]/P1

∼= R/P.

By statement 2.b, the map α is free and hence flat. Since htP1 = htP = r,
the height of the prime ideal P1/(f1, . . . , fr) in k[[Zn−r]] [Z

′
n−r]/(f1, . . . , fr) is 0.

Flatness of α implies that ht(P ∩ k[[Zn−r]]) = 0, that is, P ∩ k[[Zn−r]] = (0). This
completes the proof of Theorem

19.2.4
26.12. □

The following theorem is the technical heart of this chapter.
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19.2.5 Theorem 26.14. Let k be a field and let y and X = {x1, . . . , xn} be variables
over k. Assume that V is a discrete valuation domain with completion V̂ = k[[y]]
and that k[y] ⊆ V ⊆ k[[y]] and that the field k((y)) = k[[y]] [1/y] has uncountable
transcendence degree over the quotient field Q(V ) of V . Set R0 := V [[X]] and
R = R̂0 = k[[y,X]]. Let P ∈ SpecR be such that :

(i) P ⊆ (X)R (so y /∈ P ), and
(ii) dim(R/P ) > 2.

Then there is a prime ideal Q ∈ SpecR such that
(1) P ⊂ Q ⊂ (X)R,
(2) dim(R/Q) = 2, and
(3) P ∩R0 = Q ∩R0.

In particular, P ∩ k[[X]] = Q ∩ k[[X]].

Proof. Assume that P has height r. Since dim(R/P ) > 2, it follows that
0 ≤ r < n− 1.

If r > 0, then Theorem
19.2.4
26.12 implies there exists a transformation x1 7→

z1, . . . , xn 7→ zn so that the variable y is fixed and there exist a regular sequence of
distinguished monic polynomials f1, . . . , fr ∈ P such that

f1 ∈ k[[y, z1, . . . , zn−r]] [zn−r+1, . . . , zn] is monic in zn,
f2 ∈ k[[y, z1, . . . , zn−r]] [zn−r+1, . . . , zn−1] is monic in zn−1 etc,

...
fr ∈ k[[y, z1, . . . , zn−r]] [zn−r+1] is monic in zn−r+1,

and the other assertions of Theorem
19.2.4
26.12 hold, so the prime ideal P is minimal

over (f1, . . . , fr)R. Let Zn−r = {z1, . . . , zn−r} and Z ′n−r = {zn−r+1, . . . , zn−1, zn}.
Define D := k[[y, Zn−r]] [Z

′
n−r](y,Z) and P1 := P∩D, By Theorem

19.2.4
26.12, P1R = P .

If r = 0, then P = (0). Put zi := xi, for each i with 1 ≤ i ≤ n, set

Z = Zn = X = {z1, . . . , zn} = Zn−r and Z ′n−r = ∅.

Define D := k[[y,X]] and P1 = (0) = P .
The following diagram shows these rings and ideals.

R = k[[y,X]] = k[[y, Zn−r, Z
′
n−r]]

(X)R

D = k[[y, Zn−r]] [Z
′
n−r](y,Z)

P = P1R

P1 = P ∩D
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Note that f1, . . . , fr ∈ P1. Let g1, . . . , gs ∈ P1 be such that

P1 = (f1, . . . , fr, g1, . . . , gs)D, then P = P1R = (f1, . . . , fr, g1, . . . , gs)R.

For each (i) := (i1, . . . , in) ∈ Nn and j, k with 1 ≤ j ≤ r, 1 ≤ k ≤ s, let aj,(i), bk,(i)
denote the coefficients in k[[y]] of the fj , gk, so that

fj =
∑

(i)∈Nn

aj,(i)z
i1
1 . . . zinn , gk =

∑
(i)∈Nn

bk,(i)z
i1
1 . . . zinn ∈ k[[y]] [[Z]].

Define

∆ :=

{
{aj,(i), bk,(i)} ⊆ k[[y]], for r > 0

∅, for r = 0.

A key observation here is that in either case the set ∆ is countable.
To continue the proof, we consider S := Q(V (∆)) ∩ k[[y]], a discrete valuation

domain, and its field of quotients L := Q(V (∆)). Since ∆ is a countable set,
the field k((y)) has uncountable transcendence degree over L. Let γ2, . . . , γn−r be
elements of k[[y]] that are algebraically independent over L. We define
T := L(γ2, . . . , γn−r) ∩ k[[y]] and E := Q(T ) = L(γ2, . . . , γn−r).

The diagram below shows the prime ideals P and P1 and the containments
among the relevant rings.

R = k[[y, Z]]

P = ({fj , gk})R

D := k[[y, Zn−r]] [Z
′
n−r](y,Z)

P1 = ({fj , gk})D
Q(k[[y]]) = k[[y]] [1/y] = k((y))

k[[y]]
E := Q(T ) = L(γ2, . . . , γn−r)

T := L(γ2, . . . , γn−r) ∩ k[[y]]

S := Q(V (∆)) ∩ k[[y]]

L := Q(S) = Q(V (∆))

V

Q(V )

k[y]
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Let P2 := P ∩ S[[Zn−r]] [Z ′n−r](y,Z). Then P2R = P , since

f1, . . . , fr, g1, . . . , gs ∈ S[[Zn−r]] [Z ′n−r](y,Z),

and P2S[[Z]] = P ∩S[[Z]]. Since P ⊆ (x1, . . . , xn)R = (Z)R, there is a prime ideal
P̃ in L[[Z]] that is minimal over P2L[[Z]]. Since L[[Z]] is flat over S[[Z]],

(
19.2.5
26.14.i) P ∩ S[[Z]] = P2S[[Z]] = P̃ ∩ S[[Z]].

Note that L[[X]] = L[[Z]] is the (f1, . . . , fr)-adic (and the (Z ′n−r)-adic) completion
of L[[Zn−r]] [Z ′n−r](Z). In particular,

L[[Zn−r]] [Z
′
n−r]/(f1, . . . , fr) = L[[Zn−r]] [[Z

′
n−r]]/(f1, . . . , fr)

and this also holds with the field L replaced by its extension field E.
Since L[[Z]]/P̃ is a homomorphic image of L[[Z]]/(f1, . . . , fr), it follows that

L[[Z]]/P̃ is integral (and finite) over L[[Zn−r]]. This yields the commutative dia-
gram:

(
19.2.5
26.14.0)

E[[Zn−r]]
φ
↪→ E[[Zn−r]] [[Z

′
n−r]]

P̃E[[Z]]
= E[[Z]]

PE[[[Z]]

↑ ↑

L[[Zn−r]]
ψ
↪→ L[[Zn−r]] [[Z

′
n−r]]

P̃
= L[[Z]]

P̃

with injective finite horizontal maps. Recall that E is the subfield of k((y)) obtained
by adjoining γ2, . . . , γn−r to the field L. Thus the vertical maps in Diagram

19.2.5
26.14.0

are faithfully flat.
Let q := (z2 − γ2z1, . . . , zn−r − γn−rz1)E[[Zn−r]] ∈ Spec(E[[Zn−r]]) and let W̃

be a minimal prime of the ideal (P̃ , q)E[[Z]]. Since

f1, . . . , fr, z2 − γ2z1, . . . , zn−r − γn−rz1

is a regular sequence in T [[Z]], the prime ideal W := W̃ ∩ T [[Z]] has height n− 1.
Let Q̃ be a minimal prime of W̃k((y))[[Z]] and let Q := Q̃ ∩R. Then

(
19.2.5
26.14.ii) W = Q ∩ T [[Z]] = W̃ ∩ T [[Z]], and P ⊂ Q ⊂ (Z)R = (X)R.

Pictorially we have:
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(W̃ ) ⊆min Q̃ ⊂ k((y))[[Z]]

R := k[[y, Z]]

P = ({fj , gk})R ⊆ Q ⊂ R

D := k[[y, Zn−r]] [Z
′
n−r](y,Z)

P1 = ({fj , gk})D ⊂ D

(P̃ , q) ⊆min W̃ ⊂ E[[Z]]

(P2) ⊆min P̃ ⊂ L[[Z]]

P2 = ({fj , gk}) ⊂ S[[Zn−r]] [Z ′n−r](y,Z)

W ⊂ T [[Z]]

S[[Z]]
L[[Zn−r]] [Z

′
n−r](Z)

q ⊂ E[[Zn−r]]

L[[Zn−r]]

Notice that q is a prime ideal of height n − r − 1. Since k((y))[[Z]] is flat
over k[[y, Z]] = R, it follows that htQ = n − 1 and dim(R/Q) = 2. Thus P2 ⊆
W ∩ S[[Zn−r]] [Z ′n−r](y,Z).

19.2.6 Claim 26.15. q ∩ L[[Zn−r]] = (0).

To show this we argue as in Matsumura
M1.5
[122, Proof of Theorem 2]: Suppose

that
h =

∑
m∈N

hm ∈ q ∩ L[[z1, . . . , zn−r]],

where hm ∈ L[z1, . . . , zn−r] is a homogeneous polynomial of degree m:

hm =
∑
|(i)|=m

c(i)z
i1
1 . . . z

in−r

n−r ,

where (i) := (i1, . . . , in−r) ∈ Nn−r, |(i)| := i1 + · · · + in−r and c(i) ∈ L. Consider
the E-algebra homomorphism π : E[[Zn−r]] → E[[z1]] defined by π(z1) = z1 and
π(zi) = γiz1 for 2 ≤ i ≤ n− r. Then kerπ = q, and for each m ∈ N:

π(hm) = π(
∑
|(i)|=m

c(i)z
i1
1 . . . z

in−r

n−r ) =
∑
|(i)|=m

c(i)γ
i2
2 . . . γ

in−r

n−r z
m
1

and
π(h) =

∑
m∈N

π(hm) =
∑
m∈N

∑
|(i)|=m

c(i)γ
i2
2 . . . γ

in−r

n−r z
m
1 .

Since h ∈ q, π(h) = 0. Since π(h) is a power series in E[[z1]], each of its coefficients
is zero, that is, for each m ∈ N,∑

|(i)|=m

c(i)γ
i2
2 . . . γ

in−r

n−r = 0.

Since the γi are algebraically independent over L, each c(i) = 0. Therefore h = 0,
and so q ∩ L[[Zn−r]] = (0). This proves Claim

19.2.6
26.15.

19.2.65 Claim 26.16. q = W̃ ∩ E[[Zn−r]].
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To show Claim
19.2.65
26.16, consider the integral extension ϕ of Diagram

19.2.5
26.14.0:

E[[Zn−r]]
φ
↪→

E[[Zn−r]] [[Z
′
n−r]]

P̃E[[Z]]
=

E[[Z]]

PE[[Z]]
.

By definition, q ∈ Spec(E[[Zn−r]]) and W̃ is a prime ideal of E[[Z]] minimal over
the ideal (q, P̃ )E[[Z]]. Thus q ⊆ W̃ ∩ E[[Zn−r]] and W̃E[[Z]]/PE[[[Z]] is a prime
ideal of E[[Z]]/PE[[[Z]] minimal over ϕ(q) = qE[[Z]]/PE[[[Z]].

Suppose that q 6= W̃ ∩E[[Zn−r]]; then the prime ideal ϕ−1(W̃E[[Z]]/PE[[[Z]])
properly contains q. Since ϕ is a flat extension, Remark

remflat
2.37.

flgd
10 (Going-down)

implies that there is a smaller prime ideal contained in ϕ−1(W̃E[[Z]]/PE[[[Z]])

that lies over q, a contradiction to W̃E[[Z]]/PE[[[Z]] being a minimal prime ideal
over ϕ(q). This contradiction establishes that q = W̃ ∩ E[[Zn−r]], as desired for
Claim

19.2.65
26.16.

19.2.67 Claim 26.17. P̃ = W̃ ∩ L[[Z]].

For Claim
19.2.67
26.17, observe that Claims

19.2.6
26.15 and

19.2.65
26.16 imply

W̃ ∩ L[[Zn−r]] = W̃ ∩ E[[Zn−r]] ∩ L[[Zn−r]] = q ∩ L[[Zn−r]] = (0).

Consider the integral extension ψ of Diagram
19.2.5
26.14:

L[[Zn−r]]
ψ
↪→ L[[Zn−r]] [[Z

′
n−r]]/P̃ = L[[Z]]/P̃ .

Since P̃ ∈ Spec(L[[Z]]), it follows that P̃ ⊆ W̃ ∩ L[[Z]].
Suppose that P̃ 6= W̃ ∩ L[[Z]]. Then (0) = P̃ /P̃ ( (W̃ ∩ L[[Z]])/P̃ are prime

ideals of L[[Z]]/P̃ that both lie above the prime ideal (0). Since ψ is an integral
extension of integral domains, it is not possible to have two distinct prime ideals in
a chain that both lie above the same prime ideal (0) of L[[Zn−r]]; see

M
[123, Theorem

9.3]. This contradiction shows that P̃ = W̃ ∩ L[[Z]]. Thus Claim
19.2.67
26.17 holds.

Consider the commutative diagram below, where all the maps are inclusions:

(
19.2.67
26.17.0)

R = k[[y, Z]] ↪→ k((y))[[Z]]

↑ ↑

T [[Z]] ↪→ E[[Z]]

↑ ↑

S[[Z]] ↪→ L[[Z]] .

Then Q ∩ T [[Z]] =W = W̃ ∩ T [[Z]], by Equation
19.2.5
26.14.ii. Thus

Q ∩ S[[Z]] = Q ∩ T [[Z]] ∩ S[[Z]] = W̃ ∩ L[[Z]] ∩ S[[Z]] = P̃ ∩ S[[Z]],

using Claim
19.2.67
26.17. Since P ∩ S[[Z]] = P̃ ∩ S[[Z]] by Equation

19.2.5
26.14.i, we conclude

that Q ∩ S[[Z]] = P ∩ S[[Z]] and therefore Q ∩R0 = P ∩R0. □

We record the following corollary.

19.2.7 Corollary 26.18. Let k be a field, let X = {x1, . . . , xn} and y be independent
variables over k, and let R = k[[y,X]]. Assume P ∈ SpecR is such that:
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(i) P ⊆ (x1, . . . , xn)R and
(ii) dim(R/P ) > 2.

Then there is a prime ideal Q ∈ SpecR so that
(1) P ⊂ Q ⊂ (x1, . . . , xn)R,
(2) dim(R/Q) = 2, and
(3) P ∩ k[y](y)[[X]] = Q ∩ k[y](y)[[X]].

In particular, P ∩ k[[x1, . . . , xn]] = Q ∩ k[[x1, . . . , xn]].

Proof. With notation as in Theorem
19.2.5
26.14, let V = k[y](y). □

Exercises
char0rats (1) Prove that a local ring that has residue field of characteristic zero contains the

field of rational numbers.
(2) Let I = (f1, . . . , fr)R be a proper ideal of a ring R. If (f1, . . . , fr) is a regular

sequence on R of length r, prove that ht I ≥ r. This is a fact used in the proof
of Theorem

19.2.4
26.12. A reference is given there to

Kap
[104, Theorem 132] to confirm

this fact.





CHAPTER 27

Generic fiber rings of mixed polynomial-power
series rings May 26 2020 (gffpi)gffpi

Our primary goal in this chapter is to prove Theorem
gffres
26.3. This theorem

concerns the generic formal fiber rings (denoted Gff) of the rings A := k[X](X),
B := k[[X]] [Y ](X,Y ) and C := k[Y ](Y )[[X]], where k is a field and X and Y are
finite sets of indeterminates; see Equation

gffnot
26.1.0 and Notation

gffnot
26.1. Theorem

gffres
26.3

is proved using the techniques developed in Chapter
weiersec
26.

Matsumura proves in
M1.5
[122] that the generic formal fiber ring of A has dimension

one less than the dimension of A, and the generic formal fiber rings of B and C
each have dimension equal to dimB−2 = dimC−2. Matsumura does not consider
in

M1.5
[122] the question of whether for A, B or C every maximal ideal of the generic

formal fiber ring has the same height.
For a local extension R ↪→ S of Noetherian local integral domains, Theoremtgflem

27.19 gives sufficient conditions in order that every maximal ideal of Gff(S) has
height h = dimGff(R). Using Theorem

tgflem
27.19, we prove in Theorem

esfingen1
27.22 that

all prime ideals maximal in the generic formal fiber of a local domain essentially
finitely generated over a field have the same height.

Sections
wimpB
27.1 and

wimpC
27.2 contain the proofs of parts 2 and 3 of Theorem

gffres
26.3.

In Section
wimpA
27.4 we prove part 1 of Theorem

gffres
26.3, using the results of Section

19.5
27.3

concerning subrings of power series rings in two variables. Section
gffps
27.5 contains the

proof of part 4. Section
gffRS
27.6 gives a more general result, Theorem

tgflem
27.19, containing

conditions that imply the dimension of the generic formal fiber ring of a Noetherian
local ring R is equal to that of a Noetherian local extension ring S.

27.1. Weierstrass implications for the ring B = k[[X]] [Y ](X,Y )wimpB
Remarks

19.3.1rem
27.1 are useful for Theorem

19.3.1
27.2 and Theorem

19.6.1
27.12.

19.3.1rem Remarks 27.1. Let n and m be positive integers, and let X = {x1, . . . , xn}
and Y = {y1, . . . , ym} denote sets of variables over a field k. For each i with
1 ≤ i ≤ m, let Yi := {y1, . . . , yi}, and let Ri = k[[X, yi]]. Let

B := k[[X]] [Y ](X,Y ) = k[[x1, . . . , xn]] [y1, . . . , ym](x1,...,xn,y1,...,ym) and
C := k[Y ] [[X]](X,Y ) = k[y1, . . . , ym] [[x1, . . . , xn]](x1,...,xn,y1,...,ym).

Let P ∈ Spec(k[[X,Y ]]). Then:
(1) The (X,Y )-adic completion of B and of C is B̂ = k[[X,Y ]] = Ĉ.
(2) Assume that P ∩ B = (0), dim(B̂/P ) > 2, and P ⊆ (X,Ym−1)B̂. Then

there exists Q ∈ Spec B̂ such that

P ⊆ Q ⊆ (X,Ym−1)B̂, htQ = n+m− 2, and Q ∩B = (0).

357
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(3) Assume that P ∩ C = (0), dim(Ĉ/P ) > 2, and P ⊆ (X,Ym−1)Ĉ. Then
there exists Q ∈ Spec Ĉ such that
P ⊆ Q ⊆ (X,Ym−1)Ĉ, htQ = n+m− 2, and Q ∩ C = (0).

(4) Let Pi := P ∩ Ri, for every i such that 1 ≤ i ≤ m. Assume that
Pi * (X,Yi−1)k[[X,Yi]], for some i. Then, for each i, there exists a
prime element g ∈ Pi ∩ k[[X,Yi−1]] [yi] such that g is distinguished monic
in yi of positive degree as an element of k[[X,Yi−1]] [yi], in the sense of
Definition

distmon
26.7.

Proof. Item 1 is clear. For items 2 and 3, let R′ = k[ym](ym)][[X,Ym−1]].
Corollary

19.2.7
26.18 with the ring R := B̂ = Ĉ = k[[X,Y ]] = k[[ym]] [[X,Ym−1]] implies

that there exists a prime ideal Q ∈ Spec(Ĉ) such that

dim(Ĉ/Q) = 2, P ⊆ Q ⊆ (X,Ym−1)k[[X,Y ]], and P ∩R′ = Q ∩R′.
Since k[[X,Y ]] is catenary, ht(Q) = n + m − 2. Since B and C both involve
polynomials in ym and power series in some of the other variables of X ∪ Ym−1, it
follows that B and C are subrings of R′.

For item 2, Q ∩B = Q ∩B ∩R′ = P ∩R′ ∩B = P ∩B = (0).
For item 3, Q ∩ C = Q ∩ C ∩R′ = P ∩R′ ∩ C = P ∩ C = (0).
For item 4, by hypothesis Pi * (X,Yi−1)k[[X,Yi]]. Since Pi ⊆ (X,Yi)k[[X,Yi]],

some element of Pi contains a term yti , for some t > 0. Since Ĉ is a UFD, there
exists a nonzero prime element f ∈ Pi that contains a term yti , for some t > 0. Let
t be the minimal positive power of yi among such terms of f . We may assume the
coefficient of yti is 1. By Weierstrass Theorem

19.2.1
26.8, it follows that f = εg, where

g ∈ k[[X,Yi−1]] [yi] is a nonzero distinguished monic polynomial in yi of degree t
and ε is a unit of Ĉ. Thus g is a prime element of Pi∩k[[X,Yi−1]] [yi] as desired. □

19.3.1 Theorem 27.2. Assume k is a field, X and Y are finite sets of indeterminates,
B = k[[X]] [Y ](X,Y ), |X| = n, and |Y | = m, where m,n ∈ N. If Q is an ideal of
B̂ = k[[X,Y ]] maximal with the property that Q∩B = (0), then Q is a prime ideal
of height n+m− 2.

Proof. Suppose first that Q is an ideal maximal with respect to the property
that Q∩B = (0). Then clearly Q is prime. Matsumura shows in

M1.5
[122, Theorem 3]

that the dimension of the generic formal fiber of B is at most n+m− 2. Therefore
htQ ≤ n+m− 2.

Assume P ∈ Spec B̂ is an arbitrary prime ideal of height r < n +m − 2 with
P ∩ B = (0). We construct a prime ideal Q ∈ Spec B̂ with P ⊂ Q, Q ∩ B = (0),
and htQ = n+m− 2. This will show that all prime ideals maximal in the generic
fiber have height n+m− 2.

Use the following notation, for 1 ≤ ` < i ≤ m:
Yi := {y1, y2, . . . , yi}; Ri := k[[X,Yi]]; Pi := P ∩Ri; Yℓ,i := {yℓ, yℓ+1, . . . , yi}.

In the case where P ⊆ (X,Ym−1)B̂ = (X,Ym−1)Rm, there exists a Q as desired
by Remark

19.3.1rem
27.1.2, and so Theorem

19.3.1
27.2 holds in this case.

Assume for the remainder of the proof that P * (X,Ym−1)B̂. For the con-
struction of Q, we use Note

19.3.1c
27.3.

19.3.1c Note 27.3. P1 ⊆ (X)k[[X, y1]], and therefore m ≥ 2.
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Proof. (of Note
19.3.1c
27.3) If P1 * (X)k[[X, y1]], then Remark

19.3.1rem
27.1.4 implies there

exists a distinguished monic polynomial g such that g ∈ P1 ∩ k[[X]] [y1] ⊆ P ∩ B,
a contradiction to P ∩B = (0).

Since Pm = P * (X,Ym−1)B̂, it follows that m ≥ 2. □

The proof of Claim
EV
27.4 completes the proof of Theorem

19.3.1
27.2:

EV Claim 27.4. Assume that P ∈ Spec B̂, htP = r < n +m − 2, P ∩ B = (0),
and P * (X,Ym−1)B̂. Then there exists a DVR V and a prime ideal such that

(i) k[y1](y1) ⊆ V ⊆ k[[y1]], and k((y1)) = k[[y1]][1/y1] has uncountable tran-
scendence degree over Q(V ).

(ii) P ⊆ V [[X]] [[Y2,m]].
(iii) P ⊂ Q, and htQ = n+m− 2.
(iv) Q ∩ V [[X]] [Y2,m] = P ∩ V [[X]] [Y2,m].
(v) Q ∩B = (0).

Proof. (Proof of Claim
EV
27.4.) Let s be the smallest nonnegative integer with

Pm−s ⊆ (X,Ym−s−1)Rm−s. By assumption, Pm = P * (X,Ym−1)B̂, and so s > 0
and P 6= (0). By Note

19.3.1c
27.3, s = m − 1 satisfies Pm−s ⊆ (X,Ym−s−1)Rm−s. Thus

s exists and 0 < s ≤ m− 1.
The minimality of s implies Pm−i * (X,Ym−i−1)Rm−i, for every 0 ≤ i ≤ s− 1.

By Remark
19.3.1rem
27.1.4, there exist prime polynomials g1, . . . , gs such that

g1 ∈ Pm ∩ k[[X,Ym−1]] [ym], . . . , gi ∈ Pm−i+1 ∩ k[[X,Ym−i]] [ym−i−1].
. . . gs ∈ Pm−s+1 ∩ k[[X,Ym−s]] [ym−s−1],

and each gi is distinguished monic over k[[X,Ym−i]] in the variable ym−i+1. By
Remark

19.2.2n
26.10.2, there exists a regular sequence

f1 ∈ Pm, . . . , fi ∈ Pm−i+1, . . . , fs ∈ Pm−s+1,

where each fi is a distinguished monic element of Rm−s[Ym−s+1,m−i][ym−i+1],
monic in ym−i+1. Each fi ∈ G := k[[X,Ym−s]] [Ym−s+1,m] = Rm−s[Ym−s+1,m].

By Theorem
19.2.4
26.12.2d, P is extended from G. Choose h1, . . . , ht ∈ G such that

P ∩G = (f1, . . . , fs, h1, . . . , ht)G. Then P = (f1, . . . , fs, h1, . . . , ht)B̂. For integers
d, ` with 1 ≤ d ≤ s and 1 ≤ ` ≤ t, express the fd and hℓ in G as power series in
B̂ = k[[y1]][[y2, . . . , ym]] [[X]] with coefficients in k[[y1]]:

fd =
∑

ad(i)(j)y
i2
2 . . . yimm xj11 . . . xjnn and hℓ =

∑
bℓ(i)(j)y

i2
2 . . . yimm xj11 . . . xjnn ,

where (i) := (i2, . . . , im), (j) := (j1, . . . , jn), and ad(i)(j), bℓ(i)(j) ∈ k[[y1]]. The set
∆ = {ad(i)(j), bℓ(i)(j)} is countable.

For item i of Claim
EV
27.4, define V := k(y1,∆) ∩ k[[y1]]. Then V is a discrete

valuation domain with completion k[[y1]]. Since ∆ is countable, the field of fractions
Q(V ) has countable transcendence degree over k[y1](y1). By Fact

psunctd
3.10, k((y1)) has

uncountable transcendence degree over Q(V ). Thus item i of Claim
EV
27.4 holds.

Item ii holds since B ⊆ k[y1](y1)[[X,Y2,m]] ⊆ V [[X,Y2,m]].
Notice that V [[X,Y2,m−s]] ⊆ Rm−s and that V [[X,Y2,m−s]] has completion

Rm−s. Set f := {f1, . . . , fs}. Then

f ⊂ V [[X,Y2,m−s]] [Ym−s+1,m] ⊆ G and (f)G ∩Rm−s = (0).
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Furthermore the extension

V [[X,Y2,m−s]] ↪→
V [[X,Y2,m−s]] [Ym−s+1,m]

(f)V [[X,Y2,m−s]] [Ym−s+1,m]

is finite and
P ∩ (V [[X,Y2,m−s]]) = P ∩Rm−s ∩ (V [[X,Y2,m−s]]) = Pm−s ∩ (V [[X,Y2,m−s]]).

Recall the choice of s minimal such that Pm−s ⊆ (X,Ym−s−1)Rm−s. Also
Rm−s is the completion of V [[X,Y2,m−s]]. It follows that

Pm−s ∩ (V [[X,Y2,m−s]]) ⊆ ( (X,Ym−s−1)Rm−s ) ∩ (V [[X,Y2,m−s]])

⊆ (X,Ym−s−1)(V [[X,Y2,m−s]]).

Consider the commutative diagram:

(
EV
27.4.0)

Rm−s := k[[X,Ym−s]] ↪→ Rm−s[[Ym−s+1,m]]
(f)Rm−s[[Ym−s+1,m]] =

k[[X,Y ]]
(f)k[[X,Y ]] =

B̂

(f)B̂

↑ ↑

V [[X,Y2,m−s]] ↪→ V [[X,Y2,m−s]] [Ym−s+1,m]
(f)V [[X,Y2,m−s]] [Ym−s+1,m] .

The horizontal maps are injective and finite and the vertical maps are completions.
The ring in the top right corner of Diagram

EV
27.4.0 is B̂/(f)B̂. Let P denote

the image of P in B̂/(f)B̂. Thus P lies over Pm−s in Rm−s. By Theorem
19.2.5
26.14,

Pm−s ⊆ (X,Ym−s−1)Rm−s implies there is a prime ideal Qm−s of Rm−s such that
Pm−s ⊆ Qm−s ⊆ (X,Ym−s−1)Rm−s, dim(Rm−s/Qm−s) = 2 and

Qm−s ∩ (V [[X,Y2,m−s]]) = Pm−s ∩ (V [[X,Y2,m−s]]).

(The rings of the diagram are catenary, so the height of Qm−s is determined by its
dimension.) Since the top row of the diagram is an integral extension, the “Going-
up Theorem” holds. Therefore there is a prime ideal Q in B̂/(f1, . . . , fs)B̂ such
that Q lies over Qm−s with P ⊆ Q,

M
[123, Theorem 9.4].

Let Q be the preimage in B̂ = k[[X,Y ]] of Q. Then Q has height
n+ s− 2 +m− s = n+m− 2.

Thus item iii of Claim
EV
27.4 holds. Moreover, it follows from Diagram

EV
27.4.0 that

Q and P have the same contraction to V [[X,Y2,m]].
For the proof of item v, since B ⊆ V [[X,Y2,m−s]] [Ym−s+1,m], it follows that

Q ∩B = Q ∩ (V [[X,Y2,m−s]] [Ym−s+1,m]) ∩B
= P ∩ (V [[X,Y2,m−s]] [Ym−s+1,m]) ∩B = P ∩B = (0),

as desired. This completes the proof of Claim
EV
27.4. □

Theorem
19.3.1
27.2 is also proved. □

27.2. Weierstrass implications for the ring C = k[Y ](Y )[[X]]wimpC
As before, k denotes a field, n andm are positive integers, andX = {x1, . . . , xn}

and Y = {y1, . . . , ym} denote sets of variables over k. Consider the ring
C = k[y1, . . . , ym](y1,...,ym)[[x1, . . . , xn]] = k[Y ](Y )[[X]].

The completion of C is Ĉ = k[[Y,X]] = k[[X,Y ]].
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19.4.1 Theorem 27.5. Assume the notation above. If an ideal Q of Ĉ is maximal with
respect to the property that Q∩C = (0), then Q is a prime ideal and htQ = n+m−2.

Proof. As in Theorem
19.3.1
27.2, it is easy to see that an ideal Q maximal such

that Q ∩ C = (0) is a prime ideal.
Let B = k[[X]] [Y ](X,Y ) ⊂ C. If P ∈ Spec Ĉ = Spec B̂ is such that P ∩C = (0),

then P ∩B = (0), and so htP ≤ n+m− 2, by Theorem
19.3.1
27.2. Let P be a nonzero

prime ideal of Spec Ĉ with P ∩ C = (0) and htP = r < n +m − 2. It suffices to
show there exists a prime ideal Q ∈ Spec Ĉ such that

P ⊆ Q, Q ∩ C = (0), htQ = n+m− 2.

In the notation of Remark
19.3.1rem
27.1, Ym−1 = {y1, . . . , ym−1}. If P ⊆ (X,Ym−1)Ĉ,

then Remark
19.3.1rem
27.1.3 implies the existence of Q ∈ Spec Ĉ with htQ = n + m − 2

such that P ⊂ Q and Q ∩ C = (0). Thus Theorem
19.4.1
27.5 holds if P ⊆ (X,Ym−1)Ĉ.

Therefore assume that P is not contained in (X,Ym−1)Ĉ for the remainder of
this proof. Then P is not contained in (X)Ĉ. Consider the ideal J := (P,X)Ĉ.
Since C is complete in the XC-adic topology, if J is primary for the maximal ideal
of Ĉ, then P is extended from C; see

R3
[158, Lemma 2]. Since P ∩C = (0), J is not

primary for the maximal ideal of Ĉ, and so htJ = n+s < n+m, where 0 < s < m.
Let W ∈ Spec Ĉ be a minimal prime ideal of J such that htW = n + s,

and let W0 = W ∩ k[[Y ]]. Then W = (W0, X)Ĉ and W0 is a prime ideal of
k[[Y ]] with htW0 = s. By Proposition

19.2.4
26.12 applied to k[[Y ]] and the prime ideal

W0 ∈ Spec k[[Y ]], there exists a change of variables Y 7→ Z with

y1 7→ y1 = z1, y2 7→ z2, . . . , ym 7→ zm

and elements f1, . . . , fs ∈W0, so that, with Z1 = {z1, . . . , zm−s},
f1 ∈ k[[Z1]] [zm−s+1, . . . , zm] is monic in zm

f2 ∈ k[[Z1]] [zm−s+1, . . . , zm−1] is monic in zm−1, etc
...

fs ∈ k[[Z1]] [zm−s+1] is monic in zm−s+1.

Then z1, . . . , zm−s, f1, . . . , fs is a regular sequence in k[[Z]] = k[[Y ]]. Let T be a
set of m− s additional variables: T = {tm−s+1, . . . , tm}. Define the map:

ϕ : k[[Z1, T ]] −→ k[[z1, . . . , zm]]

by zi 7→ zi, for every 1 ≤ i ≤ m− s, and tm−j+1 7→ fj , for every j with 1 ≤ j ≤ s.
The embedding ϕ is finite (and free) and so is the extension ρ of ϕ to the power
series ring in X over k[[Z1, T ]]:

ρ : k[[Z1, T ]] [[X]] −→ k[[z1, . . . , zm]] [[X]] = Ĉ.

The contraction ρ−1(W ) ∈ Spec k[[Z1, T,X]] of the prime ideal W of Ĉ has height
n+ s, since htW = n+ s. Moreover ρ−1(W ) contains (T,X)k[[Z1, T,X]], a prime
ideal of height n + s. Therefore ρ−1(W ) = (T,X)k[[Z1, T,X]]. By construction,
P ⊆W , and so ρ−1(P ) ⊆ (T,X)k[[Z1, T,X]].

Next construct a DVR V that contains all the coefficients in k[[z1]] of the
generators fi of W0 and of generators of P . As in the proof of Theorem

19.3.1
27.2, write
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expressions for the fj ’s as power series in z2, . . . , zm with coefficients in k[[z1]]:

fj =
∑

aj(i)z
i2
2 . . . zimm ,

where (i) := (i2, . . . , im), 1 ≤ j ≤ s, and aj(i) ∈ k[[z1]]. Let g1, . . . , ge be a finite
set of generators for P and express the gd, where 1 ≤ d ≤ e, as power series in
z2, . . . , zm, x1, . . . , xn with coefficients in k[[z1]]:

gd =
∑

bd(i)(ℓ)z
i2
2 . . . zimm xℓ11 . . . xℓnn ,

where (i) := (i2, . . . , im), (`) := (`1, . . . , `n), and bd(i)(ℓ) ∈ k[[z1]]. Let ∆ denote the
subset ∆ = {aj(i), bd(i)(ℓ)} of k[[z1]]. Define the discrete valuation domain:

V := k(z1,∆) ∩ k[[z1]].
Since V is countably generated over k(z1), the field k((z1)) has uncountable tran-
scendence degree over Q(V ) = k(z1,∆). Moreover, by construction the ideal P is
extended from V [[z2, . . . , zm]] [[X]].

Consider the embedding ψ : V [[z2, . . . , zm−s, T ]] −→ V [[z2, . . . , zm]]. The map
ψ is the restriction of ϕ above, so that ψ is the identity on V ; zi 7→ zi, for every i
with 2 ≤ i ≤ m− s; and tm−j+1 7→ fj , for every j with 1 ≤ j ≤ s.

Let σ be the extension of ψ to the power series rings:

σ : V [[z2, . . . , zm−s, T ]] [[X]] −→ V [[z2, . . . , zm]] [[X]]

with σ(xi) = xi for all i with 1 ≤ i ≤ n.
Notice that the finite (free) embedding ρ defined above is the completion σ̂ of

the map σ, that is, the extension of σ to the completions. Define
λ : V [[z2, . . . , zm−s]] [T ](Z1,T )[[X]] −→ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]],

determined by tm−j+1 7→ fj , for every j with 1 ≤ j ≤ s, also a finite free embedding.
Consider the commutative diagram:

(
19.4.1
27.5.0)

k[[Z1, T,X]]
σ̂=ρ−−−−→ k[[Z,X]] = Ĉx x

V [[z2, . . . , zm−s, T,X]]
σ−−−−→ V [[z2, . . . , zm, X]]x x

V [[z2, . . . , zm−s]] [T ](Z1,T )[[X]]
λ−−−−→ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]],

where ρ and λ are finite embeddings.
Recall that ρ−1(P ) ⊆ (T,X)k[[Z1, T,X]]. By Theorem

19.2.5
26.14, there exists a

prime ideal Q0 of the ring k[[Z1, T,X]] such that ρ−1(P ) ⊆ Q0, htQ0 = n+m− 2,
and
(
19.4.1
27.5.1) Q0 ∩ V [[z2, . . . , zm−s, T,X]] = ρ−1(P ) ∩ V [[z2, . . . , zm−s, T,X]].

By the “Going-up theorem”
M
[123, Theorem 9.4] used with the finite embedding ρ

of Diagram
19.4.1
27.5.0, there is a prime ideal Q ∈ Spec Ĉ that lies over Q0 and contains

P . Moreover, Q also has height n+m− 2.
Since ρ is a finite free embedding,

(
19.4.1
27.5.2) P ∩ k[[Z1, T,X]] = ρ−1(P ) ⊆ Q ∩ k[[Z1, T,X]] = Q0.
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To complete the proof, we show Q ∩ C = (0). For this, take the intersections
of the rings of Diagram

19.4.1
27.5.0 with P and Q and “chase” through the diagram. By

Equations
19.4.1
27.5.1 and

19.4.1
27.5.2,

P ∩ V [[z2, . . . , zm−s, T,X]] = Q ∩ V [[z2, . . . , zm−s, T,X]],

at the left middle level of the diagram.
Let P̃ = P ∩ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]]. Then

P̃ ⊆ Q̃ = Q ∩ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]].

The prime ideals P̃ and Q̃ of V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]] both lie over
P ∩ V [[z2, . . . , zm−s]] [T ](Z1,T )[[X]] = Q ∩ V [[z2, . . . , zm−s]] [T ](Z1,T )[[X]].

Since λ is a finite map, we conclude that P̃ = Q̃.
Since C ⊆ V [[z2, . . . , zm−s]] [zm−s+1, . . . , zm](Z)[[X]], the intersection

Q ∩ C = Q ∩ V [[z2, . . . , zm]] [zm−s+1, . . . , zm](Z)[[X]] ∩ C = Q̃ ∩ C = P̃ ∩ C
= P ∩ V [[z2, . . . , zm]] [zm−s+1, . . . , zm](Z)[[X]] ∩ C = P ∩ C = (0).

This completes the proof of Theorem
19.4.1
27.5. □

19.4.2 Remark 27.6. With B and C as in Sections
wimpB
27.1 and

wimpC
27.2, we have

B = k[[X]] [Y ](X,Y ) ↪→ k[Y ](Y )[[X]] = C and B̂ = k[[X,Y ]] = Ĉ.

Thus for P ∈ Spec k[[X,Y ]], if P ∩ C = (0), then P ∩ B = (0). By Theorems
19.3.1
27.2

and
19.4.1
27.5, each prime of k[[X,Y ]] maximal in the generic formal fiber of B or C

has height n +m − 2. Therefore each P ∈ Spec k[[X,Y ]] maximal with respect to
P ∩ C = (0) is also maximal with respect to P ∩ B = (0). However, if n+m ≥ 3,
the generic fiber of B ↪→ C is nonzero (see Propositions

20.4.3
28.25 and

20.4.4
28.27 of Chapterppssec

28), and so there exist primes of k[[X,Y ]] maximal in the generic formal fiber of B
that are not in the generic formal fiber of C.

27.3. Subrings of the power series ring k[[z, t]]
19.5

In this section we establish properties of certain subrings of the power series ring
k[[z, t]] that are useful in considering the generic formal fiber of localized polynomial
rings over the field k.

19.5.1 Notation 27.7. Let k be a field and let z and t be independent variables
over k. Consider countably many power series:

αi(z) =

∞∑
j=0

aijz
j ∈ k[[z]]

with coefficients aij ∈ k. Let s be a positive integer and let ω1, . . . , ωs ∈ k[[z, t]] be
power series in z and t, say:

ωi =

∞∑
j=0

βijt
j , where βij(z) =

∞∑
ℓ=0

bijℓz
ℓ ∈ k[[z]] and bijℓ ∈ k,

for each i with 1 ≤ i ≤ s. Consider the subfield k(z, {αi}, {βij}) of k((z)) and the
discrete rank-one valuation domain
(
19.5.1
27.7.0) V := k(z, {αi}, {βij}) ∩ k[[z]].
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The completion of V is V̂ = k[[z]]. Assume that ω1, . . . , ωr are algebraically in-
dependent over Q(V )(t) and that the elements ωr+1, . . . , ωs are algebraic over the
field Q(V )(t, {ωi}ri=1). Notice that the set {αi} ∪ {βij} is countable, and that also
the set of coefficients of the αi and βij

∆ := {aij} ∪ {bijℓ}
is a countable subset of the field k. Let k0 denote the prime subfield of k and let F
denote the algebraic closure in k of the field k0(∆). The field F is countable and the
power series αi(z) and βij(z) are in F [[z]]. Consider the subfield F (z, {αi}, {βij})
of F ((z)) and the discrete rank-one valuation domain

V0 := F (z, {αi}, {βij}) ∩ F [[z]].

The completion of V0 is V̂0 = F [[z]]. Since Q(V0)(t) ⊆ Q(V )(t), the elements
ω1, . . . , ωr are algebraically independent over the field Q(V0)(t). Let

E0 : = Q(V0)(t, ω1, . . . , ωr), E := Q(V )(t, ω1, . . . , ωr), and

Ẽ : = Q(V )(t, ω1, . . . , ωs).

Thus E0 ⊆ E ⊆ Ẽ, the field E0 is a subfield of Q(V0[[t]]), and the fields E and Ẽ

are subfields of Q(V [[t]]) with Ẽ algebraic over E.

19.5.5 Remark 27.8. Assume Notation
19.5.1
27.7. Define the integral domains:

(
19.5.5
27.8.0)

D0 : = E0 ∩ V0[[t]], D := E ∩ V [[t]], and

D̃ : = Ẽ ∩ V [[t]].

Thus D0 ⊆ D ⊆ D̃, and D̃ is algebraic over D. A result of Valabrega, Theorem
4.1.2
4.9,

implies that D0, D and D̃ are two-dimensional regular local rings with completions
D̂0 = F [[z, t]] and D̂ =

̂̃
D = k[[z, t]]. Moreover, Q(D0) = E0 is a countable field,

and Q(D̃) = Ẽ is algebraic over Q(D) = E. If γ ∈ zF [[z]] and (t− γ)k[[z, t]]∩D =

(0), then (t− γ)k[[z, t]] ∩ D̃ = (0).

19.5.2 Proposition 27.9. Assume Notation
19.5.1
27.7. Define D0 as in Equation

19.5.5
27.8.0.

Then there exists a power series γ ∈ zF [[z]] such that the prime ideal (t−γ)F [[z, t]]∩
D0 = (0), that is, (t− γ)F [[z, t]] is in the generic formal fiber of D0.

Proof. Since D0 is countable there are only countably many prime ideals in
D0 and since D0 is Noetherian there are only countably many prime ideals in D̂0 =
F [[z, t]] that lie over a nonzero prime of D0. There are uncountably many primes
in F [[z, t]], which are generated by elements of the form t− σ for some σ ∈ zF [[z]].
Thus there must exist an element γ ∈ zF [[z]] with (t− γ)F [[z, t]] ∩D0 = (0). □

For ωi = ωi(t) =
∑∞
j=0 βijt

j as in Notation
19.5.1
27.7 and γ an element of zk[[z]],

let ωi(γ) denote the following power series in k[[z]]:

ωi(γ) :=

∞∑
j=0

βijγ
j ∈ k[[z]].

19.5.3 Proposition 27.10. Assume Notation
19.5.1
27.7. Let k′ be a field with ∆ ⊂ k′ ⊆ k,

let V ′ be a DVR with k′[z](z) ⊆ V ′ ⊆ k′[[z]], let E′ := Q(V ′)(t, ω1, . . . , ωr), and
let D′ = E′ ∩ V ′[[t]], similar to Equation

19.5.5
27.8.0. For an element γ ∈ zk′[[z]], the

following conditions are equivalent :
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(i) (t− γ)k′[[z, t]] ∩D′ = (0).
(ii) γ, ω1(γ), . . . , ωr(γ) are algebraically independent over Q(V ′).

Proof. (i) ⇒ (ii): Assume by way of contradiction that {γ, ω1(γ), . . . , ωr(γ)}
is an algebraically dependent set over Q(V ′) and let d(h) ∈ V ′ be finitely many
elements such that ∑

(h)

d(h)ω1(γ)
h1 . . . ωr(γ)

hrγhr+1 = 0

is a nontrivial equation of algebraic dependence for γ, ω1(γ), . . . , ωr(γ), where each
(h) = (h1 . . . , hr, hr+1) is an (r + 1)-tuple of nonnegative integers. It follows that∑

(h)

d(h)ω
h1
1 . . . ωhr

r thr+1 ∈ (t− γ)k′[[z, t]] ∩D′ = (0).

Since ω1, . . . , ωr are algebraically independent over Q(V ′)(t), we have d(h) = 0 for
all (h), a contradiction. This completes the proof that (i) ⇒(ii).

(ii) ⇒ (i): If (t− γ)k′[[z, t]] ∩D′ 6= (0), then there exists a nonzero element

τ =
∑
(h)

d(h)ω
h1
1 . . . ωhr

r thr+1 ∈ (t− γ)k′[[z, t]] ∩ V ′[t, ω1, . . . , ωr],

with d(h) ∈ V. But this implies that

τ(γ) =
∑
(h)

d(h)ω1(γ)
h1 . . . ωr(γ)

hrγhr+1 = 0.

Since γ, ω1(γ), . . . , ωr(γ) are algebraically independent over Q(V ′), it follows that
all the coefficients d(h) = 0, a contradiction to the assumption that τ is nonzero. □

Proposition
19.5.4
27.11 follows from Proposition

19.5.2
27.9. In the statement we include

just the part of the setting necessary to apply Proposition
19.5.4
27.11 to the proof of

Theorem
19.6.1
27.12, instead of the full setting and notation of Notation

19.5.1
27.7 and Propo-

sition
19.5.2
27.9.

19.5.4 Proposition 27.11. Let αi(z) =
∑∞
j=0 aijz

j ∈ k[[z]] be countably many power
series in a variable z over a field k with coefficients aij ∈ k, let ω1, . . . , ωs ∈ k[[z, t]]
be power series in z and in an additional variable t, and write:

ωi =

∞∑
j=0

βijt
j , where βij(z) =

∞∑
ℓ=0

bijℓz
ℓ ∈ k[[z]] and bijℓ ∈ k,

for each i with 1 ≤ i ≤ s. Let r ≤ s be such that, with renumbering, ω1, . . . , ωr is a
maximal subset that is algebraically independent over Q(V )(t). Define
V := k(z, {αi}, {βij}) ∩ k[[z]], E := Q(V )(t, ω1, . . . , ωr), D := E ∩ V [[t]],

Ẽ := Q(V )(t, ω1, . . . , ωs), D̃ := Ẽ ∩ V [[t]],

so that V is a DVR with completion V̂ = k[[z]], and E ⊆ Ẽ ⊆ Q(V [[t]]). Then
there exists a power series γ ∈ zk[z]] such that

(1) (t − γ)k[[z, t]] ∩ D = (0), that is, (t − γ)k[[z, t]] is in the generic formal
fiber of D.

(2) (t − γ)k[[z, t]] ∩ D̃ = (0), that is, (t − γ)k[[z, t]] is in the generic formal
fiber of D̃.
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Proof. For the proof, use the (expanded) notation from Notation
19.5.1
27.7 and

Remark
19.5.5
27.8. Recall that F is the algebraic closure in k of the field k0({aij}∪{bijℓ}),

where k0 denotes the prime subfield of k. The field F is countable and the power
series αi(z) and βij(z) are in F [[z]]. Also V0 := F (z, {αi}, {βij}) ∩ F [[z]],

E0 := Q(V0)(t, ω1, . . . , ωr) ⊆ E, and D0 = E0 ∩ V0[[t]] ⊆ D.

By Proposition
19.5.2
27.9, there exists γ ∈ zF [[z]] with (t − γ)F [[z, t]] ∩ D0 = (0).

We show that (t− γ)k[[z, t]] ∩D = (0).
Let L := F ({ti}i∈I), where {ti}i∈I is a transcendence basis of k over F . Then

L ⊆ k and k is algebraic over L. The elements {αi}, {βij} are contained in F [[z]].
Set

V1 := L(z, {αi}, {βij}) ∩ L[[z]] and D1 := Q(V1)(t, ω1, . . . , ωr) ∩ L[[z, t]].

Then V1 is a discrete rank-one valuation domain with completion L[[z]] and D1 is
a two-dimensional regular local domain with completion D̂1 = L[[z, t]]. Note that
Q(V ) and Q(D) are algebraic over Q(V1) and Q(D1), respectively.

To show (t−γ)k[[z, t]]∩D = (0), it suffices to prove that (t−γ)k[[z, t]]∩D1 = (0),
sinceQ(D) is algebraic overQ(V1). For this, (t−γ)k[[z, t]]∩L[[z, t]] = (t−γ)L[[z, t]],
and so it suffices to prove that (t− γ)L[[z, t]] ∩D1 = (0).

The commutative diagram

F [[z]]
{ti}algebraically ind.−−−−−−−−−−−−−→ L[[z]]x x

Q(V0)
transcendence basis {ti}−−−−−−−−−−−−−−−→ Q(V1)

implies that the set {γ, ω1(γ), . . . , ωr(γ)} ∪ {ti} is algebraically independent over
Q(V0). Therefore {γ, ω1(γ), . . . , ωr(γ)} is algebraically independent over Q(V1). By
Proposition

19.5.3
27.10, (t− γ)L[[z, t]] ∩D1 = (0). Thus item 1 holds.

Item 2 follows from item 1, since D̃ is algebraic over D. This completes the
proof of Proposition

19.5.4
27.11. □

27.4. Weierstrass implications for the localized polynomial ring AwimpA

Let n be a positive integer, let X = {x1, . . . , xn} be a set of n variables over a
field k, and let A := k[x1, . . . , xn](x1,...,xn) = k[X](X) denote the localized polyno-
mial ring in these n variables over k. Then the completion of A is Â = k[[X]].

19.6.1 Theorem 27.12. For the localized polynomial ring A = k[X](X) defined above,
if Q is an ideal of Â maximal with respect to Q ∩A = (0), then Q is a prime ideal
of height n− 1.

Proof. It is clear that Q as described in the statement is a prime ideal. Also
the assertion holds for n = 1. Thus we assume n ≥ 2. By Matsumura’s resultM1.5
[122, Theorem 2], there exists a nonzero prime ideal p in k[[x1, x2]] such that
p ∩ k[x1, x2](x1,x2) = (0). It follows that pÂ ∩ A = (0). Thus the generic formal
fiber of A is nonzero, and Theorem

19.6.1
27.12 holds for n = 2.

Assume n > 2. Let P ∈ Spec Â be a nonzero prime ideal with P ∩ A = (0)

and htP = r < n − 1. We construct Q ∈ Spec Â of height n − 1 with P ⊆ Q and
Q ∩A = (0):
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By Proposition
19.2.4
26.12, there exist a change of variables
x1 7→ x1 = z1, x2 7→ z2, . . . , xn 7→ zn

and polynomials in variables zn−r+1, . . . , zn over k[[z1, . . . , zn−r]] such that:
f1 ∈ k[[z1, . . . , zn−r]] [zn−r+1, . . . , zn] monic in zn

f2 ∈ k[[z1, . . . , zn−r]] [zn−r+1, . . . , zn−1] monic in zn−1, etc
...

fr ∈ k[[z1, . . . , zn−r]] [zn−r+1] monic in zn−r+1,

f1, . . . , fr is a regular sequence of Â, P is a minimal prime of (f1, . . . , fr)Â, and P
is extended from

R := k[[z1, . . . , zn−r]] [zn−r+1, . . . , zn].

Let P0 := P ∩ R. By assumption, htP = r. Then htP0 = r, since P0 is also
minimal over the regular sequence f1, . . . , fr of length r; see

Kap
[104, Theorem 132, p.

95]. By Proposition
19.2.4
26.12.2d, P = P0Â.

Extend f1, . . . , fr to a set of generators of P0, say:
P0 = (f1, . . . , fr, g1, . . . , gs)R.

Using an argument similar to that in the proof of Theorem
19.2.5
26.14, write

fj =
∑

(i)∈Nn−1

aj,(i)z
i2
2 . . . zinn and gℓ =

∑
(i)∈Nn−1

bℓ,(i)z
i2
2 . . . zinn ,

where (i) = (i2, . . . , in) ∈ Nn−1 and aj,(i), bℓ,(i) ∈ k[[z1]]. Let
V0 := k(z1, {aj,(i), bℓ,(i)}) ∩ k[[z1]].

Then V0 is a discrete rank-one valuation domain with completion k[[z1]], and k((z1))
has uncountable transcendence degree over the field of fractions Q(V0) of V0. Let
γ3, . . . , γn−r ∈ k[[z1]] be algebraically independent over Q(V0) and define

q := (z3 − γ3z2, z4 − γ4z2, . . . , zn−r − γn−rz2)k[[z1, . . . , zn−r]].
Then q ∩ V0[[z2, . . . , zn−r]] = (0), by an argument similar to that in Claim

19.2.6
26.15;

see also
M1.5
[122]. Let R1 := V0[[z2, . . . , zn−r]] [zn−r+1, . . . , zn], let P1 := P ∩ R1 and

consider the commutative diagram:

(
19.6.1
27.12.1)

k[[z1, . . . , zn−r]]
β−→ R/P0

↑ ↑

V0[[z2, . . . , zn−r]]
α−→R1/P1.

The vertical maps of Diagram
19.6.1
27.12.1 are injections. By Proposition

19.2.4
26.12.2f, the

horizontal map β of Diagram
19.6.1
27.12.1 is an injective finite integral extension. Since

P1 is a minimal prime ideal of the regular sequence f1, . . . , fr on R1, the argument
of Proposition

19.2.4
26.12.2f shows that the map α is an injective finite integral extension.

19.6.1c Claim 27.13. Let W be a prime ideal of k[[Z]] that is minimal over (q, P )Â.
Then:

(1) htW = n− 2.
(2) W ∩ k[[z1, . . . , zn−r]] = q.
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(3) W ∩A = (0).
(4) k[[z1, z2]] ∩W = (0).

Proof. The prime ideal W is minimal over

I := (f1, . . . , fr, z3 − γ3z2, . . . , zn−r − γn−rz2)Â.

For item 1, by Proposition
19.2.4
26.12, the elements f1, . . . , fr form a regular sequence

on k[[Z]], and k[[Z]]/(f1, . . . , fr)k[[Z]] = k[[Z1]][Z2]/(f1, . . . , fr)k[[Z1]][Z2] is a finite
free module over k[[Z1]]. Also k[[Z1]] = k[[Z ′1]], where

Z ′1 = {z1, z2, z3 − γ3z2, . . . , zn−r − γn−rz2}.

The elements of Z ′1 are a regular system of parameters for the regular local ring
k[[Z1]]. Hence

z3 − γ3z2, . . . , zn−r − γn−rz2
is a regular sequence on the finite free module k[[Z]]/(f1, . . . , fr)k[[Z]]; see Propo-
sition

19.2.4
26.12.2b. Thus f1, . . . , fr, z3 − γ3z2, . . . , zn−r − γn−rz2 is a regular sequence

on Â = k[[Z]]. By
Kap
[104, Theorem 132, p. 95], every prime ideal minimal over I has

the same height, namely the length of the regular sequence that generates I. Thus
htW = n− 2.

For item 2, consider the prime ideal (W ∩R)/P0 of R/P0 in Diagram
19.6.1
27.12.1.

Then P is extended from P0 implies W ∩ R is minimal over (q, P0), and so the
intersection P0 ∩ k[[z1, . . . , zn−r]] = (0). It follows that

W ∩ k[[z1, . . . , zn−r]] = (W ∩R) ∩ k[[z1, . . . , zn−r]]
= ((W ∩R)/P0)∩k[[z1, . . . , zn−r]] = q.

For item 3, q ∩ V0[[z2, . . . , zn−r]] = (0). That is, the prime ideal (W ∩ R1)/P1

lies over (0) under the inclusion map α of Diagram
19.6.1
27.12.1. Thus W ∩ R1 = P1.

Now W ∩A =W ∩R1 ∩A = P1 ∩A = (0), as desired.
For item 4, let B := k[[z1, . . . , zn−r]] = k[[z1, z2, z3 − γ3z2, . . . , zn−r − γn−rz2]].

Let σ : B → B/q ∼= k[[z1, z2]] be the canonical map. Then σ|k[[z1,z2]], the restriction
of σ to k[[z1, z2]], is an isomorphism. Thus k[[z1, z2]] ∩ kerσ = k[[z1, z2]] ∩ q = (0).
Since W ∩ k[[z1, . . . , zn−r]] = q, by item 2, k[[z1, z2]] ∩W = k[[z1, z2]] ∩ q = (0).

This completes the proof of Claim
19.6.1c
27.13. □

Now W satisfies htW = n−2, W ∩A = (0), x1(= z1) /∈W and P ⊆W . Apply
Proposition

19.2.4
26.12 to the prime ideal W . For convenience, denote the new variables

found in Proposition
19.2.4
26.12.1 using the prime ideal W by z1 = x1, z2, . . . , zn, let

Z = {z1, z2, . . . , zn}, and let h1, . . . , hn−2 denote the regular sequence in W such
that

(
19.6.1c
27.13.0)

h1 ∈ k[[z1, z2]] [z3, . . . , zn] is monic in zn,
h2 ∈ k[[z1, z2]] [z3, . . . , zn−1] is monic in zn−1,

...
hn−2 ∈ k[[z1, z2]] [z3] is monic in z3.

Define W0 = W ∩ k[[z1, z2]] [z3, . . . , zn]. Then W0Â = W . For some s ∈ N0, let
{hj | n − 1 ≤ j ≤ n − 2 + s} be s additional polynomials in k[[z1, z2]] [z3, . . . , zn]
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so that h1, . . . , hn−2, hn−1, . . . , hn+s−2 generate W0. Consider the coefficients in
k[[z1]] of the hj , for 1 ≤ j ≤ n+ s− 2:

hj =
∑
(i)

cj(i)z
i2
2 . . . zinn ,

with cj(i) ∈ k[[z1]]. The set {cj(i)} is countable. Define

V := k(z1, {aj,(i), bℓ,(i), cj(i)}) ∩ k[[z1]].

Then V is a rank-one discrete valuation domain that is countably generated over
k[z1](z1) and W is extended from its contraction W ∩ (V [[z2]] [z3, . . . , zn]).

Each hi is a polynomial in z3, . . . , zn with coefficients in V [[z2]]:

hi =
∑

ω(i)z
i3
3 . . . zinn ,

with ω(i) ∈ V [[z2]] ⊆ k[[z1, z2]]. By Valabrega’s Theorem
4.1.2
4.9, the integral domain

D := Q(V )(z2, {ω(i)}) ∩ k[[z1, z2]],

is a two-dimensional regular local domain with completion D̂ = k[[z1, z2]]. Let
W1 :=W ∩D[z3, . . . , zn]. Then W1Â =W1k[[z1, . . . , zn]] =W , and D ⊆ k[[z1, z2]].

By Proposition
19.2.4
26.12.2f, W ∩k[[z1, z2]] = (0). By Proposition

19.5.4
27.11 with z1 = z

and z2 = t, there exists a prime element q ∈ k[[z1, z2]] with qk[[z1, z2]] ∩D = (0).
Since W ∩ k[[z1, z2]] = (0), it follows that q /∈W .

Let Q ∈ Spec Â be a minimal prime of (q,W )Â. Since htW = n−2 and q 6∈W ,
htQ = n− 1. Moreover, P ⊆W implies P ⊆ Q.

19.6.1c2 Claim 27.14. Q ∩D[z3, . . . , zn] =W1.

Proof. (of Claim
19.6.1c2
27.14) Consider the commutative diagram:

(
19.6.1c2
27.14.0)

k[[z1, z2]]−→ k[[z1, . . . , zn]]/W

↑ ↑

D
σ−→ D[z3, . . . , zn]/W1 .

Since W ∩ k[[z1, z2]] = (0) and W1 ∩ D ⊆ W ∩ k[[z1, z2]] = (0), the horizon-
tal maps of Diagram

19.6.1c2
27.14.0 are injective. Since W1 contains the regular se-

quence h1, h2, . . . , hr, . . . , hn−2 of polynomials in k[[z1, z2]][z3, . . . , zn] from Equa-
tions

19.6.1c
27.13.0; each monic in one of the variables of {z3, . . . , zn}, it follows as in

Proposition
19.2.4
26.12.2d that the map σ of Diagram

19.6.1c2
27.14.0 is a finite integral exten-

sion.
Consider the prime ideal (Q ∩ D[z3, . . . , zn])/W1 of D[z3, . . . , zn]/W1. Since

W1 ∩D = (0), the intersection of this prime ideal with D can be considered as

Q ∩D[z3, . . . , zn] ∩D = Q ∩ k[[z1, z2]] ∩D ⊆ qk[[z1, z2]] ∩D = (0),

where the last equality is by the choice of q. Thus (Q ∩ D[z3, . . . , zn])/W1 lies
above (0) in D. Since σ is a finite integral extension of integral domains, the
ideal (0) is the only prime ideal of D[z3, . . . , zn])/W1 lying above (0). That is,
(Q ∩ D[z3, . . . , zn])/W1 = (0). It follows that Q ∩ D[z3, . . . , zn] = W1, and so
Claim

19.6.1c2
27.14 holds. □
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To complete the proof of Theorem
19.6.1
27.12, observe that Q ∩D[z3, . . . , zn] =W1

implies Q ∩A = (0). To see this:
z1 ∈ V0 := k(z1, aj,(i), bℓ,(i))∩k[[z1]] ⊆ V := Q(V0)({cj(i)}) ∩ k[[z1]

⊆ D := Q(V )(z2, {ω(i)}) ∩ k[[z1, z2]],

where the aj,(i), bℓ,(i), cj(i) ∈ k[[z1]]. This implies that z1 ∈ D. Also z2 ∈ D. Thus
k[X] = k[Z] ⊆ D[z3, . . . , zn].

Therefore:
Q ∩D[z3, . . . zn] =W1 =⇒ Q ∩ k[Z] ⊆W1 ∩ k[Z] ⊆W ∩ k[Z] = (0).

Thus Q ∩A = Q ∩ k[Z](Z) = (0). This completes the proof of Theorem
19.6.1
27.12. □

27.5. Generic fibers of power series ring extensionsgffps

In this section we apply the Weierstrass machinery from Section
19.2
26.2 to the

generic fiber rings of power series extensions.

19.7.1 Theorem 27.15. Let n ≥ 2 be an integer and let y, x1, . . . , xn be variables over
the field k. Let X = {x1, . . . , xn} and let R1 be the formal power series ring k[[X]].
Consider the extension R1 ↪→ R1[[y]] = R. Let U = R1 \ (0). For P ∈ SpecR such
that P ∩ U = ∅, we have :

(1) If P 6⊆ XR, then dimR/P = n, the ideal P is maximal in the generic
fiber of the map R1 ↪→ R, equivalently P corresponds to a maximal ideal
of the generic fiber ring U−1R as in Notation

gffnot
26.1, and R1 ↪→ R/P is

finite. Moreover P = gR is a principal ideal of R, where g is a monic
polynomial of R1[y].

(2) If P ⊆ XR, then there exists Q ∈ SpecR such that P ⊆ Q, dimR/Q = 2
and Q extends to a maximal ideal of the generic fiber ring U−1R.

Assume n > 2. Then every prime ideal Q of R that extends to a maximal ideal of
the generic fiber ring U−1R satisfies

dimR/Q =

{
n if R1 ↪→ R/Q is finite, or
2 if Q ⊂ XR.

Proof. Let P ∈ SpecR be such that P ∩U = ∅ or equivalently P ∩R1 = (0).
Then R1 embeds in R/P . If dim(R/P ) ≤ 1, then the maximal ideal of R1 generates
an ideal primary for the maximal ideal of R/P . By Theorem

3.38.1
3.16, R/P is finite

over R1, and so dimR1 = dim(R/P ), a contradiction. Thus dim(R/P ) ≥ 2.

For item 1, if P 6⊆ XR, then there exists a prime element f ∈ P that contains
a term ys for some positive integer s. By Weierstrass, that is, by Theorem

19.2.1
26.8, it

follows that f = gε, where g ∈ k[[X]] [y] is a nonzero monic polynomial in y and
ε is a unit of R. Then fR = gR ⊆ P is a prime ideal and R1 ↪→ R/gR is a finite
integral extension. Since P ∩R1 = (0), it follows that gR = P , a principal ideal.

For item 2, if P ⊆ XR and dim(R/P ) > 2, then Theorem
19.2.5
26.14 with V = k[y](y)

and R0 = V [[x]]. implies there exists Q ∈ SpecR such that dim(R/Q) = 2,
P ⊂ Q ⊂ XR and P ∩ R1 = (0) = Q ∩ R1, and so P does not extend to a
maximal ideal of the generic fiber ring. Thus Q ∈ SpecR maximal in the generic
fiber of R1 ↪→ R implies that the dimension of dim(R/Q) is 2, or equivalently that
htQ = n− 1. □
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19.7.2 Theorem 27.16. Let n and m be positive integers, and let X = {x1, . . . , xn}
and Y = {y1, . . . , ym} be sets of independent variables over the field k. Consider
the formal power series rings R1 = k[[X]] and R = k[[X,Y ]] and the extension
R1 ↪→ R1[[Y ]] = R. Let U = R1 \ (0). Let Q ∈ SpecR be maximal with respect to
Q ∩ U = ∅. If n = 1, then dimR/Q = 1 and R1 ↪→ R/Q is finite.

If n ≥ 2, there are two possibilities :
(1) R1 ↪→ R/Q is finite, in which case dimR/Q = dimR1 = n, or
(2) dimR/Q = 2.

Proof. First assume n = 1, and let x = x1. Since Q is maximal with respect
to Q ∩ U = ∅, for each P ∈ SpecR with Q ( P we have P ∩ U is nonempty and
therefore x ∈ P . It follows that dimR/Q = 1, for otherwise,

Q =
⋂
{P | P ∈ SpecR and Q ( P },

which implies x ∈ Q. By Theorem
3.38.1
3.16, R1 ↪→ R/Q is finite.

It remains to consider the case where n ≥ 2. We proceed by induction on
m. Theorem

19.7.1
27.15 yields the assertion for m = 1. Suppose Q ∈ SpecR is max-

imal with respect to Q ∩ U = ∅. As in the proof of Theorem
19.7.1
27.15, we have

dimR/Q ≥ 2. If Q ⊆ (X, y1, . . . , ym−1)R, then by Theorem
19.2.5
26.14 with R0 =

k[ym](ym)[[X, y1, . . . , ym−1]], there exists Q′ ∈ SpecR with Q ⊆ Q′, dimR/Q′ = 2,
and Q ∩ R0 = Q′ ∩ R0. Since R1 ⊆ R0, we have Q′ ∩ U = ∅. Since Q is maximal
with respect to Q ∩ U = ∅, we have Q = Q′, and so dimR/Q = 2.

Otherwise, if Q 6⊆ (X, y1, . . . , ym−1)R, then there exists a prime element f ∈ Q
that contains a term ysm for some positive integer s. Let R2 = k[[X, y1, . . . , ym−1]].
By Weierstrass, it follows that f = gε, where g ∈ R2[ym] is a nonzero monic
polynomial in ym and ε is a unit of R. We have fR = gR ⊆ Q is a prime ideal and
R2 ↪→ R/gR is a finite integral extension. Thus R2/(Q∩R2) ↪→ R/Q is an integral
extension. It follows that Q ∩ R2 is maximal in R2 with respect to being disjoint
from U . By induction dimR2/(Q∩R2) is either n or 2. Since R/Q is integral over
R2/(Q ∩R2), dimR/Q is either n or 2. □

19.7.3 Remark 27.17. Theorem
19.7.2
27.16 proves part 4 of Theorem

gffres
26.3. To see this, let

P ∈ Spec k[[X,Y ]] be maximal with P ∩ k[[X]] = (0). Since R is catenary, htP +
dimR/P = n +m. If n = 1, then Theorem

19.7.2
27.16 implies that dim(k[X,Y ]/P ) =

n = 1, and htP = m. If n ≥ 2, the two cases are (i) htP = m and (ii) htP =
n+m− 2. These two cases are as in (a) and (b) of part 4 of Theorem

gffres
26.3.

Using the TGF terminology of Definition
TGFdefweier
26.6, Theorem

19.7.2
27.16 implies:

19.7.4 Corollary 27.18. With the notation of Theorem
19.7.2
27.16, if P ∈ SpecR is such

that R1 ↪→ R/P =: S is a TGF extension, then dimS = dimR1 = n or dimS = 2.

27.6. Gff(R) and Gff(S) for S an extension domain of RgffRS

Theorem
tgflem
27.19 is useful in considering properties of generic formal fiber rings.

tgflem Theorem 27.19. Let φ : (R,m) ↪→ (S, n) be an injective local map of Noether-
ian local integral domains. Consider the following properties :

(1) mS is n-primary, and S/n is finite algebraic over R/m.
(2) R ↪→ S is a TGF-extension and dimR = dimS; see Definition

TGFdefweier
26.6.
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(3) R is analytically irreducible.
(4) R is analytically normal and S is universally catenary.
(5) All maximal ideals of Gff(R) have the same height.

If items 1, 2 and 3 hold, then dimGff(R) = dimGff(S). If, in addition, items 4
and 5 hold, then the maximal ideals of Gff(S) all have height h = dimGff(R).

Proof. Let R̂ and Ŝ denote the m-adic completion of R and n-adic completion
of S respectively, and let φ̂ : R̂→ Ŝ be the natural extension of ϕ as defined above.
Consider the commutative diagram

(
tgflem
27.19.a)

R̂
ϕ̂−−−−→ Ŝx x

R
ϕ−−−−→ S ,

where the vertical maps are the natural inclusion maps to the completion. Assume
items 1, 2 and 3 hold. Item 1 implies that Ŝ is a finite R̂-module with respect to the
map φ̂ by

M
[123, Theorem 8.4]. By item 2, we have dim R̂ = dimR = dimS = dim Ŝ.

Item 3 says that R̂ is an integral domain. It follows that the map φ̂ : R̂ ↪→ Ŝ is
injective. Let Q ∈ Spec Ŝ and let P = Q ∩ R̂. Since R ↪→ S is a TGF-extension,
by item 2, commutativity of Diagram

tgflem
27.19.a implies that

Q ∩ S = (0) ⇐⇒ P ∩ R = (0).

Therefore φ̂ induces an injective finite map Gff(R) ↪→ Gff(S). We conclude that
dimGff(R) = dimGff(S).

Assume in addition that items 4 and 5 hold, and let h = dimGff(R). The
assumption that S is universally catenary implies that dim(Ŝ/q) = dimS for each
minimal prime q of Ŝ; see

M
[123, Theorem 31.7]. Since R̂

q∩R̂
↪→ Ŝ

q is an integral
extension, we have q ∩ R̂ = (0). The assumption that R̂ is a normal domain
implies that the going-down theorem holds for R̂ ↪→ Ŝ/q by

M
[123, Theorem 9.4(ii)].

Therefore for each Q ∈ Spec Ŝ we have htQ = htP , where P = Q ∩ R̂. Hence if
htP = h for each P ∈ Spec R̂ that is maximal with respect to P ∩ R = (0), then
htQ = h for each Q ∈ Spec Ŝ that is maximal with respect to Q ∩ S = (0). This
completes the proof of Theorem

tgflem
27.19. □

essfgnfg Remark 27.20. We would like to thank Rodney Sharp and Roger Wiegand for
their interest in Theorem

tgflem
27.19. The hypotheses of Theorem

tgflem
27.19 do not imply

that S is a finite R-module, or even that S is essentially finitely generated over R.
If φ : (R,m) ↪→ (T, n) is an extension of rank one discrete valuation rings (DVR’s)
such that T/n is finite algebraic over R/m, then for every field F that contains R
and is contained in the field of fractions of T̂ , the ring S := T̂ ∩ F is a DVR such
that the extension R ↪→ S satisfies the hypotheses of Theorem

tgflem
27.19.

As a specific example where S is essentially finite over R, but not a finite R-
module, let R = Z5Z, the integers localized at the prime ideal generated by 5, and
let A be the integral closure of R in Q[i]. Then A has two maximal ideals lying
over 5R, namely (1 + 2i)A and (1 − 2i)A. Let S = A(1+2i)A. Then the extension
R ↪→ S satisfies the hypotheses of Theorem

tgflem
27.19. Since S properly contains A,

and every element in the field of fractions of A that is integral over R is contained
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in A, it follows that S is not finitely generated as an R-module. In Remark
essfgnfg2
27.31,

we describe examples in higher dimension where S is not a finite R-module.

27.7. Formal fibers of prime ideals in polynomial rings
ffpi

In this section we present a generalization of Theorem
19.6.1
27.12 and discuss related

results concerning generic formal fibers of extensions of mixed polynomial-power
series rings.

We were inspired to revisit and generalize Theorem
19.6.1
27.12 by Youngsu Kim. His

interest in formal fibers and the material in
weier
[87] inspired us to consider the second

question below; also see
ffpi
[93].

Ysk Questions 27.21. For n ∈ N, let x1, . . . , xn be indeterminates over a field
k and let R = k[x1, . . . , xn](x1,...,xn) denote the localized polynomial ring with
maximal ideal m = (x1, . . . , xn)R. Let R̂ be the m-adic completion of R.

(1) For P ∈ SpecR, what is the dimension of the generic formal fiber ring
Gff(R/P )?

(2) What heights are possible for maximal ideals of the ring Gff(R/P )?

In connection with Question
Ysk
27.21.1, for P ∈ SpecR, the ring R/P is essentially

finitely generated over a field and dim(Gff(R/P )) = n − 1 − htP by a result of
Matumura

M1.5
[122, Theorem 2 and Corollary, p. 263].

As a sharpening of Matsumura’s result and of Theorem
19.6.1
27.12, we prove The-

orem
esfingen1
27.22; see also Theorem

esfingen2
27.25. Thus the answer to Question

Ysk
27.21.2 is that

the height of every maximal ideal of Gff(R/P ) is n− 1− htP .

esfingen1 Theorem 27.22. Let S be a local domain essentially finitely generated over a
field; thus S = k[s1, . . . , sr]p, where k is a field, r ∈ N, the elements si are in S and
p is a prime ideal of the finitely generated k-algebra k[s1, . . . , sr]. Let n := pS and
let Ŝ denote the n-adic completion of S. Then every maximal ideal of Gff(S) has
height dimS−1. Equivalently, if Q ∈ Spec Ŝ is maximal with respect to Q∩S = (0),
then htQ = dimS − 1.

Theorem
esfingen1
27.22 is restated and proved in Theorem

esfingen2
27.25.

subspace1 Discussion 27.23. Let φ : (R,m) ↪→ (S, n) be an injective local map of the
Noetherian local ring (R,m) into a Noetherian local ring (S, n). Let R̂ = lim←−

n

R/mn

denote the m-adic completion of R and let Ŝ = lim←−
n

S/nn denote the n-adic com-

pletion of S. For each n ∈ N, we have mn ⊆ nn ∩R. Hence there exists a map
φn : R/mn → R/(nn ∩R) ↪→ S/nn, for each n ∈ N.

The family of maps {φn}n∈N determines a unique map φ̂ : R̂→ Ŝ.
Since mn ⊆ nn ∩R, the m-adic topology on R is the subspace topology from S

if and only if for each positive integer n there exists a positive integer sn such that
nsn ∩R ⊆ mn. Since R/mn is Artinian, the descending chain of ideals {mn + (ns ∩
R)}s∈N stabilizes. The ideal mn is closed in the m-adic topology, and it is closed in
the subspace topology if and only if

⋂
s∈N(m

n+(ns∩R)) = mn. Hence mn is closed
in the subspace topology if and only if there exists a positive integer sn such that
nsn ∩R ⊆ mn.
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Thus the subspace topology from S is the same as the m-adic topology on R if
and only if ϕ̂ is injective.

discuss1 Discussion 27.24. As in the statement of Theorem
esfingen1
27.22, let S = k[z1, . . . , zr]p

be a local domain essentially finitely generated over a field k, so that p is a maximal
ideal of k[z1, . . . , zr]. We observe that S is a localization at a maximal ideal of an
integral domain that is a finitely generated algebra over an extension field F of k.

To see this, let A = k[x1, . . . , xr] be a polynomial ring in r variables over k, and
let Q denote the kernel of the k-algebra homomorphism σ of A onto k[z1, . . . , zr]
defined by mapping xi 7→ zi for each i with 1 ≤ i ≤ r. Using permutability of
localization and residue class formation, there exists a maximal ideal N ⊇ Q of A
such that S = AN/QAN . Thus

Q := kerσ ⊆ A := k[x1, . . . , xr]
σ−→ k[z1, . . . , zr] ⊆ S := k[z1, . . . zr]p = AN/QAN .

A version of Noether normalization as in
M1
[121, Theorem 24 (14.F) page 89] states

that, if htN = s, then there exist elements y1, . . . , yr in A such that A is integral
over B = k[y1, . . . , yr] and N ∩ B = (y1, . . . , ys)B. It follows that y1, . . . , yr are
algebraically independent over k and A is a finitely generated B-module. Let F
denote the field k(ys+1, . . . , yr), and let U denote the multiplicatively closed set
k[ys+1, . . . , yr]\ (0). Then U−1B is the polynomial ring F [y1, . . . , ys], and U−1A :=
C is a finitely generated U−1B-module. Moreover NC is a maximal ideal of C such
that

NC ∩ U−1B = (y1, . . . , ys)U
−1B = (y1, . . . , ys)F [y1, . . . , ys].

Hence NC ∩ U−1B is a maximal ideal of U−1B, and (y1, . . . , ys)C is primary for
the ideal NC of C. Thus S = CNC/QCNC is a localization of the finitely generated
F -algebra D := C/QC at the maximal ideal NC/QC. The following commutative
diagram displays this information:

Q ⊆ N ⊆ A := k[x1, . . . , xr]
σ−−−−→ U−1A = C ⊆ S = CNC/QCNC

integral,⊆
x fin.gen,⊆

x
N ∩B = (y1, . . . , ys)B⊆B = k[y1, . . . , yr]

⊆−−−−→ U−1B = F [y1, . . . ys].

Therefore S is a localization of an integral domain D at a maximal ideal of D
and D is a finitely generated algebra over an extension field F of k.

esfingen2 Theorem 27.25. Let A = k[s1, . . . , sr] be an integral domain that is a finitely
generated algebra over a field k, let N be a maximal ideal of A, and let Q ⊂ N be
a prime ideal of A. Set S = AN/QAN and n = NS. If dimS = d, then every
maximal ideal of the generic formal fiber ring Gff(S) has height d− 1.

Proof. Choose x1, . . . , xd in n such that x1, . . . , xd are algebraically indepen-
dent over k and (x1, . . . , xd)S is n-primary. Set R = k[x1, . . . , xd](x1,...,xd), a local-
ized polynomial ring over k, and let m = (x1, . . . , xd)R. To prove Theorem

esfingen2
27.25,

it suffices to show that the inclusion map φ : R ↪→ S satisfies items 1 - 5 of
Theorem

tgflem
27.19. By construction φ is an injective local homomorphism and mS is

n-primary. Also R/m = k and S/n = A/N is a field that is a finitely generated
k-algebra and hence a finite algebraic extension field of k; see

M
[123, Theorem 5.2].

Therefore item 1 holds. Since dimS = d = dimA/Q, the field of fractions of S has
transcendence degree d over the field k. Therefore S is algebraic over R. It follows
that R ↪→ S is a TGF extension. Thus item 2 holds. Since R is a regular local ring,
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R is analytically irreducible and analytically normal. Since S is essentially finitely
generated over a field, S is universally catenary. Therefore items 3 and 4 hold.
Since R is a localized polynomial ring in d variables, Theorem

19.6.1
27.12 implies that

every maximal ideal of Gff(R) has height d− 1. By Theorem
tgflem
27.19, every maximal

ideal of Gff(S) has height d− 1. □

27.8. Other results on generic formal fibersOthgff

Theorems
19.3.1
27.2 and

19.4.2
27.6 give descriptions of the generic formal fiber ring of

mixed polynomial-power series rings. We use Theorems
tgflem
27.19,

19.3.1
27.2 and

19.4.2
27.6 to

deduce Theorem
wogffgen
27.26.

wogffgen Theorem 27.26. Let R be either k[[X]] [Y ](X,Y ) or k[Y ](Y )[[X]], where m and
n are positive integers and X = {x1, . . . , xn} and Y = {y1, . . . , ym} are sets of
independent variables over a field k. Let m denote the maximal ideal (X,Y )R of
R. Let (S, n) be a Noetherian local integral domain containing R such that :

(1) The injection ϕ : (R,m) ↪→ (S, n) is a local map.
(2) mS is n-primary, and S/n is finite algebraic over R/m.
(3) R ↪→ S is a TGF-extension and dimR = dimS.
(4) S is universally catenary.

Then every maximal ideal of the generic formal fiber ring Gff(S) has height n+m−2.
Equivalently, if P is a prime ideal of Ŝ maximal with respect to P ∩ S = (0), then
ht(P ) = n+m− 2.

Proof. We check that the conditions 1–5 of Theorem
tgflem
27.19 are satisfied for R

and S and the injection ϕ. Since the completion of R is k[[X,Y ]], R is analytically
normal, and so also analytically irreducible. Items 1–4 of Theorem

wogffgen
27.26 ensure that

the rest of conditions 1–4 of Theorem
tgflem
27.19 hold. By Theorems

19.3.1
27.2 and

19.4.2
27.6, every

maximal ideal of Gff(R) has height n+m−2, and so condition 5 of Theorem
tgflem
27.19

holds. Thus we have every maximal ideal of Gff(S) has height n + m − 2 by
Theorem

tgflem
27.19. □

examples for mixed Remark 27.27. Let k,X, Y, and R be as in Theorem
wogffgen
27.26. Let A be a finite

integral extension domain of R and let S be the localization of A at a maximal
ideal. As observed in the proof of Theorem

wogffgen
27.26, R is a local analytically normal

integral domain. Since R is universally catenary, and since the universally catenary
property is preserved under localizations and finitely generated algebras, it follows
that S is universally catenary; that is, condition 4 of Theorem

wogffgen
27.26 holds We

also have that conditions 1–3 of Theorem
wogffgen
27.26 hold. Thus the extension R ↪→ S

satisfies the hypotheses of Theorem
wogffgen
27.26. Hence every maximal ideal of Gff(S)

has height n+m− 2.

Example
wogffgene
27.28 is an application of Theorem

wogffgen
27.26 and Remark

examples for mixed
27.27.

Example 27.28. Let k,X, Y, and R be as in Theorem
wogffgen
27.26. Let K denote thewogffgene

field of fractions of R, and let L be a finite algebraic extension field of K. Let A be
the integral closure of R in L, and let S be a localization of A at a maximal ideal.
The ring R is a Nagata ring by a result of Marot; see

Marot
[118, Prop.3.5]. Therefore

A is a finite integral extension of R and the conditions of Remark
examples for mixed
27.27 apply to

show that every maximal ideal of Gff(S) has height n+m− 2.
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discuss2 Discussion 27.29. Concerning prime ideals in an integral extension lying over
a given prime ideal of an integral domain, McAdam in

McAdam2
[125] introduces the following

terminology.

Definition 27.30. Let R be an integral domain and let T be the integral
closure of R in an algebraic closure of the field of fractions of R. A prime ideal P
of R is said to n-split if in T there are precisely n prime ideals (possibly n = ∞)
that lie over P .

Heinzer and S. Wiegand show in
HW
[95, Theorem 1.1] that a nonzero prime ideal

P of a Noetherian domain R is either 1-split or ∞-split, and if P is a nonzero
1-split prime ideal, then R is local with maximal ideal P . For a local domain R
with maximal ideal P , Remark

Hensrmks
3.32.

Hid2
5 implies that P is 1-split if and only if R is

Henselian.

essfgnfg2 Remark 27.31. With notation as in Example
wogffgene
27.28, since the sets X and Y

are nonempty, the field K is a simple transcendental extension of a subfield. It
follows that the regular local ring R is not Henselian; see the book of Berger, Kiehl,
Kunz and Nastold

BKKN
[22, Satz 2.3.11, p. 60] and the paper of Schmidt

Sc2
[165]. As

described in Discussion
discuss2
27.29, there exists a finite algebraic field extension L/K

such that the integral closure A of R in L has more than one maximal ideal. If n is
a maximal ideal of A, then S = An is not a finite R-module, and gives an example
R ↪→ S that satisfies the hypotheses of Theorem

tgflem
27.19.

Exercise
polyntgf (1) Let x and y be indeterminates over a field k. Let R = k[[x]][y] and let τ ∈ yk[[y]]

be such that y and τ are algebraically independent over k. Then we have the
embedding R = k[[x]][y] ↪→ k[[x, y]] = R̂. Let p := (x − τ)R̂. Prove the
following:
(a) R̂/p = k[[y]].
(b) p ∩ k[x, y] = (0).
(c) p ∩R 6= (0).
Suggestion: For item c, use Theorem

3.38.1
3.16.
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Mixed polynomial-power series rings and relations
among their spectra May 27 2020 (ppssec),ppssec

We are interested in the following sequence of two-dimensional nested mixed
polynomial-power series rings:

(
ppssec
28.0.1) A := k[x, y] ↪→ B := k[[y]] [x] ↪→ C := k[x] [[y]] ↪→ E := k[x, 1/x] [[y]],

where k is a field and x and y are indeterminates over k. 1 That is, A is the usual
polynomial ring in the two variables x and y over k, the ring B is all polynomials
in the variable x with coefficients in the power series ring k[[y]], the ring C is all
power series in the variable y over the polynomial ring k[x], and E is power series
in the variable y over the ring k[x, 1/x]. In Sequence

ppssec
28.0.1 all the maps are flat;

see Propositions
remflat
2.37.

locfl
4 and

3.38.0
3.3.

N*fl
2. We also consider Sequence

ppssec
28.0.2 consisting of

embeddings between the rings C and E of Sequence
ppssec
28.0.1:

(
ppssec
28.0.2) C ↪→ D1 := k[x] [[y/x]] ↪→ · · · ↪→ Dn := k[x] [[y/xn]] ↪→ · · · ↪→ E.

With regard to Sequence
ppssec
28.0.2, for n a positive integer, the map C ↪→ Dn is not

flat, since ht(xDn ∩ C) = 2 but ht(xDn) = 1; see Proposition
remflat
2.37.

flgd
10. The map

Dn ↪→ E is a localization followed by an ideal-adic completion of a Noetherian
ring and therefore is flat. We discuss the spectra of the rings in Sequences

ppssec
28.0.1

and
ppssec
28.0.1, and we consider the maps induced on the spectra by the inclusion maps

on the rings. For example, we determine whether there exist nonzero primes of one
of the larger rings that intersect a smaller ring in zero.

28.1. Two motivations
ppsmotivsec

We were led to consider these rings by questions that came up in two contexts.
The first motivation is a question about formal schemes that is discussed in

the introduction to the paper
AJL
[15] by Alonzo-Tarrio, Jeremias-Lopez and Lipman:

ConradQ Question 28.1. If a map between Noetherian formal schemes can be factored
as a closed immersion followed by an open immersion, can this map also be factored
as an open immersion followed by a closed immersion? 2

Brian Conrad observed that an example to show the answer to Question
ConradQ
28.1 is

“No” can be constructed for every triple (R, x, p) that satisfies the following three
conditions; see

AJL
[15]:

1The material in this chapter is adapted from our article
ppsgilmer
[88] dedicated to Robert Gilmer,

an outstanding algebraist, scholar and teacher.
2See Scheme Terminology

AJLexpl
28.3 for a brief explanation of this terminology.

377
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(
ConradQ
28.1.1) R is an ideal-adic domain, that is, R is a Noetherian domain that is

separated and complete with respect to the powers of a proper ideal I.
(
ConradQ
28.1.2) x is a nonzero element of R such that the completion of R[1/x] with respect

to the powers of IR[1/x], denoted S := R{x}, is an integral domain.
(
ConradQ
28.1.3) p is a nonzero prime ideal of S that intersects R in (0).

The following example of such a triple (R, x, p) is described in
AJL
[15]:

conradE Example 28.2. Let w, x, y, z be indeterminates over a field k. Let

R := k[w, x, z] [[y]] and S := k[w, x, 1/x, z] [[y]].

Notice that R is complete with respect to yR and S is complete with respect to
yS. An indirect proof that there exist nonzero primes p of S for which p∩R = (0)
is given in the paper

AJL
[15] of Lipman, Alonzo-Tarrio and Jeremias-Lopez, using a

result of Heinzer and Rotthaus
HR
[71, Theorem 1.12, p. 364]. A direct proof is given

in
ppsgilmer
[88, Proposition 4.9]. In Proposition

20.4.9
28.32 below we give a direct proof of a more

general result due to Dumitrescu
D
[42, Corollary 4].

In Scheme Terminology
AJLexpl
28.3 we explain some of the terminology of formal

schemes necessary for understanding Question
ConradQ
28.1; more details may be found inGD

[64]. In Remark
conradR
28.4 we explain why a triple satisfying (

ConradQ
28.1.1) to (

ConradQ
28.1.3) yields

examples that answer Question
ConradQ
28.1.

AJLexpl Scheme Terminology 28.3. Let R be a Noetherian integral domain and let
K be its field of fractions. Let X denote the topological space SpecR with the
Zariski topology defined in Section

3.02
2.1. We form a sheaf, denoted O, on X by

associating, to each open set U of X, the ring

O(U) =
⋂

x ∈ U

Rpx
,

where px is the prime associated to the point x ∈ U ; see
Shaf
[169, p. 235 and Theorem

1, p. 238]. For each pair U ⊆ V of open subsets of X, there exists a natural
inclusion map ρVU : O(V ) ↪→ O(U). The “ringed space” (X,O) is identified with
SpecR and is called an affine scheme; see

Shaf
[169, p. 242-3],

GD
[64, Definition I.10.1.2,

p. 402]. Assume that R = R∗ is complete with respect to the I-adic topology,
where I is a nonzero proper ideal of R (see Definition

3.1.1
3.1). Then the ringed space

(X,O) is denoted Spf (R) and is called the formal spectrum of R. It is also called a
Noetherian formal adic affine scheme; see

GD
[64, I.10.1.7, p. 403]. An immersion is

a morphism f : Y → X of schemes that factors as an isomorphism to a subscheme
Z of X followed by a canonical injection Z → X; see

GD
[64, (I.4.2.1)].

conradR Remark 28.4. Assume, in addition to R being a Noetherian integral domain
complete with respect to the I-adic topology, that x is a nonzero element of R, that
S is the completion of R[1/x] with respect to the powers of IR[1/x], and that p is
a prime ideal of S such that the triple (R, x, p) satisfies the three conditions

ConradQ
28.1.1

to
ConradQ
28.1.3.

The composition of the maps R → S → S/p determines a map on formal
spectra Spf (S/p) → Spf (S) → Spf (R) that is a closed immersion followed by
an open immersion. This is because a surjection such as S → S/p of adic rings
gives rise to a closed immersion Spf (S/p) → Spf (S) while a localization, such as
that of R with respect to the powers of x, followed by the completion of R[1/x]
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with respect to the powers of IR[1/x] to obtain S gives rise to an open immersion
Spf (S)→ Spf (R)

GD
[64, I.10.14.4].

The map Spf (S/p) → Spf (R) cannot be factored as an open immersion fol-
lowed by a closed one. This is because a closed immersion into Spf (R) corre-
sponds to a surjective map of adic rings R → R/J , where J is an ideal of RGD
[64, page 441]. Thus if the map Spf (S/p) → Spf (R) factored as an open im-
mersion followed by a closed one, we would have R-algebra homomorphisms from
R → R/J → S/p, where Spf (S/p) → Spf (R/J) is an open immersion. Since
p ∩ R = (0), we must have J = (0). This implies Spf (S/p) → Spf (R) is an
open immersion, that is, the composite map Spf (S/p) → Spf (S) → Spf (R), is
an open immersion. But also Spf (S) → Spf (R) is an open immersion. It follows
that Spf (S/p) → Spf (S) is both open and closed. Since S is an integral domain
this implies Spf (S/p) ∼= Spf (S). Since p is nonzero, this is a contradiction. Thus
Example

conradE
28.2 shows that the answer to Question

ConradQ
28.1 is “No”.

The second motivation for the material in this chapter comes from Question
Hochster
26.4

of Melvin Hochster and Yongwei Yao “Can one describe or somehow classify the
local maps R ↪→ S of complete local domains R and S such that every nonzero
prime ideal of S has nonzero intersection with R?” The following example is a local
map of the type described in the Hochster-Yao question.

20.1.3 Example 28.5. Let x and y be indeterminates over a field k and consider the
extension R := k[[x, y]] ↪→ S := k[[x]] [[y/x]].

To see this extension is TGF—the “trivial generic fiber” condition of Defini-
tion

TGFdefweier
26.6, it suffices to show P ∩R 6= (0) for each P ∈ SpecS with htP = 1. This is

clear if x ∈ P , while if x 6∈ P , then k[[x]] ∩ P = (0), and so k[[x]] ↪→ R/(P ∩R) ↪→
S/P and S/P is finite over k[[x]]. Therefore dimR/(P ∩R) = 1, and so P ∩R 6= (0).

Definition
TGFdefweier
26.6 is related to Question

ConradQ
28.1. If a ring R and a nonzero element

x of R satisfies conditions
ConradQ
28.1.1 and

ConradQ
28.1.2, then condition

ConradQ
28.1.3 simply says that

the extension R ↪→ R{x} is not TGF.
In some correspondence to Lipman regarding Question

ConradQ
28.1, Conrad asked: “Is

there a nonzero prime ideal of E := k[x, 1/x] [[y]] that intersects C = k[x] [[y]] in
zero?” If there were such a prime ideal p, then the triple (C, x, p) would satisfy
conditions

ConradQ
28.1.1 to

ConradQ
28.1.3. This would yield a two-dimensional example to show

the answer to Question
ConradQ
28.1 is “No”. Thus one can ask:

20.1.2 Question 28.6. Let x and y be indeterminates over a field k. Is the extension
C := k[x] [[y]] ↪→ E := k[x, 1/x] [[y]] TGF?

We show in Proposition
20.2.6
28.12.2 below that the answer to Question

20.1.2
28.6 is “Yes”;

thus the triple (C, x, p) does not satisfy condition
ConradQ
28.1.3, although it does satisfy

conditions
ConradQ
28.1.1 and

ConradQ
28.1.2. This is part of our analysis of the prime spectra of A,

B, C, Dn and E, and the maps induced on these spectra by the inclusion maps on
the rings.

20.1.4 Remarks 28.7. (1) The extension k[[x, y]] ↪→ k[[x, y/x]] is, up to isomorphism,
the same as the extension k[[x, xy]] ↪→ k[[x, y]].

(2) We show in Chapter
tgfsec
29 that the extension R := k[[x, y, xz]] ↪→ S :=

k[[x, y, z]] is not TGF. We also give more information about TGF extensions of
local rings there.
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(3) Takehiko Yasuda gives additional information on the TGF property in
yasuda
[189].

In particular, he shows that

C[x, y][[z]] ↪→ C[x, x−1, y][[z]]

is not TGF, where C is the field of complex numbers
yasuda
[189, Theorem 2.7].

28.2. Trivial generic fiber (TGF) extensions and prime spectra
20.2

We record in Proposition
tgftrans
28.8 several basic facts about TGF extensions. We

omit the proofs since they are straightforward.

tgftrans Proposition 28.8. Let R ↪→ S and S ↪→ T be injective maps where R, S and
T are integral domains.

(1) If R ↪→ S and S ↪→ T are TGF extensions, then so is the composite map
R ↪→ T . Equivalently if the composite map R ↪→ T is not TGF, then at
least one of the extensions R ↪→ S or S ↪→ T is not TGF.

(2) If R ↪→ T is TGF, then S ↪→ T is TGF.
(3) If the map SpecT → SpecS is surjective and R ↪→ T is TGF, then R ↪→ S

is TGF.

We use the following remark about prime ideals in a formal power series ring.

20.2.3 Remarks 28.9. Let R be a commutative ring and let R[[y]] denote the formal
power series ring in the variable y over R. Then

(1) Each maximal ideal of R[[y]] is of the form (m, y)R[[y]] where m is a
maximal ideal of R. Thus y is in every maximal ideal of R[[y]].

(2) If R is Noetherian with dimR[[y]] = n and x1, . . . , xm are independent
indeterminates over R[[y]], then y is in every height n+m maximal ideal
of the polynomial ring R[[y]] [x1, . . . , xm].

Proof. Item 1 follows from Theorem
3.2.3
2.33. For item 2, let m be a maximal ideal

of R[[y]] [x1, . . . , xm] with ht(m) = n+m. By
Kap
[104, Theorem 39], ht(m∩R[[y]]) = n;

thus m ∩R[[y]] is maximal in R[[y]], and so, by item 1, y ∈ m. □

20.2.4 Proposition 28.10. Let n be a positive integer, let R be an n-dimensional
Noetherian domain, let y be an indeterminate over R, and let q be a prime ideal of
height n in the power series ring R[[y]]. If y 6∈ q, then q is contained in a unique
maximal ideal of R[[y]].

Proof. Since R[[y]] has dimension n+1 and y 6∈ q, the ring S := R[[y]]/q has
dimension one. Moreover, S is complete with respect to the yS-adic topology

M
[123,

Theorem 8.7] and every maximal ideal of S is a minimal prime of the principal
ideal yS. Hence S is a complete semilocal ring. Since S is also an integral domain,
it must be local by

M
[123, Theorem 8.15]. Therefore q is contained in a unique

maximal ideal of R[[y]]. □

In Section
20.3
28.3 we use the following corollary to Proposition

20.2.4
28.10.

20.2.5 Corollary 28.11. Let R be a one-dimensional Noetherian domain and let q
be a height-one prime ideal of the power series ring R[[y]]. If q 6= yR[[y]], then q is
contained in a unique maximal ideal of R[[y]].
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20.2.6 Proposition 28.12. Consider the nested mixed polynomial-power series rings:

A := k[x, y] ↪→ B := k[[y]] [x] ↪→ C := k[x] [[y]]

↪→ D1 := k[x] [[y/x]] ↪→ D2 := k[x] [[y/x2]] ↪→ · · ·
↪→ Dn := k[x] [[y/xn]] ↪→ · · · ↪→ E := k[x, 1/x] [[y]],

where k is a field and x and y are indeterminates over k. Then
(1) If S ∈ {B,C,D1, D2, · · · , Dn, · · · , E}, then A ↪→ S is not TGF.
(2) If {R,S} ⊂ {B,C,D1, D2, · · · , Dn · · · , E} are such that R ⊆ S, then

R ↪→ S is TGF.
(3) Each of the proper associated maps on spectra fails to be surjective.

Proof. For item 1, let σ(y) ∈ yk[[y]] be such that σ(y) and y are algebraically
independent over k. Then (x− σ(y))S ∩A = (0), and so A ↪→ S is not TGF.

For item 2, observe that every maximal ideal of C, Dn or E is of height two
with residue field finite algebraic over k. To show R ↪→ S is TGF, it suffices to
show q ∩ R 6= (0) for each height-one prime ideal q of S. This is clear if y ∈ q. If
y 6∈ q, then k[[y]] ∩ q = (0), and so k[[y]] ↪→ R/(q ∩ R) ↪→ S/q are injections. By
Corollary

20.2.5
28.11, S/q is a one-dimensional local domain. Since the residue field of

S/q is finite algebraic over k, it follows that S/q is finite over k[[y]]. Therefore S/q
is integral over R/(q ∩R). Hence dim(R/(q ∩R) = 1 and so q ∩R 6= (0).

For item 3, observe that xDn is a prime ideal of Dn and x is a unit of E. Thus
SpecE → SpecDn is not surjective. Now, considering C = D0 and n > 0, we
have xDn ∩Dn−1 = (x, y/xn−1)Dn−1. Therefore xDn−1 is not in the image of the
map SpecDn → SpecDn−1. The map from SpecC → SpecB is not onto, because
(1+xy)B is a prime ideal of B, but 1+xy is a unit in C. Similarly SpecB → SpecA
is not onto, because (1 + y)A is a prime ideal of A, but 1 + y is a unit in B. This
completes the proof. □

20.2.7 Question and Remarks 28.13. Which of the Spec maps of Proposition
20.2.6
28.12

are one-to-one and which are finite-to-one?
(1) For S ∈ {B,C,D1, D2, · · · , Dn, · · · , E}, the generic fiber ring of the map

A ↪→ S has infinitely many prime ideals and has dimension one. Every
height-two maximal ideal of S contracts in A to a maximal ideal. Every
maximal ideal of S containing y has height two. Also yS ∩ A = yA and
the map SpecS/yS → SpecA/yA is one-to-one.

(2) Suppose R ↪→ S is as in Proposition
20.2.6
28.12.2. Each height-two prime of

S contracts in R to a height-two maximal ideal of R. Each height-one
prime of R is the contraction of at most finitely many prime ideals of S
and all of these prime ideals have height one. If R ↪→ S is flat, which is
true if S ∈ {B,C,E}, then “going-down” holds for R ↪→ S, and so, for P
a height-one prime of S, we have ht(P ∩R) ≤ 1.

(3) As mentioned in
HW
[95, Remark 1.5], C/P is Henselian for every nonzero

prime ideal P of C other than yC.

28.3. Spectra for two-dimensional mixed polynomial-power series rings20.3

Let x and y be indeterminates over a field k. We consider the prime spectra,
as partially ordered sets, of the mixed polynomial-power series rings A, B, C,
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D1, D2, · · · , Dn, · · · and E as given in Sequences
ppssec
28.0.1 and

ppssec
28.0.2 at the beginning

of this chapter.
Even for k a countable field there are at least two non-order-isomorphic partially

ordered sets that can be the prime spectrum of the polynomial ring A := k[x, y].
Let Q be the field of rational numbers, let F be a field contained in the algebraic
closure of a finite field and let Z denote the ring of integers. Then, by

rW1
[185] andrW2

[186], SpecQ[x, y] 6∼= SpecF [x, y] ∼= SpecZ[y].
The prime spectra of the rings B, C, D1, · · · , Dn, · · · , and E of Sequences

ppssec
28.0.1

and
ppssec
28.0.2 are simpler since they involve power series in y. Remark

20.2.3
28.9.2 implies

that y is in every maximal ideal of height two of each of these rings.
The partially ordered set SpecB = Spec(k[[y]] [x]) is similar to a prime ideal

space studied by Heinzer and S. Wiegand in the countable case in
HW
[95] and then

generalized by Shah to other cardinalities in
Shah
[170]. The ring k[[y]] is uncountable,

even if k is countable. It follows that SpecB is also uncountable. The partially
ordered set SpecB can be described uniquely up to isomorphism by the axioms
of

Shah
[170] (similar to the CHP axioms of

HW
[95]), since k[[y]] is Henselian and has

cardinality at least equal to c, the cardinality of the real numbers R. 3

Theorem
20.3.1
28.14 characterizes U := SpecB, for the ring B of Sequence

ppssec
28.01, as a

Henselian affine partially ordered set (where the “≤” relation is “set containment”).

20.3.1 Theorem 28.14.
HW
[95, Theorem 2.7]

Shah
[170, Theorem 2.4] Let B = k[[y]] [x]

be as in Sequence
ppssec
28.0.1, where k is a field, the cardinality of the set of maximal

ideals of k[x] is α and the cardinality of k[[y]] is β. Then the partially ordered
set U := SpecB under containment is called Henselian affine of type (β, α) and is
characterized as a partially ordered set by the following axioms:

(1) |U | = β.
(2) U has a unique minimal element.
(3) dim(U) = 2 and |{ height-two elements of U }| = α.
(4) There exists a special height-one element u ∈ U such that u is less than

every height-two element of U , namely u = (y), and the special element
is unique.

(5) Every nonspecial height-one element of U is less than at most one height-
two element.

(6) Every height-two element t ∈ U is greater than exactly β height-one ele-
ments such that t is the unique height-two element above each. If t1, t2 ∈ U
are distinct height-two elements, then the special element from (4) is the
unique height-one element less than both.

(7) There are exactly β height-one elements that are maximal.

20.3.2 Remark 28.15. (1) The axioms of Theorem
20.3.1
28.14 are redundant. We feel this

redundancy helps in understanding the relationships among the prime ideals.
(2) The theorem applies to the spectrum of B by defining the unique minimal

element to be the ideal (0) of B and the special height-one element to be the prime
ideal yB. Every height-two maximal ideal m of B has nonzero intersection with
k[[y]]. Thus m/yB is principal and so m = (y, f(x)), for some monic irreducible

3Kearnes and Oman observe in
KO
[106] that some cardinality arguments are incomplete in the

paper
Shah
[170]. R. Wiegand and S. Wiegand show that Shah’s results are correct in

WWp
[188]. In

Remarks
20.3.2
28.15.2 we give proofs of some items of Theorem

20.3.1
28.14.
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polynomial f(x) of k[x]. Consider {f(x) + ay | a ∈ k[[y]]}. This set has cardinality
β and each f(x) + ay is contained in a nonempty finite set of height-one primes
contained in m. If p is a height-one prime contained in m with p 6= yB, then
p ∩ k[[y]] = (0), and so pk((y))[x] is generated by a monic polynomial in k((y))[x].
But for a, b ∈ k[[y]] with a 6= b, we have (f(x) + ay, f(x) + by)k((y))[x] = k((y))[x].
Therefore no height-one prime contained in m contains both f(x)+ay and f(x)+by.
Since B is Noetherian and |B| = β is an infinite cardinal, we conclude that the
cardinality of the set of height-one prime ideals contained in m is β. Examples of
height-one maximals are (1 + xyf(x, y) ), for various f(x, y) ∈ k[[y]] [x]. The set of
height-one maximal ideals of B also has cardinality β.

(3) We observe that α = |k|·ℵ0 and β = |k|ℵ0 in Theorem
20.3.1
28.14, where ℵ0 = |N|.

The proof of this is Exercise
ppssec
28.

polycard
1.

(4) The axioms given in Theorem
20.3.1
28.14 characterize SpecB in the sense that

every two partially ordered sets satisfying these axioms are order-isomorphic.

The picture of SpecB is shown below:

β (y) β β · · ·

• • • · · ·

(#{ bullets} = α)

(0)

Spec k[[y]] [x]

In the diagram, β is the cardinality of k[[y]], and α is the cardinality of the
set of maximal ideals of k[x] (and also the cardinality of the set of maximal ideals
of k[[y]] [x] ); the boxed β means there are cardinality β height-one primes in that
position with respect to the partial ordering.

cosupp Remark 28.16. In his paper
pT
[181], Peder Thompson shows that Theorem

20.3.1
28.14

relates to an example involving cosuppR(R), the cosupport of a Noetherian ring
R as a module over itself. The set cosuppR(R) is precisely the set of prime ideals
appearing in a minimal pure-injective resolution of R; see

pT
[181, Theorem 2.5, and

the discussion on p. 9].4

4“Cosupport” is normally defined for derived categories of chain complexes. For a finitely
generated module M over a Noetherian ring R, Sean Sather-Wagstaff and Richard Wicklein state
in

sSW
[164, Fact 4.2] that the small co-support, (the same “cosupport” used by Thompson), equals

co-suppR(M) = {p ∈ SpecR | ExtiR(k(p),M) ̸= 0, for some i ∈ N0}

For a discussion of injective resolutions and ExtiR(k(p),M), see
M
[123, Appendix B]. Definitions

of “cosupport” in the literature vary. Thompson’s definition of cosupport is introduced by Dave
Benson, Srikanth Iyengar, and Henning Krause in their paper

BIK
[21]. A motivation for this definition

of cosupport is Amnon Neeman’s paper
Ne
[140].
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Sather-Wagstaff and Wicklein ask in
sSW
[164] whether the cosupport of a finitely

generated module over a Noetherian ring need be a closed subset of SpecR. Thomp-
son considers the ring T = k[[y]][x], as a module over itself in

pT
[181, Example 5.6].

By Theorem 28.14 above, T has uncountably many height-one maximal ideals. Ev-
ery maximal ideal of T is in the cosupport of T by

pT
[181, Remark 4.8]. Thus, if the

cosupport of T were closed, it would equal V(I) for some ideal I contained in every
height-one maximal ideal, whereas⋂

{p ∈ SpecT | p is a height-one maximal ideal } = (0),

by Remark
Krullrmks
2.12, since T is a UFD and thus a Krull domain. That is, the only

possibility for I would be I = (0).
On the other hand, the cosupport of T/(x) = k[[y]] is {(y)} by

pT
[181, Example

5.3], and so (0) is not in the cosupport of k[[y]]. Lemma 4.4 of
pT
[181], states that,

if f : R → S is a finite map of Noetherian rings, if f∗ is the spectral map f∗ :
SpecS → SpecR, and if cosuppSS is the cosupport of S over S, then cosuppSS =
(f∗)−1( cosuppRR), where cosuppRR is the cosupport of R over R. Thus (x) is
not in the cosupport of T , and so the cosupport of T is not V((0)). Therefore the
cosupport of T is not closed. For more details, see [pT].

Next we consider SpecR[[y]], for R a Noetherian one-dimensional domain. We
show in Theorem

20.3.4
28.19 below that SpecR[[y]] has the following picture:

(y) β β · · ·

• • • · · ·

(#{ bullets} = α)

(0)

Spec(R[[y]])

Here α is the cardinality of the set of maximal ideals of R (and also the cardinal-
ity of the set of maximal ideals of R[[y]] by Remark

20.2.3
28.9.1 ) and β is the cardinality

(uncountable) of R[[y]]; the boxed β (one for each maximal ideal of R) means that
there are exactly β prime ideals in that position.

We give the following lemma and add some more arguments in order to justify
the cardinalities that occur in the spectra of power series rings more precisely.

cardinality Lemma 28.17.
WWp
[188, Lemma 4.2] Let T be a Noetherian domain, y an inde-

terminate and I a proper ideal of T . Let δ = |T | and γ = |T/I|. Then δ ≤ γℵ0 ,
and |T [[y]]| = δℵ0 = γℵ0 .

Proof. The first equality holds by Exercise
ppssec
28.

polycard
1. That δℵ0 ≥ γℵ0 follows from

γ ≤ δ. For the reverse inequality,
⋂
n≥1 I

n = 0 by the Krull Intersection Theorem
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M
[123, Theorem 8.10 (ii)]. Therefore there is a monomorphism

(
cardinality
28.17.0) T ↪→

∏
n≥1

T/In.

Now T/In has a finite filtration with factors Ir−1/Ir for each r with 1 ≤ r ≤ n.
Since Ir−1/Ir is a finitely generated (T/I)-module, |Ir−1/Ir| ≤ γℵ0 . Therefore
|T/In| ≤ (γℵ0)n = γℵ0 , for each n. Thus δ ≤ (γℵ0)ℵ0 = γ(ℵ

2
0) = γℵ0 by Equa-

tion
cardinality
28.17.0. Finally, δℵ0 ≤ (γℵ0)ℵ0 = γℵ0 , and so δℵ0 = γℵ0 . □

The following remarks, observed in the article
WWp
[188] of R. Wiegand and S.

Wiegand, are helpful for establishing the cardinaliies in Theorem
20.3.4
28.19.

20.3.3 Remarks 28.18. Let ℵ0 denote the cardinality of the set of natural numbers.
Suppose that T is a commutative ring of cardinality δ, that m is a maximal ideal
of T and that γ is the cardinality of T/m. Then:

(1) The cardinality of T [[y]] is δℵ0 , by Lemma
cardinality
28.17 and Exercise

ppssec
28.

polycard
1. If T is

Noetherian, then T [[y]] is Noetherian, and so every prime ideal of T [[y]] is finitely
generated. Since the cardinality of the finite subsets of T [[y]] is δℵ0 , it follows that
T [[y]] has at most δℵ0 prime ideals.

(2) If T is Noetherian, then there are at least γℵ0 distinct height-one prime
ideals (other than (y)T [[y]] ) of T [[y]] contained in (m, y)T [[y]]. To see this, choose
a set C = {ci | i ∈ I} of elements of T so that {ci + m | i ∈ I} gives the distinct
coset representatives for T/m. Thus there are γ elements of C, and for ci, cj ∈ C
with ci 6= cj , we have ci − cj /∈ m. Now also let a ∈ m, a 6= 0. Consider the set

G = {a+
∑
n∈N

dny
n | dn ∈ C ∀n ∈ N}.

Each of the elements of G is in (m, y)T [[y]] \ yT [[y]] and hence is contained in a
height-one prime contained in (m, y)T [[y]] distinct from yT [[y]].

Moreover, |G| = |C|ℵ0 = γℵ0 . Let P be a height-one prime ideal of T [[y]]
contained in (m, y)T [[y]] but such that y /∈ P . If two distinct elements of G, say
f = a +

∑
n∈N dny

n and g = a +
∑
n∈N eny

n, with the dn, en ∈ C, are both in P ,
then so is their difference; that is

f − g =
∑
n∈N

dny
n −

∑
n∈N

eny
n =

∑
n∈N

(dn − en)yn ∈ P.

Now let t be the smallest power of y so that dt 6= et. Then (f − g)/yt ∈ P , since P
is prime and y /∈ P , but the constant term, dt − et /∈ m, which contradicts the fact
that P ⊆ (m, y)T [[y]]. Thus there must be at least |C|ℵ0 = γℵ0 distinct height-one
primes contained in (m, y)T [[y]].

(3) If T is Noetherian, then there are exactly γℵ0 = δℵ0 distinct height-one
prime ideals (other than yT [[y]] ) of T [[y]] contained in (m, y)T [[y]]. This follows
from (1) and (2) and Lemma

cardinality
28.17.

20.3.4 Theorem 28.19.
ppsgilmer
[88]

WWp
[188] Let R be a one-dimensional Noetherian domain

with cardinality δ, let β = δℵ0 and let α be the cardinality of the set of maximal ideals
of R, where α may be finite. Let U = SpecR[[y]], where y is an indeterminate over
R. Then U as a partially ordered set (where the “≤” relation is “set containment”)
satisfies the following axioms:

(1) |U | = β.
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(2) U has a unique minimal element, namely (0).
(3) dim(U) = 2 and |{ height-two elements of U }| = α.
(4) There exists a special height-one element u ∈ U such that u is less than

every height-two element of U , namely u = (y). If |max(R)| > 1, then
the special element is unique.

(5) Every nonspecial height-one element of U is less than exactly one height-
two element.

(6) Every height-two element t ∈ U is greater than exactly β height-one el-
ements that are less than only t. If t1, t2 ∈ U are distinct height-two
elements, then the special element from (4) is the unique height-one ele-
ment less than both.

(7) There are no height-one maximal elements in U . Every maximal element
has height two.

The set U is characterized as a partially ordered set by the axioms 1-7. Every
partially ordered set satisfying the axioms 1-7 is isomorphic to every other such
partially ordered set.

Proof. Item 1 follows from Remarks
20.3.3
28.18.1 and

20.3.3
28.18.3. Item 2 and the

first part of item 3 are clear. The second part of item 3 follows immediately from
Remark

20.2.3
28.9.1.

For items 4 and 5, suppose that P is a height-one prime of R[[y]]. If P = yR[[y]],
then P is contained in each maximal ideal of R[[y]] by Remark

20.2.3
28.9.1, and so yR[[y]]

is the special element. If y /∈ P , then, by Corollary
20.2.5
28.11, P is contained in a unique

maximal ideal of R[[y]].
For item 6, use Remarks

20.3.3
28.18.2 and

20.3.3
28.18.3.

All partially ordered sets satisfying the axioms of Theorem
20.3.1
28.14 are order-

isomorphic, and the partially ordered set U of the present theorem satisfies the same
axioms as in Theorem

20.3.1
28.14 except axiom (7) that involves height-one maximals.

Since U has no height-one maximals, an order-isomorphism between two partially
ordered sets as in Theorem

20.3.4
28.19 can be deduced by adding on height-one maximals

and then deleting them. □

Corollary 28.20. In the terminology of Sequences
ppssec
28.0.1 and

ppssec
28.0.2 at the

beginning of this chapter, we have SpecC ∼= SpecDn
∼= SpecE, but SpecB �

SpecC.

Proof. The rings C,Dn, and E are all formal power series rings in one variable
over a one-dimensional Noetherian domain R, where R is either k[x] or k[x, 1/x].
Thus the domain R satisfies the hypotheses of Theorem

20.3.4
28.19. Also the number of

maximal ideals is the same for C,Dn, and E, because in each case, it is the same
as the number of maximal ideals of R which is |k[x]| = |k| · ℵ0.

Thus in the picture of R[[y]] shown above, for R[[y]] = C,Dn or E, we have
α = |k| · ℵ0 and β = |R[[y]]| = |R|ℵ0 , and so the spectra are isomorphic. The
spectrum of B is not isomorphic to that of C, however, because B contains height-
one maximal ideals, such as that generated by 1+xy, whereas C has no height-one
maximal ideals. □

20.3.5 Remark 28.21. As mentioned at the beginning of this section, it is shown inrW1
[185] and

rW2
[186] that SpecQ[x, y] 6∼= SpecF [x, y] ∼= SpecZ[y], where F is a field

contained in the algebraic closure of a finite field. Corollary
20.3.6
28.22 shows that the
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spectra of power series extensions in y behave differently in that SpecZ[[y]] ∼=
SpecQ[x] [[y]] ∼= SpecF [x] [[y]].

20.3.6 Corollary 28.22. If Z is the ring of integers, Q is the rational numbers, F is
a field contained in the algebraic closure of a finite field, and R is the real numbers,
then

SpecZ[[y]] ∼= SpecQ[x] [[y]] ∼= SpecF [x] [[y]] 6∼= SpecR[x] [[y]].

Proof. The rings Z,Q[x] and F [x] are all countable with countably infinitely
many maximal ideals. Thus if R = Z,Q[x] or F [x], then R satisfies the hypotheses
of Theorem

20.3.4
28.19 with the cardinality conditions of parts (b) and (c). On the

other hand, R[x] has uncountably many maximal ideals; thus R[x] [[y]] also has
uncountably many maximal ideals. □

28.4. Higher dimensional mixed polynomial-power series rings20.4

In analogy to Sequence
ppssec
28.0.1, we display several embeddings involving three

variables.

(
ppssec
28.4.0.1)

k[x, y, z]
α
↪→ k[[z]] [x, y]

β
↪→ k[x] [[z]] [y]

γ
↪→ k[x, y] [[z]]

δ
↪→ k[x] [[y, z]],

k[[z]] [x, y]
ϵ
↪→ k[[y, z]] [x]

ζ
↪→ k[x] [[y, z]]

η
↪→ k[[x, y, z]],

where k is a field and x, y and z are indeterminates over k.

20.4.1 Remarks 28.23. (1) By Proposition
20.2.6
28.12.2 every nonzero prime ideal

of C = k[x] [[y]] has nonzero intersection with B = k[[y]] [x]. In three or
more variables, however, the analogous statements fail. We show below
that the maps α, β, γ, δ, ε, ζ, η in Sequence

20.4
28.4.0.1 fail to be TGF. Thus,

by Proposition
tgftrans
28.8.2, no proper inclusion in Sequence

20.4
28.4.0.1 is TGF.

The dimensions of the generic fiber rings of the maps in the diagram are
either one or two.

(2) For those rings in Sequence
20.4
28.4.0.1 of form R = S[[z]] (ending in a power

series variable) where S is a ring, such as R = k[x, y][[z]], we have some
information concerning the prime spectra. By Proposition

20.2.4
28.10 every

height-two prime ideal not containing z is contained in a unique maximal
ideal. By

N2
[138, Theorem 15.1] the maximal ideals of S[[z]] are of the

form (m, z)S[[z]], where m is a maximal ideal of S, and thus the maximal
ideals of S[[z]] are in one-to-one correspondence with the maximal ideals
of S. As in section

20.3
28.3, using Remarks

20.2.3
28.9, we see that maximal ideals

of Spec k[[z]] [x, y] can have height two or three, that (z) is contained in
every height-three prime ideal, and that every height-two prime ideal not
containing (z) is contained in a unique maximal ideal.

(3) It follows by arguments analogous to that in Proposition
20.2.6
28.12.1, that α,

δ, ε are not TGF. For α, let σ(z) ∈ zk[[z]] be transcendental over k(z);
then (x− σ)k[[z]] [x, y]∩ k[x, y, z] = (0). For δ and ε: let σ(y) ∈ yk[[y]] be
transcendental over k(y); then (x− σ)k[x] [[z, y]] ∩ k[x] [[z]] [y] = (0), and
(x− σ)k[[y, z]] [x] ∩ k[[z]] [x, y] = (0).

(4) By Main Theorem
gffres
26.3.4.a of Chapters

weiersec
26 and

ppssec
28 (proved in Theorem

19.4.1
27.5),

η is not TGF and the dimension of the generic fiber ring of η is one.
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In order to show in Proposition
20.4.3
28.25 below that the map β is not TGF, we

first observe:

20.4.2 Proposition 28.24. The element σ =
∑∞
n=1(xz)

n! ∈ k[x] [[z]] is transcenden-
tal over k[[z]] [x].

Proof. Consider an expression

Z := aℓσ
ℓ + aℓ−1σ

ℓ−1 + · · ·+ a1σ + a0,

where the ai ∈ k[[z]] [x] and aℓ 6= 0. Let m be an integer greater than ` + 1 and
greater than degx ai for each i such that 0 ≤ i ≤ ` and ai 6= 0. Regard each aiσi as
a power series in x with coefficients in k[[z]].

For each i with 0 ≤ i ≤ `, we have i(m!) < (m + 1)!. It follows that the
coefficient of xi(m!) in σi is nonzero, and the coefficient of xj in σi is zero for every j
with i(m!) < j < (m+1)!. Thus if ai 6= 0 and j = i(m!)+degx ai, then the coefficient
of xj in aiσ

i is nonzero, while for j such that i(m!) + degx ai < j < (m + 1)!, the
coefficient of xj in aiσ

i is zero. By our choice of m, for each i such that 0 ≤ i < `
and ai 6= 0, we have

(m+ 1)! > `(m!) + degx aℓ ≥ i(m!) +m! > i(m!) + degx ai.

Thus in Z, regarded as a power series in x with coefficients in k[[z]], the coefficient
of xj is nonzero for j = `(m!) + degx aℓ. Therefore Z 6= 0. We conclude that σ is
transcendental over k[[z]] [x]. □

20.4.3 Proposition 28.25. In Sequence
20.4
28.4.0.1, k[[z]] [x, y]

β
↪→ k[x] [[z]] [y] is not a

TGF-extension.

Proof. Fix an element σ ∈ k[x] [[z]] that is transcendental over k[[z]] [x]. We
define π : k[x] [[z]] [y]→ k[x] [[z]] to be the identity map on k[x] [[z]] and π(y) = σz.
Let q = kerπ. Then y − σz ∈ q. If h ∈ q ∩ (k[[z]] [x, y]), then

h =

s∑
j=0

t∑
i=0

(
∑
ℓ∈N

aijℓz
ℓ)xiyj , for some s, t ∈ N and aijℓ ∈ k, and so

0 = π(h) =

s∑
j=0

t∑
i=0

(
∑
ℓ∈N

aijℓz
ℓ)xi(σz)j =

s∑
j=0

t∑
i=0

(
∑
ℓ∈N

aijℓz
ℓ+j)xiσj .

Since σ is transcendental over k[[z]] [x], we have that x and σ are algebraically
independent over k((z)). Thus each of the aijℓ = 0. Therefore q∩(k[[z]][x, y]) = (0),
and so the embedding β is not TGF. □

The concept of “analytic independence” is useful in several arguments below.

defanind Definition and Remarks 28.26. Let I be an ideal of an integral domain A.
Assume that A is complete and Hausdorff in the I-adic topology. Let B be a
subring of A, let a1, . . . , an ∈ I and let v1, . . . , vn be indeterminates over A. We
say a1, . . . , an are analytically independent over B if the B-algebra homomorphism
ϕ : B[[v1, . . . , vn]]→ A, where ϕ(vi) = ai for each i, is injective.

(1) This definition of “analytically independent” is given in the book of Zariski
and Samuel

ZSII
[194, page 258]. This use of the term applies to the work of Abhankar

and Moh
AM
[16], and of Dumitrescu

D
[42]. However, this definition does not agree
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with the use of the term “analytically independent” in Matsumura
M
[123, page 107]

and Swanson and Huneke
SH
[176, page 175].

(2) If, for example, a and b are elements of I, then we have power series ex-
pressions

∑∞
i=0

∑∞
j=0 cija

ibj , where each cij ∈ B. If a and b are analytically inde-
pendent over B, then the expression above is unique. Thus

∑∞
i=0

∑∞
j=0 cija

ibj = 0
implies that every cij = 0.

20.4.4 Proposition 28.27. In Sequence
20.4
28.4.0.1, the extensions

k[[y, z]] [x]
ζ
↪→ k[x] [[y, z]] and k[x] [[z]] [y]

γ
↪→ k[x, y] [[z]]

are not TGF.

Proof. For ζ, let t = xy and let σ ∈ k[[t]] be algebraically independent over
k(t). Define π : k[x] [[y, z]]→ k[x] [[y]] as follows. For

f :=

∞∑
ℓ=0

∑
m+n=ℓ

fmn(x)y
mzn ∈ k[x] [[y, z]],

where fmn(x) ∈ k[x], define

π(f) :=

∞∑
ℓ=0

∑
m+n=ℓ

fmn(x)y
m(σy)n ∈ k[x] [[y]].

In particular, π(z) = σy. Let p := kerπ. Then z − σy ∈ p, and so p 6= (0). Let
h ∈ p ∩ k[[y, z]] [x]. We show h = 0. Now h is a polynomial with coefficients in
k[[y, z]], and we define g ∈ k[[y, z]] [t], by, if ai(y, z) ∈ k[[y, z]] and

h :=

r∑
i=0

ai(y, z)x
i, then set g := yrh =

r∑
i=0

(

∞∑
ℓ=0

∑
m+n=ℓ

bimny
mzn)ti.

The coefficients of g are in k[[y, z]], since yrxi = yr−iti. Thus

0 = π(g) =

r∑
i=0

(

∞∑
ℓ=0

∑
m+n=ℓ

bimny
m(σy)n)ti =

r∑
i=0

(

∞∑
ℓ=0

∑
m+n=ℓ

bimnσ
nyℓ)ti

=

∞∑
ℓ=0

(
∑

m+n=ℓ

(

r∑
i=0

bimnt
i)σn)yℓ.

The elements t = xy and y of k[x][[y, z]] are analytically independent over k in the
sense of Definition

defanind
28.26; hence the coefficient of each yℓ (in k[[t]]) is 0. Since σ

and t are algebraically independent over k, the coefficient of each σn is 0. It follows
that each bimn = 0, that g = 0 and hence that h = 0. Thus p ∩ k[[y, z]] [x] = (0),
and so the extension ζ is not TGF.

To see that γ is not TGF, we switch variables in the proof for ζ, so that
t = yz. Again choose σ ∈ k[[t]] to be algebraically independent over k(t). Define
ψ : k[x, y] [[z]] → k[y] [[z]] by ψ(x) = σz and ψ is the identity on k[y] [[z]]. Then ψ
can be extended to π : k[y] [[x, z]]→ k[y] [[z]], which is similar to the π in the proof
above. As above, set p := kerπ; then p∩k[[x, z]] [y] = (0). Thus p∩k[x] [[z]] [y] = (0)
and γ is not TGF. □

20.4.5 Proposition 28.28. Let D be an integral domain and let x and t be indeter-
minates over D. Then σ =

∑∞
n=1 t

n! ∈ D[[x, t]] is algebraically independent over
D[[x, xt]].



390 28. POLYNOMIAL-POWER SERIES RINGS

Proof. Suppose that σ is algebraically dependent over D[[x, xt]]. Then there
exists an equation

γℓσ
ℓ + · · ·+ γiσ

i + · · ·+ γ1σ + γ0 = 0,

where each γi ∈ D[[x, xt]], ` is a positive integer and γℓ 6= 0. This implies

γ := γℓσ
ℓ + · · ·+ γiσ

i + · · ·+ γ1σ = −γ0
is an element of D[[x, xt]]. We obtain a contradiction by showing that γ /∈ D[[x, xt]].

For each i with 1 ≤ i ≤ `, write

γi :=

∞∑
j=0

fij(x)(xt)
j ∈ D[[x, xt]],

where each fij(x) ∈ D[[x]]. Since γℓ 6= 0, there exists j such that fℓj(x) 6= 0. Let
aℓ be the smallest such j, and let mℓ be the order of fℓaℓ(x), that is, fℓaℓ(x) =
xmℓgℓ(x), where gℓ(0) 6= 0. Let n be a positive integer such that

n ≥ 2 + max{`,mℓ, aℓ}.

Since ` < n and 1 ≤ i ≤ `, we have

(
20.4.5
28.28.0)

σi = (t+ . . .+ tn! + . . .)i = t(t+ . . .+ t(n−1)! + tn! + . . .)(i−1)

+ . . .+ t(n−1)!(t+ . . .+ t(n−1)! + tn! + . . .)(i−1)

+ tn!(t+ . . .+ t(n−1)! + tn! + . . .)(i−1)+

+ t(n+1)!(t+ t2 + . . .)(i−1) + . . .

= δi(t) + cit
i(n!) + t(n+1)!τi(t),

where ci = 1 is a nonzero element of D, δi(t) is a polynomial in D[t] of degree at
most (i − 1)n! + (n − 1)! and τi(t) ∈ D[[t]], for each i. We use the following two
claims to complete the proof. □

20.4.6 Claim 28.29. The coefficient of tℓ(n!)+aℓ in σℓγℓ = σℓ(
∑∞
j=aℓ

fℓj(x)(xt)
j) as a

power series in D[[x]] has order mℓ + aℓ, and hence, in particular, is nonzero.

Proof. By the choice of n, (n + 1)! = (n + 1)n! > `(n!) + n > `(n!) + aℓ.
Hence, by the expression for σℓ given in Equation

20.4.5
28.28.0, we see that all of the

terms in σℓγℓ of the form btℓ(n!)+aℓ , for some b ∈ D[[x]], appear in the product

( tℓ(n!) + δℓ(t) )(x
mℓgℓ(x)(xt)

aℓ +

ℓ(n!)+aℓ∑
j=1+aℓ

fℓj(x)(xt)
j).

One of the terms of the form btℓ(n!)+aℓ in this product is
(xmℓ+aℓgℓ(x))t

ℓ(n!)+aℓ = (xmℓ+aℓ(gℓ(0) + xhℓ(x)))t
ℓ(n!)+aℓ ,

where we write gℓ(x) = gℓ(0)+xhℓ(x) with hℓ(x) ∈ D[[x]]. Since gℓ(0) is a nonzero
element of D, xmℓ+aℓgℓ(x) ∈ D[[x]] has order mℓ + aℓ. The other terms in the
product σℓγℓ that have the form btℓ(n!)+aℓ , for some b ∈ D[[x]], are in the product

(δℓ(t))(

ℓ(n!)+aℓ∑
j=1+aℓ

fℓj(x)(xt)
j) =

ℓ(n!)+aℓ∑
j=1+aℓ

fℓj(x)(xt)
jδℓ(t).



28.4. HIGHER DIMENSIONAL MIXED POLYNOMIAL-POWER SERIES RINGS 391

Since degt δℓ ≤ (` − 1)n! + (n − 1)! and since, for each j with fℓj(x) 6= 0, we have
degt fℓj(x)(xt)

j = j, we see that each term fℓj(x)(xt)
jδℓ(t) has degree in t less than

or equal to j + (`− 1)n! + (n− 1)!. Thus each nonzero term in this product of the
form btℓ(n!)+aℓ has `(n!) + aℓ ≤ j + (`− 1)n! + (n− 1)!. That is,

j ≥ `(n!) + aℓ − (`− 1)(n!)− (n− 1)! = aℓ + n!− (n− 1)!

= aℓ + (n− 1)!(n− 1) > aℓ +mℓ,

since n−1 > mℓ. Moreover, for j such that fℓj(x) 6= 0, the order in x of fℓj(x)(xt)j
is bigger than or equal to j. Thus the coefficient of tℓ(n!)+aℓ in σℓγℓ as a power
series in x has order mℓ + aℓ, as desired for Claim

20.4.6
28.29. □

20.4.7 Claim 28.30. For i < `, the coefficient of tℓ(n!)+aℓ in σiγi as a power series in
D[[x]] is either zero or has order greater than mℓ + aℓ.

Proof. As in the proof of Claim
20.4.6
28.29, all of the terms in σiγi of the form

btℓ(n!)+aℓ , for some b ∈ D[[x]], appear in the product

(δi + ti(n!))(

ℓ(n!)+aℓ∑
j=0

fij(x)(xt)
j) =

ℓ(n!)+aℓ∑
j=0

fij(x)(xt)
j(δi + ti(n!)).

Since degt(δi + ti(n!)) = i(n!), each term in fij(x)(xt)
j(δi + ti(n!)) has degree in t

at most j + i(n!). Thus each term in this product of the form btℓ(n!)+aℓ , for some
nonzero b ∈ D[[x]], has

j ≥ `(n!) + aℓ − i(n!) ≥ n! + aℓ > mℓ + aℓ.

Thus ordx b ≥ j > mℓ + aℓ. This completes the proof of Claim
20.4.7
28.30. Hence

γ 6∈ D[[x, xt]]. This completes the proof of Proposition
20.4.5
28.28. □

20.4.8 Question and Remarks 28.31. (1) As we show in Proposition
20.2.6
28.12,

the embeddings from Equation 1 involving two mixed polynomial-power
series rings s of dimension two over a field k with inverted elements
are TGF. In the article

ppsgilmer
[88] we ask whether this is true in the three-

dimensional case. For example, is the embedding θ below TGF?

k[x, y] [[z]]
θ
↪→ k[x, y, 1/x] [[z]]

Yasuda shows the answer for this example is “No” in
yasuda
[189]. Dumitrescu

establishes the answer is “No” in more generality; see Theorem
20.4.9
28.32.

(2) For the four-dimensional case, as observed in the discussion of Ques-
tion

ConradQ
28.1, it follows from a result of Heinzer and Rotthaus

HR
[71, Theorem

1.12, p. 364] that the extension k[x, y, u] [[z]] ↪→ k[x, y, u, 1/x] [[z]] is not
TGF. Theorem

20.4.9
28.32 yields a direct proof of this fact.

We close this chapter with a result of Dumitrescu that shows many extensions
involving only one power series variable are not TGF.

20.4.9 Theorem 28.32.
D
[42, Cor. 4 and Prop. 3] Let D be an integral domain and

let x, y, z be indeterminates over D. For every subring B of D[[x, y]] that contains
D[x, y], the extension B[[z]] ↪→ B[1/x][[z]] is not TGF.

Proof. Let K be the field of fractions of D and let θ(z) ∈ D[[z]] be alge-
braically independent over K(z).
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20.4.9c Claim 28.33. The elements xz and xθ(z) ∈ K[[x, z]] are analytically indepen-
dent over K[[x]], and xθ(z) is analytically independent over K[[x, xz]].

Proof of Claim: Let v and w be indeterminates over K[[x]] and consider the
K[[x]]-algebra homomorphism ϕ : K[[x, v, w]] → K[[x, z]] where ϕ(v) = xz and
ϕ(w) = xθ. Let g ∈ K[[x, v, w]] and write g =

∑
n≥0 gn(x, v, w), where gn is a form

of degree n in x, v, w with coefficients in K. Thus ϕ(g) =
∑
n≥0 ϕ(gn) and

gn =
∑

i+j+k=n

cijkx
ivjwk =⇒ ϕ(gn) =

∑
i+j+k=n

cijkx
nzjθk.

If ϕ(g) = 0, then ϕ(gn) = 0 for each n. Since z and θ are algebraically independent
over K, each cijk = 0. Thus ϕ is injective. By Definition

defanind
28.26, Claim

20.4.9c
28.33 holds.

It follows from Claim
20.4.9c
28.33 that λ := xθ(z/x) ∈ zD[x, 1/x][[z]] is analytically

independent over D[[x, z]].
Consider the D[[x]][1/x][[z]]-algebra homomorphism

π : D[[x]] [
1

x
] [[z, y]] → D[[x]] [

1

x
] [[z]], where π(y) = λ.

Let p = kerπ. Then y − λ is a nonzero element of p ∩ D[x, y][1/x][[z]], and so
0 6= p ∩B[1/x][[z]]. We show p ∩D[[x, y, z]] = (0), and so also p ∩B [[z]] = (0).

The restriction of π to D[[x, z, y]] is injective because λ is analytically indepen-
dent over D[[x, z]]. Therefore p ∩ D[[x, z, y]] = (0). This completes the proof of
Theorem

20.4.9
28.32. □

Exercises
polycard (1) Let k be a field and let ℵ0 = |N|. Prove that α = |k| · ℵ0 and β = |k|ℵ0 in

Theorem
20.3.1
28.14.

Suggestion: Notice that every polynomial of the form x − a, for a ∈ k, gen-
erates a maximal ideal of k[x] and also that |k[x]| = |k| · ℵ0, since k[x] can be
considered as an infinite union of polynomials of each finite degree.

(2) Let y denote an indeterminate over the ring of integers Z, and let A = Z[[y]].
(a) Prove that every maximal ideal of A has height two.
(b) Describe and make a diagram of the partially ordered set SpecA.
(c) Let B = A[ 1

y+2 ]. Describe the partially ordered set SpecB. Prove that
B has maximal ideals of height one, and deduce that SpecB is not order-
isomorphic to SpecA.

(d) Let C = A[y2 ]. Describe the partially ordered set SpecC. Prove that C has
precisely two nonmaximal prime ideal of height one that are an intersection
of maximal ideals, while each of A and B has precisely one nonmaximal
prime ideal of height one that is an intersection of maximal ideals. Deduce
that SpecC is not order-isomorphic to either SpecA or SpecB.



CHAPTER 29

Extensions of local domains with trivial generic
fiber May 28 2020,

tgfsec
We consider injective local maps from a Noetherian local domain R to a Noe-

therian local domain S such that the generic fiber of the inclusion map R ↪→ S is
trivial, that is P ∩R 6= (0) for every nonzero prime ideal P of S. 1 Recall that S is
said to be a trivial generic fiber extension of R, or more briefly, a TGF extension,
if each nonzero ideal of S has a nonzero intersection with R, or equivalently, if
each nonzero element of S has a nonzero multiple in R. We present in this chapter
examples of injective local maps involving power series that are TGF, and other
examples that fail to be TGF extensions.

Let R ↪→ S be an injective map of integral domains. The ideals of S maximal
with respect to having empty intersection with R \ {0} are prime ideals of S. Thus
S is a TGF extension of R if and only if P ∩R 6= (0) for each nonzero prime ideal
P of S; Equivalently, S is a TGF extension of R ⇐⇒ U−1S is a field, where
U = R \ (0).

Our work in this chapter is motivated by Question
Hochster
26.4 asked by Melvin

Hochster and Yongwei Yao. In this connection, we often use the following setting.

21tgf Setting 29.1. Let (R,m) ↪→ (S, n) be an injective local homomorphism of
complete Noetherian local domains such that S is a TGF extension of R.

By Remark
rhochster
26.5, in the equicharacteristic zero case of Setting

21tgf
29.1 such exten-

sions arise as a composition
(
21tgf
29.1.0) R = K[[x1, ..., xn]] ↪→ T = L[[x1, ..., xn, y1, ..., ym]]→ T/P = S,

where K is a subfield of L, the xi, yj are indeterminates, and P is a prime ideal of
T maximal with respect to being disjoint from the image of R \ {0}.

We discuss several topics and questions related to Question
Hochster
26.4. Previous

work concerning homomorphisms of formal power series rings appears in articles
of Matsumura, Rotthaus, Abhyankar, Moh, van der Put

R3.5
[159],

Abhy1
[4]

AbM
[12],

AbV
[13] among

others. In particular, in
AbM
[12, Section 3], Abhyankar and Moh consider an extension

R = k[[x, xy]] ( k[[x, y]] = S where x and y are indeterminates over an algebrically
closed field k.

29.1. General remarks about TGF extensions21.2

21.3.1.1 Proposition 29.2. Let (R,m) ↪→ (S, n) be an injective local homomorphism
of complete Noetherian local domains with S a TGF-extension of R.

(1) Assume that dimR = 1. Then:

1The material in this chapter is adapted from our paper
tgf
[89] dedicated to Phil Griffith in

honor of his contributions to commutative algebra.

393
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(a) dimS = 1 and mS is n-primary.
(b) If [S/n : R/m] <∞, then S is a finite integral extension of R.

(2) If R ↪→ S has finite residue extension and dimS ≥ 2, then dimR ≥ 2.

Proof. By Krull’s Altitude Theorem
krullpit
2.23, n is the union of the height-one

primes of S. If dimS > 1, then S has infinitely many height-one primes. Since S
is Noetherian, each nonzero element of n is contained in only finitely many of these
height-one primes. If dimS > 1, then the intersection of the height-one primes of S
is zero. For item 1, since dimR = 1 and R ↪→ S is TGF, every nonzero prime of S
contains m. Thus dimS = 1 and mS is n-primary. Moreover, if [S/n : R/m] < ∞,
then S is finite over R by Theorem

3.38.1
3.16. Item 2 follows from item 1. □

21.2.3 Remarks 29.3. (1) There exist extensions S of R as in Setting
21tgf
29.1 that have

an arbitrarily large extension of residue field. For example, if k is a subfield of a
field F and x is an indeterminate over F , then R := k[[x]] ⊆ S := F [[x]] is an
injective local homomorphism of complete Noetherian local domains and S is a
TGF-extension of R.

(2) Let (R,m) ↪→ (T, q) be an injective local homomorphism of complete Noe-
therian local domains, and let P ∈ SpecT . Then S := T/P is a TGF-extension of
R as in Setting

21tgf
29.1 if and only if P is an ideal of T maximal with respect to the

property that P ∩R = (0).

21.2.4 Remarks 29.4. Let X = {x1 . . . , xn}, Y = {y1 . . . , ym} and Z = {z1 . . . , zr}
be finite sets of indeterminates over a field k, where n ≥ 2, m, r ≥ 1. Set R := k[[X]]
and let P be a prime ideal of k[[X,Y, Z]] that is maximal with respect to P∩R = (0).
Then we have the inclusions:

R := k[[X]]
σ
↪→ S := k[[X,Y ]]/(P ∩ k[[X,Y ]])

τ
↪→ T := k[[X,Y, Z]]/P.

By Remark
21.2.3
29.3.2, τ · σ is a TGF extension. By Proposition

tgftrans
28.8.3, S ↪→ T is

TGF.
(1) If the map SpecT → SpecS is surjective, then σ : R ↪→ S is TGF by

Proposition
tgftrans
28.8.2.

(2) If R ↪→ T is finite, then R ↪→ S is also finite, and so σ : R ↪→ S is TGF.
(3) If R ↪→ T is not finite, then dimT = 2 by Theorem

19.7.2
27.16.

(4) If P ∩ k[[X,Y ]] = 0, then S = R[[Y ]] and R ↪→ S is not TGF. (Examplerel2.4
29.16 shows that this can occur.)

21.2.4.5 Remarks and Question 29.5. (1) With notation as in Remarks
21.2.4
29.4 and

with Y = {y}, a singleton set, it is always true that ht(P ∩ R[[y]]) ≤ n − 1. (See
Theorem

19.7.1
27.15.) Moreover, if ht(P ∩R[[y]]) = n− 1, then R ↪→ S is TGF. Thus if

n = 2 and P ∩R[[y]] 6= 0, then R ↪→ S is TGF.
(2) With notation as in (1) and n = 3, it can happen that P ∩ k[[X, y]] 6= (0)

and R ↪→ R[[y]]/(P ∩ R[[y]]) is not a TGF extension. To construct an example of
such a prime ideal P, we proceed as follows: Since dim(k[[X, y]]) = 4, there exists a
prime ideal Q of k[[X, y]] with htQ = 2 and Q ∩ k[[X]] = (0), see Theorem

19.7.1
27.15.

Let p ⊂ Q be a prime ideal with ht p = 1. Since p ( Q and Q ∩ k[[X]] = (0),
the extension k[[X]] ↪→ k[[X, y]]/p is not a TGF extension. In particular, it is not
finite. Let P ∈ Spec(k[[X, y, Z]]) be maximal with respect to P ∩ k[[X, y]] = p. By
Corollary

21.3.44
29.10 below, dim(k[[X, y, Z]]/P ) = 2. Hence P is maximal in the generic

fiber over k[[X]].
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(3) If (R,m) ↪→ (S, n) is a TGF local extension of complete Noetherian local
domains and S/n is finite algebraic over R/m, can the transcendence degree of S
over R be finite but nonzero?

(4) If (R,m) ↪→ (S, n) is a TGF extension as in (3) with R equicharacteristic
and dimR ≥ 2, then by Corollary

gendim2th
29.9 below it follows that either S is a finite

integral extension of R or dimS = 2.

21.2.66 Proposition 29.6. Let A ↪→ B be a TGF extension, where B is a Noetherian
integral domain. For each Q ∈ SpecB, we have htQ ≤ ht(Q ∩ A). In particular,
dimA ≥ dimB.

Proof. If htQ = 1, it is clear that htQ ≤ ht(Q ∩ A) since Q ∩ A 6= (0). Let
htQ = n ≥ 2, and assume by induction that htQ′ ≤ ht(Q′∩A) for each Q′ ∈ SpecB
with htQ′ ≤ n− 1. Since B is Noetherian,

(0) =
⋂
{Q′ |Q′ ⊂ Q and htQ′ = n− 1}.

Hence there exists Q′ ⊂ Q with htQ′ = n − 1 and Q′ ∩ A ( Q ∩ A. We have
n− 1 ≤ ht(Q′ ∩A) < ht(Q ∩A), and so ht(Q ∩A) ≥ n. □

29.2. TGF extensions with finite residue field extension
sec28.2

set3 Setting 29.7. Let n ≥ 2 be an integer, let X = {x1, . . . , xn} be a set of
independent variables over the field k and let R = k[[X]] be the formal power series
ring in n variables over the field k.

dim2th Theorem 29.8. Let R = k[[X]] be as in Setting
set3
29.7. Assume that R ↪→ S is

a TGF local extension, where (S, n) is a complete Noetherian local domain and S/n
is finite algebraic over k. Then either dimS = n and S is a finite integral extension
of R or dimS = 2.

Proof. It is clear that if S is a finite integral extension of R, then dimS = n.
Assume S is not a finite integral extension of R. Let b1, . . . , bm ∈ n be such that
n = (b1, . . . , bm)S, and let Y = {y1, . . . , ym} be a set of independent variables over
R. Since S is complete the R-algebra homomorphism ϕ : T := R[[Y ]] → S such
that ϕ(yi) = bi for each i with 1 ≤ i ≤ m is well defined. Let Q = kerϕ. We have

R ↪→ T/Q ↪→ S.

By Theorem
3.38.1
3.16 S is a finite module over T/Q. Hence dimS = dim(T/Q) and the

map SpecS → Spec(T/Q) is surjective, and so by Proposition
tgftrans
28.8(3) R ↪→ T/Q is

TGF. By Corollary
19.7.4
27.18, dim(T/Q) = 2, and so dimS = 2. □

gendim2th Corollary 29.9. Let (A,m) and (S, n) be complete equicharacteristic Noe-
therian local domains with dimA = n ≥ 2. Assume that A ↪→ S is a local injective
homomorphism and that the residue field S/n is finite algebraic over the residue
field A/m := k. If A ↪→ S is a TGF extension, then either dimS = n and S is a
finite integral extension of A or dimS = 2.

Proof. By
M
[123, Theorem 29.4(3)], A is a finite integral extension of R =

k[[X]], where X is as in Setting
set3
29.7. We have R ↪→ A ↪→ S. By Propositiontgftrans

28.8(1), R ↪→ S is TGF. By Theorem
dim2th
29.8, either dimS = n and S is a finite

integral extension of A or dimS = 2. □
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For example, if R = k[[x1, . . . , x4]] and S = k[[y1, y2, y3]], then every k-algebra
embedding R ↪→ S fails to be TGF.

21.3.44 Corollary 29.10. Let R = k[[X]] be as in Setting
set3
29.7. Let Y = {y1, . . . , ym}

be a set of m independent variables over R and let S = R[[Y ]]. If P ∈ SpecR is
such that dim(R/P ) ≥ 2 and Q ∈ SpecS is maximal with respect to Q ∩ R = P ,
then either

(i) dim(S/Q) = 2, or
(ii) R/P ↪→ S/Q is a finite integral extension and dim(R/P ) = dim(S/Q).

Proof. Let A := R/P ↪→ S/Q =: B, and apply Corollary
gendim2th
29.9. □

gen General Example 29.11. It is known that, for each positive integer n, the
power series ring R = k[[x1, . . . , xn]] in n variables over a field k can be embedded
into a power series ring in two variables over k. The construction is based on the
fact that the power series ring k[[z]] in the single variable z contains an infinite
set of algebraically independent elements over k. Let {fi}∞i=1 ⊂ k[[z]] with f1 6= 0
and {fi}∞i=2 algebraically independent over k(f1). Let (S := k[[z, w]], n := (z, w))
be the formal power series ring in the two variables z, w. Fix a positive integer n
and consider the subring Rn := k[[f1w, . . . , fnw]] of S with maximal ideal mn =
(f1w, . . . , fnw). Let x1, . . . , xn be new indeterminates over k and define a k-algebra
homomorphism ϕ : k[[x1, . . . , xn]]→ Rn by setting ϕ(xi) = fiw for i = 1, . . . , n.

genclaim Claim 29.12. (See
ZSII
[194, pp. 219-220]). ϕ is an isomorphism.

Proof. For g ∈ k[[x1, . . . , xn]], write g =
∑∞
m=0 gm, where gm is a form of

degree m in k[x1, . . . , xn]. Then

ϕ(g) =

∞∑
m=0

ϕ(gm) and ϕ(gm) = gm(f1w, . . . , fnw) = wmgm(f1, . . . , fn),

where gm(f1, . . . , fn) ∈ k[[z]]. Iff ϕ(g) = 0, then gm(f1, . . . , fn) = 0 for each m.
Thus

0 = gm(f1, . . . , fn) =
∑

i1+···+in=m
ai1,...,inf

i1
1 · · · f inn ,

where the ai1,...,in ∈ k and the ij are nonnegative integers. Our hypothesis on the
fj implies that each of the ai1,...,in = 0, and so gm = 0 for each m. □

genex Proposition 29.13. With notation as in Example
gen
29.11, for each n ≥ 2, the

extension (Rn,mn) ↪→ (S, n) is a nonfinite TGF extension with trivial residue field
extension. Moreover ht(P ∩Rn) ≥ n− 1, for each nonzero prime P ∈ SpecS.

Proof. We have k = Rn/mn = S/n, so the residue field of S is a trivial
extension of that of Rn. Since mnS is not n-primary, S is not finite over Rn. If
P ∩Rn = mn, then ht(P ∩Rn) = n ≥ n−1. Since dimS = 2, if mn is not contained
in P , then htP = 1, S/P is a one-dimensional local domain, and mn(S/P ) is
primary for the maximal ideal n/P of S/P . It follows that Rn/(P ∩ Rn) ↪→ S/P
is a finite integral extension by Theorem

3.38.1
3.16. Therefore dim(Rn/(P ∩ Rn)) = 1.

Since Rn is catenary and dimRn = n, ht(P ∩Rn) = n− 1. □

Corollary 29.14. Let X and R = k[[X]] be as in Setting
set3
29.7. Then there

exists an infinite properly ascending chain of two-dimensional TGF local extensions
R =: S0 ↪→ S1 ↪→ S2 ↪→ · · · such that each Si is a complete Noetherian local domain
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that has the same residue field as R, and Si+1 is a nonfinite TGF local extension
of Si for each i.

Proof. Example
gen
29.11 and Proposition

genex
29.13 imply that R can be identified

with a proper subring of the power series ring in two variables so that k[[y1, y2]] is
a TGF local extension of R and the extension is not finite. Now Example

gen
29.11

and Proposition
genex
29.13 can be applied again, to k[[y1, y2]], and so on. □

21.3.4 Example 29.15. A particular case of Example
gen
29.11.

For R := k[[x, y]], the extension ring S := k[[x, y/x]] has infinite transcendence
over R by Sheldon’s work; see

Shel
[174]. The method used in

Shel
[174] to prove that

S has infinite transcendence degree over R is by constructing power series in y/x
with ‘special large gaps’. Since k[[x]] is contained in R, it follows that S is a TGF
extension ofR. To show this, it suffices to show P∩R 6= (0) for each P ∈ SpecS with
htP = 1. This is clear if x ∈ P , while if x 6∈ P , then k[[x]]∩P = (0), and so k[[x]] ↪→
R/(P ∩ R) ↪→ S/P and S/P is finite over k[[x]]. Therefore dim(R/(P ∩ R)) = 1,
and so P ∩R 6= (0).

Notice that the extension k[[x, y]] ↪→ k[[x, y/x]] is, up to isomorphism, the same
as the extension k[[x, xy]] ↪→ k[[x, y]].

Example
rel2.4
29.16 shows that the situation of Remark

21.2.4
29.4.4 does occur.

rel2.4 Example 29.16. Let k, X = {x1, x2}, Y = {y}, Z = {z} and R = k[[x1, x2]]
be as in Remarks

21.2.4
29.4. Let f1, f2 ∈ k[[z]] be algebraically independent over k. Let

P denote the ideal of k[[x1, x2, y, z]] generated by (x1 − f1y, x2 − f2y). Then P is
the kernel of the k-algebra homomorphism θ : k[[x1, x2, y, z]] → k[[y, z]] obtained
by defining θ(x1) = f1y, θ(x2) = f2y, θ(y) = y and θ(z) = z. In the notation of
Remark

21.2.4
29.4,

T = k[[x1, x2, y, z]]/P ∼= k[[y, z]].

Let ϕ := θ|R and τ := θ|R[[y]]. The proof of Claim
genclaim
29.12 shows that ϕ and τ are

embeddings. Hence P ∩R[[y]] = (0). Thus

R
σ
↪→ S =

R[[y]]

P ∩R[[y]]
= R[[y]]

τ
↪→ T =

R[[y, z]]

P
∼= k[[y, z]],

where σ : R ↪→ S is the inclusion map. By Proposition
genex
29.13, ϕ and τ are TGF.

Since yS ∩R = (0), the map σ : R ↪→ S is not TGF, as in Remark
21.2.4
29.4.4.

21.3.6 Questions and Remarks 29.17. Let R and S be complete Noetherian local
domains and let ϕ : R ↪→ S be a TGF local nonfinite extension with finite residue
field extension. Let y be an indeterminate over S.

(1) Is it always true that ϕ can be extended to a TGF local nonfinite extension
R[[y]] ↪→ S?

(2) It is natural to ask: Does R[[y]] ↪→ S[[y]] have the TGF property? The
answer is “No” in general. To see this, use Example

gen
29.11, Claim

genclaim
29.12,

and Proposition
genex
29.13 in the case n = 3 to define a TGF local non-finite

extension
ϕ : R := k[[x1, x2, x3]]

φ
↪→ S := [[z, w]],

where k is a field and x1, x2, x3, z, w are indeterminates. Then dim(R[[y]]) =
4 and dim(S[[y]]) = 3. Therefore Theorem

dim2th
29.8 implies that R[[y]] ↪→

S[[y]] is not TGF.
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(3) A related question is whether the given R
φ
↪→ S is extendable to an injective

local homomorphism ψ : R[[y]] ↪→ S. That is, ϕ is the composite map:

R
⊆
↪→ R[[y]]

ψ
↪→ S.

(4) For a non-complete example, the extension
θ : k[[x1]][y](x1,y) ↪→ k[y][[x1]](x1,y)

is TGF, if k is a field. Can θ be extended to a local injective map
k[[x1]][y][[x2]](x1,x2,y) ↪→ k[y][[x1]](x1,y)?

Proposition
21.3.10
29.18 shows that these questions are connected: the answer to

(
21.3.6
29.17.2) is ‘no’ if the answer to (

21.3.6
29.17.3) is “yes”, that is, If the given R ↪→ S is

extendable to an injective local homomorphism R[[y]] ↪→ S, then R[[y]] ↪→ S[[y]] is
not TGF. In Example

21.3.8
29.19, we present an example where this occurs.

21.3.10 Proposition 29.18. Let ϕ : R ↪→ S be a TGF local extension of complete
Noetherian local domains and let y be an indeterminate over S. If ϕ is extendable
to an injective local homomorphism ψ : R[[y]] ↪→ S, then R[[y]] ↪→ S[[y]] is not
TGF.

Proof. Let a := ψ(y) and consider the ideal Q = (y − a)S[[y]]. Therefore
Q ∩R[[y]] = (0) and R[[y]] ↪→ S[[y]] is not TGF. □

21.3.8 Example 29.19. Let R := Rn = k[[f1w, . . . , fnw]] ↪→ S := k[[z, w]] be as
in Example

gen
29.11 with n ≥ 2. Define the extension ϕ : R[[y]] ↪→ S by setting

ϕ(y) = fn+1w ∈ S. By Proposition
genex
29.13, ϕ : R[[y]] ↪→ S is a TGF local extension

. Thus by Proposition
21.3.10
29.18, R[[y]] ↪→ S[[y]] is not TGF.

tgfnf Remark and Questions 29.20. Let (R,m) ↪→ (S, n) be a TGF local ex-
tension of complete Noetherian local domains. Assume that [S/n : R/m] < ∞
and that S is not finite over R. By Theorem

3.38.1
3.16, mS is not n-primary. Thus

dimS > ht(mS). Therefore dimS > 1, and so by Proposition
21.3.1.1
29.2, dimR > 1.

(1) If (R,m) is equicharacteristic, then by Corollary
gendim2th
29.9, dimS = 2. Is it

true in generals that dimS = 2?
(2) Is it possible to have dimS − ht(mS) > 1?

Examples 29.21. (1) Let R := k[[x, xy, z]] ↪→ S := k[[x, y, z]]. We show this
is not a TGF extension. By Example

21.3.4
29.15, ϕ : k[[x, xy]] ↪→ k[[x, y]] is TGF.

By Proposition
21.3.10
29.18, it suffices to extend ϕ to an injective local homomorphism

of k[[x, xy, z]] to k[[x, y]]. Let f ∈ k[[x]] be such that x and f are algebraically
independent over k, and so (1, x, f) is not a solution to any nonzero homogeneous
form over k. As in Proposition

dim2th
29.8 and Example

gen
29.11, the extension of ϕ obtained

by mapping z → fy is an injective local homomorphism.
(2) The extension R = k[[x, xy, xz]] ↪→ S = k[[x, y, z]] is not a TGF extension,

since R = k[[x, xy, xz]] ↪→ k[[x, xy, z]] ↪→ S = k[[x, y, z]] is a composition of two
extensions that are not TGF by part (1). Now apply Proposition

tgftrans
28.8.

29.3. The case of transcendental residue extension
21.4

In this section we address but do not fully resolve the following question.
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21.2.5 Question 29.22. Let (R,m) ↪→ (S, n) be a TGF local extension of complete
Noetherian local domains. If S/n is transcendental over R/m does it follow that
dimS ≤ 1?

Proposition
21.2.6
29.23 shows that every Noetherian local domain of positive dimen-

sion is dominated by a one-dimensional complete Noetherian local domain that is
a TGF local extension.

21.2.6 Proposition 29.23. Let (R,m) be a Noetherian local domain of positive di-
mension. Then there exists a one-dimensional complete Noetherian local domain
(S, n) that is a TGF local extension of R.

Proof. By Chevalley’s Theorem
3.2.5
2.35, there exists a discrete rank-one valua-

tion domain (S, n) that dominates R. The n-adic completion Ŝ of S is a discrete
rank-one valuation domain that dominates R. Since (S, n) is a one-dimensional
Noetherian local domain and dominates the Noetherian local domain (R,m) of pos-
itive dimension, it follows that R ↪→ S is TGF local. Also S ↪→ Ŝ is TGF local. By
Proposition

tgftrans
28.8, R ↪→ Ŝ is a TGF local extension, as desired. □

set4 Setting 29.24. Let n ≥ 2 be an integer, let X = {x1, . . . , xn} be a set of
independent variables over the field k and let R = k[[X]] be the formal power series
ring in n variables over the field k. Let z, w, t, v be independent variables over R.

dim1 Proposition 29.25. Let notation be as in Setting
set4
29.24.

(1) There exists a TGF embedding θ : k[[z, w]]→ k(t)[[v]] defined by θ(z) = tv
and θ(w) = v.

(2) Moreover, the composition ψ = θ ◦ ϕ of θ with ϕ : R → k[[z, w]] given in
General Example

gen
29.11 is also TGF.

Proof. Suppose f ∈ ker θ. Write f =
∑∞
n=0 fn(z, w), where fn is a homoge-

neous form of degree n with coefficients in k. We have

0 = θ(f) =

∞∑
n=0

fn(tv, v) =

∞∑
n=0

vnfn(t, 1) .

This implies fn(t, 1) = 0 for each n. Since t is algebraically independent over k,
we have fn(z, w) = 0 for each n. Thus f = 0 and θ is an embedding. Since θ is a
local homomorphism and dim(k(t)[[v]]) = 1, it is clear that θ is TGF. The second
statement is clear since a local embedding or a local domain into a one-dimensional
local domain is TGF. □

As a consequence of Proposition
dim1
29.25, we prove:

genfib Corollary 29.26. Let R = k[[X]] be as above and let A = k(t)[[X]]. There
exists a prime ideal P ∈ SpecA in the generic fiber over R with htP = n − 1. In
particular, the inclusion map R = k[[X]] ↪→ A = k(t)[[X]] is not TGF.

Proof. Define ϕ : R→ k[[z, w]] := S, by

ϕ(x1) = z, ϕ(x2) = h2(w)z, . . . , ϕ(xn) = hn(w)z,
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where h2(w), . . . , hn(w) ∈ k[[w]] are algebraically independent over k. Also define
θ : S → k(t)[[v]] := B by θ(z) = tv and θ(w) = v. Consider the following diagram

R = k[[X]]
⊂−−−−→ A = k(t)[[X]]

φ

y Ψ

y
S = k[[z, w]]

θ−−−−→ B = k(t)[[v]],

where Ψ : A→ B is the identity map on k(t) and is defined by
Ψ(x1) = tv, Ψ(x2) = h2(v)tv, . . . , Ψ(xn) = hn(v)tv.

Notice that Ψ|R = ψ = θ◦ϕ. Therefore the diagram is commutative. Let P = kerΨ.
Since Ψ is surjective, htP = n − 1. Commutativity of the diagram implies that
P ∩R = (0). □

genfibdis Discussion 29.27. Let us describe generators for the prime ideal P = kerΨ
given in Corollary

genfib
29.26. Under the map Ψ, x1 7→ tv, and so x1

t 7→ v. Since also
x2 7→ h2(v)tv, . . . , xn 7→ hn(v)tv, we see that

(x2 − h2(
x1
t
)x1, x3 − h3(

x1
t
)x1, . . . , xn − hn(

x1
t
)x1)A ⊆ P

(that is, Ψ(x2 − h2(x1/t)x1) = h2(v)tv − h2(v)tv = 0 etc.) Since the ideal on the
left-hand-side is a prime ideal of height n − 1, the inclusion is an equality. Thus
we have generators for the prime ideal P = kerΨ resulting from the definitions of
ϕ and θ given in the corollary.

On the other hand, in Corollary
genfib
29.26 if we change the definition of θ and we

define θ′ : k[[z, w]]→ k(t)[[v]] by θ′(z) = v and θ′(w) = tv (but we keep ϕ as above),
then Ψ′ defined by Ψ′|R = θ′ · ϕ maps x1 → v, x2 → h2(tv)v, . . . , xn → hn(tv)v.
In this case,

(x2 − h2(tx1)x1, x3 − h3(tx1)x1, . . . , xn − hn(tx1)x1)A ⊆ kerΨ′ = P ′.

Again the ideal on the left-hand-side is a prime ideal of height n − 1, and so we
have equality. This yields a different prime ideal P ′.

In this case one can also see directly for
P ′ = (x2 − h2(tx1)x1, x3 − h3(tx1)x1, . . . , xn − hn(tx1)x1)A

that P ′ ∩ R = (0). The map Ψ′ : A → A/P ′ = k(t)[[v]]. Suppose f ∈ R ∩ P ′.
Write f =

∑∞
ℓ=0 fℓ(x1, . . . , xn), where fℓ ∈ k[x1, . . . , xn] is a homogeneous form of

degree `. Then

0 = Ψ′(f) =

∞∑
ℓ=0

fℓ(v, h2(tv)v, . . . , hn(tv)v) =

∞∑
ℓ=0

vℓfℓ(1, h2(tv), . . . , hn(tv)).

This implies fℓ(1, h2(tv), . . . , hn(tv)) = 0, for each `. Since h2, . . . , hn are alge-
braically independent over k, each of the homogeneous forms fℓ(x1, . . . , xn) = 0.
Hence f = 0.

Question 29.28. With notation as in Corollary
genfib
29.26, does every prime ideal

of the ring A maximal in the generic fiber over R have height n− 1?

21.4.8 Theorem 29.29. Let (A,m) ↪→ (B, n) be an extension of two-dimensional reg-
ular local domains. Assume that B dominates A and that B/n as a field extension
of A/m is not algebraic. Then A ↪→ B is not TGF.
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Proof. Since dimA = dimB, the assumption that B/n is transcendental over
A/m implies that B is not algebraic over A by Cohen’s Theorem

cohenextensions
2.26 on extensions.

If mB is n-primary, then B is faithfully flat over A
M
[123, Theorem 23.1], and a result

of Heinzer and Rotthaus,
HR
[71, Theorem 1.12], implies that A ↪→ B is not TGF in

this case.
If mB is principal, then mB = xB for some x ∈ m sinceB is local. It follows that

m/x ⊂ B. Localizing A[m/x] at the prime ideal n ∩A[m/x] gives a local quadratic
transform (A1,m1) of A, see Definition

12.1.0
13.1. If dimA1 = 1, then A1 ↪→ B is not

TGF because only finitely many prime ideals of B can contract to the maximal
ideal of A1. Hence A ↪→ B is not TGF if dimA1 = 1. If dimA1 = 2, then (A1,m1)
is a 2-dimensional regular local domain dominated by (B, n) and the field A1/m1

is finite algebraic over A/m, and so B/n is transcendental over A1/m1. Thus we
can repeat the above analysis: If m1B is n-primary, then as above A ↪→ B is not
TGF. If m1B is principal, we obtain a local quadratic transform (A2,m2) of A1. If
this process does not end after finitely many steps, we have a union V = ∪∞n=1An
of an infinite sequence An of quadratic transforms of a 2-dimensional regular local
domains. By

Abhy
[3], the integral domain V is a valuation domain of rank at most 2

contained in B, and so at most finitely many of the height-one primes of B have a
nonzero intersection with V . Therefore V ↪→ B is not TGF and hence also A ↪→ B
is not TGF.

Thus by possibly replacing A by an iterated local quadratic transform An of
A, we may assume that mB is neither n-primary nor principal. Let m = (x, y)A.
There exist f, g, h ∈ B such that x = gf, y = hf and g, h is a regular sequence in
B. Hence (g, h)B is n-primary. Let f = fe11 · · · ferr , where f1B, . . . frB are distinct
height-one prime ideals and the ei are positive integers. Then f1B, . . . , frB are
precisely the height-one primes of B that contain m.

Let t ∈ B be such that the image to t in B/n is transcendental over A/m.
Modifying t if necessary by an element of n we may assume that t is transcendental
over A. We have n ∩ A[t] = m[t]. Let A(t) = A[t]m[t]. Notice that A(t) is a 2-
dimensional regular local domain with maximal ideal mA(t) that is dominated by
(B, n). We have

A ↪→ A[t] ↪→ A(t) ↪→ B.

For each positive integer i, let Pi = (xti− y)A(t). Since t is transcendental over A,
we have Pi∩A = (0) for each i ∈ N. Notice that PiB = (gfti−hf)B = f(gti−h)B.
If i 6= j, the element ti − tj is a unit of B. Hence (gti − h, gtj − h)B = (g, h)B is
n-primary if i 6= j. Therefore a height one prime Q of B contains gti−h for at most
one integer i. Hence there exists a positive integer n such that if Q is a minimal
prime of (gtn − h)B, then Q 6∈ {f1B, . . . , frB}. It follows that Q∩A(t) has height
one. Since Pn ⊆ (gtn − h)B ⊆ Q, we have Q ∩A(t) = Pn. Thus Q ∩A = (0). This
completes the proof. □

Corollary
21.4.9
29.30 is an immediate consequence of Theorem

21.4.8
29.29.

21.4.9 Corollary 29.30. Let x, y, z, w, t be indeterminates over the field k and let

ϕ : R = k[[x, y]] ↪→ S := k(t)[[z, w]]

be an injective local k-algebra homomorphism. Then ϕ(R) ↪→ S is not TGF.
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In relation to Question
21.2.5
29.22, Example

tgfdim2rf
29.31 is a TGF extension A ↪→ B that

is not complete for which the residue field of B is transcendental over that of A and
dimB = 2.

tgfdim2rf Example 29.31. Let A = k[x, y, z, w](x,y,z,w), where k is a field and xw = yz.
Thus A is a 3-dimensional normal Noetherian local domain with maximal ideal
m := (x, y, z, w)A and residue field A/m ∼= k. Since y/x = w/z, we have

C := A[
y

x
] = k[

y

x
, x, z]

is a polynomial ring in 3 variables over k. Thus B := C(x,z) is a 2-dimensional
regular local domain with maximal ideal n = (x, z)B. Notice that (B, n) bira-
tionally dominates (A,m). Hence (A,m) ↪→ (B, n) is a TGF extension. Also
B = k(y/x)[x, z](x,z), and so k(y/x) is a coefficient field for B. The image t of
y/x in B/n is transcendental over k and B/n = k(t). The completion of A is
the normal local domain Â = k[[x, y, z, w]], where xw = yz. A form of Zariski’s
Subspace Theorem

Abhy1
[4, (10.6)] implies Â is dominated by B̂. Also B̂ is isomor-

phic to k(t)[[x, z]], where t is transcendental over k, and ϕ : Â ↪→ B̂, where
ϕ(x) = x, ϕ(z) = z, ϕ(y) = tx, ϕ(w) = tz, and ϕ(xw) = xtz = ϕ(yz).

Exercise
exer29.31 (1) With notation as in Example

tgfdim2rf
29.31, prove that Â ↪→ B̂ is not a TGF extension.

Equivalently, prove that the inclusion map
R := k[[x, z, tx, tz]] ↪→ k(t)[[x, z]] := S

is not a TGF extension.



CHAPTER 30

Constructions and examples discussed in this book
May 23 2020exam

In Section
const1
30.1, we list the construction techniques used in the book . We give

a partial list of examples with a brief description of each in Section
const2
30.2.

30.1. Construction techniquesconst1

• Intersection Construction
RamQ.0
1.3 is the most general form of the constructions

given in the book. In every construction the constructed ring is an intersection of
a field with a homomorphic image of a completion. All the constructions use this
basic format.

Intersection Construction 30.1 (See
RamQ.0
1.3.). Construct the Intersection Do-

main
A := L ∩ (R∗/I),

where R is an integral domain, R∗ is a completion of R, such as an ideal-adic or
multi-adic completion, I is an ideal of R∗ and L is a subfield of the total ring of
fractions of R∗/I such that R ⊆ L. 1 If R∗ is a principal ideal-adic completion of R
with certain additional hypotheses, then Construction

BCdef
1.5 expands Construction

RamQ.0
1.3

to include an approximation domain.

• Inclusion Construction
4.4.1
5.3 is introduced in Chapter

fex
4. The formal definition

is in Chapter
constrincl
5. For this construction R is an integral domain with field of fractions

K, x ∈ R is a nonzero nonunit, and
• R is separated in the x-adic topology, that is,

⋂
n∈N x

nR = (0),
• the x-adic completion R∗ of R is a Noetherian ring,
• τ1, . . . , τs ∈ xR∗ are algebraically independent elements over R, and
• K(τ1, . . . , τs) ⊆ Q(R∗), the total ring of fractions of R∗.

Inclusion Construction 30.2. (See
4.4.1
5.3.) Define A to be the Intersection

Domain

A := K(τ1, . . . , τs) ∩R∗.
An Approximation Domain for Inclusion Construction

4.4.1
5.3 is defined in Section

4.45
5.2;

see Definition
appintdef
5.7. Noetherian Flatness Theorem

11.3.25
6.3 gives conditions that imply A

is Noetherian.

1This requires restrictions on I.
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• Insider Construction
16.1.1
10.7 is introduced in Chapter

noeflic
6 and presented in general

in Chapter
insidecon
10. It involves an iteration of Inclusion Construction

4.4.1
5.3

First apply Inclusion Construction
4.4.1
5.3 to the following situation:

• R is a Noetherian integral domain with field of fractions K,
• x is a nonzero nonunit of R and R∗ is the x-adic completion of R,
• τ1, . . . , τs ∈ xR∗ are algebraically independent over K, and τ abbreviates

the list τ1, . . . , τs,
• Q(R)(τ) ⊆ Q(R∗),
• T := R[τ ] = R[τ1, . . . , τs]

ψ
↪→ R∗[1/x] is flat, and

• D := K(τ) ∩R∗, as in Inclusion Construction
4.4.1
5.3.

Since the map ψ is flat, Noetherian Flatness Theorem
11.3.25
6.3 implies the integral

domain D is a Prototype, as in Definition
proicdef
10.3.

16.1.1a Insider Construction 30.3. (See
16.1.1
10.7.) To construct “insider” examples in-

side D:
• Choose polynomials f1, . . . , fm in T = R[τ ] that are algebraically inde-

pendent over K, so m ≤ n.
• As in Inclusion Construction

4.4.1
5.3, there is no loss of generality in assuming

that each fi ∈ (τ)T ⊆ xR∗, and abbreviate f1, . . . , fm by f .
• Define the Insider Intersection Domain

A := K(f) ∩R∗.

There is an Approximation Domain B corresponding to the domain A using f
instead of τ , as in Section

4.45
5.2. Then B ⊆ A ⊆ D. The ring B is Noetherian if the

embedding ϕ : S : = R[f ]
φ
↪→ T := R[τ ] is flat. See Corollary

16.3.2c2
10.11.

• Homomorphic Image Construction
4.4.2
17.2 is defined in Chapter

constrhomim
17. For this

construction:
• R is an integral domain with field of fractions K := Q(R).
• x ∈ R is a nonzero nonunit such that

⋂
n≥1 x

nR = (0).
• the x-adic completion R∗ is Noetherian, and x is a regular element of R∗.
• I is an ideal of R∗ such that P ∩ R = (0) for each P ∈ SpecR∗ that is

associated to I.

4.4.2a Homomorphic Image Construction 30.4. (See
4.4.2
17.2.) Define the Intersec-

tion Domain
A = Ahom := K ∩ (R∗/I).

There is an Approximation Domain B corresponding to A; see Section
4.55
17.2. By

Noetherian Flatness Theorem
11.3.2
17.13, A is Noetherian and A = B if and only if the

inclusion map R ↪→ (R∗/I)[1//x] is flat.

• Multi-adic Inclusion Construction
multcdef
21.5 is an adaptation of Inclusion Con-

struction
4.4.1
5.3 where a multi-adic completion is used in place of an ideal-adic com-

pletion; see Chapter
mult2
21.
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30.2. Examples considered in the bookconst2

(1) Let (A, n) be a Noetherian local domain having a coefficient field k, and
having the property that the field of fractions L of A is finitely generated
over k. There exists a Noetherian local subring R of A such that
(a) A birationally dominates R.
(b) R is essentially finitely generated over k.
(c) There exists an ideal I in the completion R̂ of R such that L is a

subring of the total quotient ring of R̂/I and A = L ∩ (R̂/I).
Thus every Noetherian local domain A with these properties is realizable
as an intersection, where R is a Noetherian local domain essentially finitely
generated over a field and I is an ideal in R̂; see Corollary

4.6.2
4.3.

(2) The “simplest” example of a Noetherian local domain A on an algebraic
function field L/k of two or more variables that is not essentially finitely
generated over its ground field k, that is, A is not the localization of a
finitely generated k-algebra; see Example

4.1.1
4.7.

(3) A two-dimensional regular local domain A that is a nested union of three-
dimensional regular local domains that A birationally dominates; see Ex-
ample

4.1.3
4.10.

(4) A two-dimensional regular local domain A that is a nested union of four-
dimensional regular local domains that A birationally dominates; see Ex-
ample

4.1.4
4.11.

(5) A one-dimensional Noetherian local domain A that is the local coordinate
ring of a nodal plane curve singularity; see Example

4.3.0
4.13. The integral

closure of A has precisely two maximal ideals and is a homomorphic image
of a regular Noetherian domain of dimension two; see also Example

6.4.10
22.38.

(6) A two-dimensional normal Noetherian local domain D that is analyti-
cally reducible; see Example

4.3.1
4.15 and Remarks

4.3.2
4.16.1,

N2
[138, Example 7,

pp. 209-211]. There exists a two-dimensional regular local domain S that
birationally dominates D such that S is not essentially finitely generated
over D

HHS
[67, page 670], and the inclusion map D ↪→ S extends to a sur-

jective map D̂ → Ŝ. This demonstrates the necessity of the analytically
irreducible assumption in

N2
[138, Theorem 37.4].

(7) A two-dimensional regular local domain A that is not Nagata and thus not
excellent. The ring A contains a prime element f that factors as a square
in the completion Â of A, that is, f = g2 for some element g ∈ Â; see
Example

4.3.1
4.15, Remarks

4.3.2
4.16.2, Proposition

16.1n
6.19 and Remark

16.1nr
6.20,

N2
[138,

Example 7, pp. 209-211].

(8) A three-dimensional regular local domain A that is Nagata but not excel-
lent. The formal fibers of A are reduced but not regular; see Examples

4.3.3
4.17

and
16.1r
6.23 and Remark

4.3.31
4.18,

R1
[156].



406 30. CONSTRUCTIONS AND EXAMPLES DISCUSSED IN THIS BOOK MAY 23 2020

4.26 (9) An example of Inclusion Construction
4.4.1
5.3 where the approximation do-

main B is equal to the intersection domain A; see Remark
dvrunique
4.20, Local

Prototype Example
proexample
4.26 and Example

7.6.10.1
12.21.

(10) A non-excellent DVR obtained by Prototype Theorem
11.4.1a
10.2; see Proposi-

tion
16.5.18
10.4.

(11) A two-dimensional non-excellent regular local domain obtained by Proto-
type Theorem

11.4.1a
10.2; see Remark

perfnexc
10.5.

(12) An example of a regular local domain A of dimension three having a prime
ideal P with htP = 2 such that the extension of P to the completion of
A is not integrally closed; see Theorem

18.3.3
11.11. It follows that A is not a

Nagata ring and A is not excellent.
More generally, for each integer n ≥ 2, and every integer r with

2 ≤ r ≤ n, there exists a regular local domain A with dimA = n + 1
having a prime ideal P with htP = r such that the extension of P to the
completion of A is not integrally closed; see Example

18.3.4
11.13.

(13) A non-Noetherian three-dimensional local Krull domain (B, n) such that n
is two-generated, the n-adic completion of B is a two-dimensional regular
local domain, and B birationally dominates a four-dimensional regular
local domain; see Theorem

4.2.11t
12.3 and Example

4.7.13
12.7.

(14) For every integer m > 0, an example of Insider Construction
16.1.1
10.7 where

B ( A and B is a non-Noetherian 3-dimensional local UFD such that B is
not catenary, B has precisely m prime ideals of height 2, Bp is Noetherian
for every nonmaximal prime ideal p of B, the prime ideals of B that
are not finitely generated are precisely the prime ideals of height 2, the
maximal ideal of B is 2-generated and the completion B̂ of B is a power
series ring in two variables over a field; see Examples

16.5.1
14.1, Theorem

16.5.2
14.3

and Proposition
3dB+
14.5.

An analysis of the spectrum of B and the map Spec B̂ → SpecB for
the cases m = 1 and m = 2 is given in Section

2casespec
14.2.

(15) For every m,n ∈ N with n ≥ 4, an example of Insider Construction
16.1.1
10.7

where the approximation domain B is equal to the intersection domain A,
dimB = n, and B has exactly m prime ideals of height n−1. The domain
B is a non-catenary non-Noetherian UFD, and every prime ideal of B of
height n−1 is not finitely generated; see Theorem

ehdim1
16.2 and Example

16.3.10
10.15.

(16) An example of Insider Construction
16.1.1
10.7 where the approximation domain

B is equal to the intersection domain A. The domain B is a non-catenary
non-Noetherian four-dimensional local UFD that is very close to being
Noetherian. The ring B has exactly one prime ideal Q of height 3; the
ideal Q is not finitely generated; see Examples

16.5.4de
16.4,

16.3.10
10.15 and

16.1nn
6.24.

Another example of a non-catenary non-Noetherian four dimensional
local UFD using Insider Construction

16.1.1
10.7 is given in Theorem

yztauth
15.11.

The intersection domain A in this example is a Local Prototype as in
Definition

prodef
4.28 and is a 3-dimensional RLR.
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(17) A strictly descending chain of one-dimensional analytically ramified Noe-
therian local domains that birationally dominate a polynomial ring in two
variables over a field; see Example

ch8example
17.18.

(18) For each pair of positive integers r, n, a Noetherian local domain A with
dimA = r and a principal ideal-adic completion A∗ of A such that A∗ has
nilradical with nilpotency index n; see Example

11.4.2
17.27.

(19) A two-dimensional Noetherian local domain B with geometrically regular
formal fibers such that B is not universally catenary, and B birationally
dominates a three-dimensional regular local domain. The completion of
B has two minimal primes, one of dimension one and one of dimension
two. The ring B is not a homomorphic image of a regular local ring; see
Example

11.4.5
18.15.

More generally Example
15.4.3
18.20 shows: given a positive integer t and

nonnegative integers nr, for each r with 1 ≤ r ≤ t and n1 ≥ 1, there exists
a t-dimensional Noetherian local domain A with geometrically regular
formal fibers such that A birationally dominates a t+1-dimensional RLR
and the completion Â of A has exactly nr minimal primes of dimension
t+ 1− r, for each r.

(20) An Ogoma-like example having the properties of Ogoma’s famous exam-
ple, that is, a normal Nagata local domain C such that the completion Ĉ
of C has a minimal prime ideal of dimension 3 and a minimal prime ideal
of dimension 2. Hence C is not formally equidimensional, and so C is not
universally catenary by Ratliff’s Equidimension Theorem

15.2.1
3.26. Thus C is

a counterexample to Chain Conjecture
chainconj
18.2; see Examples

13.3.4
19.4 and

ogomaeg
19.13

and Theorem
ogomath
19.15.

(21) An example of Insider Construction
16.1.1
10.7, where the approximation do-

main B is properly contained in the intersection domain A, and neither
A nor B is Noetherian. The local domain B is a UFD that fails to have
Cohen-Macaulay formal fibers; see Examples

oglike
19.6 and

16.4nn
6.26 and Theo-

rems
13.4.2
19.8 and

13.4.3
19.9.

(22) Let (R,m) be a countable excellent normal local domain with dimR ≥ 2,
and let R̂ denote the completion of R There exists a subfield L of the
field of fractions of R̂ such that the intersection domain S = R̂ ∩ L is an
infinite-dimensional non-Noetherian local Krull domain.

In particular, if k is a countable field and R = k[x, y](x,y) is a localized
polynomial ring, then there exists a subfield L of the field of fractions of
the power series ring k[[x, y]] such that S = k[[x, y]] ∩ L is an infinite-
dimensional non-Noetherian local Krull domain; see Corollary

6.3.10
22.23.

(23) Let k be the algebraic closure of the field Q and let R = k[x, y, z](x,y,z),
where z2 = x3 + yz. Then R is a normal Noetherian local UFD with
dimR = 2, and p = (z − xy)R is a principal prime ideal of R. In the
completion R̂ of R there exist two height one primes p̂ and q̂ that lie over
p in R, and p̂ is not the radical of a principal ideal. Therefore the divisor
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class group of the 2-dimensional normal Noetherian local domain R̂ is not
a torsion group; see Example

6.4.8
22.36.

(24) Let Q[[x, y, z]] denote the formal power series ring in the variables x, y, z.
There is an excellent regular local domain (R,m) with m = (x, y, z)R

and R̂ = Q[[x, y, z]] for which the following hold: with R∗ the y-adic
completion of R, there exists an element τ ∈ yR∗ that is algebraically
independent over R and
(a) τ limit-intersecting and residually limit-intersecting in y over R.
(b) τ is not primarily limit-intersecting in y over R;
In this example, B = A and B is non-Noetherian; see Theorem

8.4.4
24.16.

(25) An example of Basic Construction
RamQ.0
1.3 where the result of the construction

is the base ring. The notation is from Example
7.6.8
24.25 and Theorem

7.6.1.1
12.18.

Let S = Q[x, y, z](x,y,z) and P = (z − τ)Ŝ, a prime ideal of Ŝ. Then
Q(S)∩ (Ŝ/P ) = S, and P is in the generic formal fiber of S, but P is not
a maximal element of the generic formal fiber of S.

(26) For integer n ≥ 3, an example of a nonfinite TGF local embedding of a
power series ring in n variables over a field k into a power series ring in
two variables over k; see Example

gen
29.11 and Section

sec28.2
29.2. A particular

case is given in Example
21.3.4
29.15.

(27) An example where R and T are power series rings in 2 variables and S
is a power series ring in 3 variables all over the same field field k, and
σ : R ↪→ S is an inclusion map, τ : S ↪→ T is a TGF-embedding, and
τ ·σ = ϕ : R ↪→ T is TGF, but σ : R ↪→ S is not TGF; see Examples

rel2.4
29.16.

(28) An example where (A,m) is a 3-dimensional normal Noetherian local do-
main and (B, n) is a 2-dimensional regular local domain that dominates
A, the inclusion map (A,m) ↪→ (B, n) is a TGF extension and the canon-
ical map on completions Â→ B̂ is injective, but Â ↪→ B̂ is not TGF; see
Example

tgfdim2rf
29.31 and Exercise

exer29.31
1 of Chapter

tgfsec
29. In this example the residue

field of B is transcendental over that of A.
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